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Abstract: Stochastic simulators can effectively generate the intrinsic variability of the rainfall process,
which is an important issue in the analysis of the projections uncertainties. In this paper, a procedure
for stochastic modeling of precipitation at monthly scale is proposed. The model adopts variable
transformations, which are finalized to the deseasonalization and the Gaussianization of the monthly
rainfall process, and includes a procedure for testing the autocorrelation. The model was applied
to a homogeneous database of monthly rainfall values registered in 12 rain gauges in the region of
Calabria (Southern Italy). After the estimation of the model parameters, a set of 104 years of monthly
rainfall for each rain gauge was generated by means of a Monte Carlo technique. Then, dry and
wet periods were analyzed through the application of the standardized precipitation index (SPI).
Some results, confirmed through the application of the drought severity index (DSI), showed that
the proposed model provided a good representation of the monthly rainfall for the considered rain
gauges. Moreover, the results of the SPI application indicate a greater probability of dry conditions
than wet conditions, especially when long-term precipitation patterns are considered.

Keywords: monthly rainfall; stochastic model; dry and wet periods; Calabria

1. Introduction

A natural temporary imbalance of water availability, consisting of persistent lower-than-average
or higher-than-average precipitation, can cause extreme dry and wet conditions that adversely
impact agricultural yields, water resources, infrastructure and human systems. For example, dry
conditions have severe consequences because they can give rise to agricultural yield losses and
water shortages [1,2]. They also damage natural ecosystems [3,4] and forestry [5,6] and lead to soil
degradation and desertification [7,8], social alarm [9], famine and impoverishment [10,11]. Conversely,
wet conditions can cause flood, damage crops, reduce yields, and contribute to groundwater
contamination [12–17]. For these reasons, the analysis of the distribution of dry and wet periods
has always been a concern for researchers [18–26]. In general, climate anomalies are quantitatively
assessed through indices that allow scientists to characterize them in terms of intensity, duration,
frequency, recurrence probability and spatial extent [27,28]. Among the several indices, two of the most
commonly used are the standardized precipitation index (SPI), which transforms monthly precipitation
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time series into a standardized normal distribution, and the drought severity index (DSI), which uses
accumulated monthly precipitation anomalies. In particular, the SPI has found widespread application
in different countries of the world [29–35], in the Mediterranean basin [36–38] and also in Central [39]
and Southern Italy [40–46]. The SPI is easier to calculate than more complex indices because it is based
on precipitation alone for estimating wet or dry conditions [38,47]. Moreover, these conditions can be
monitored by the SPI on a variety of time scales from sub-seasonal to inter-annual scales [43].

Generally, the probabilistic structure of dry and wet periods, especially with a long duration,
cannot be properly investigated due to the limited number of events in the historical series [48].
Moreover, complete data are strictly required to perform the analysis of wet and dry periods, because
missing values may significantly influence estimates of event duration and the character of their
alternation [49]. In order to overcome such a difficulty, the probabilistic behavior of dry and wet periods
characteristics can be derived analytically, assuming a given stochastic structure of the underlying
hydrological and meteorological series [24,50–59]. This has led to the development of stochastic
models frequently used to produce long rainfall series that are statistically similar to historical records
(e.g., [60]). In particular, mathematical modeling of hydrological data as a stochastic process is
of interest to a variety of hydrological areas such as flood forecasting, reservoir operations and
agricultural planning [61–63]. Current state-of-the-art stochastic precipitation models at a single site
or for multiple sites can reproduce a wide range of statistics from hourly scale extremes to larger
aggregation periods [64–75]. In particular, numerous approaches for the stochastic modeling of daily
rainfall data are available in the hydrological and climatological literature [76–84]. These models are
widely used because they are easy to formulate and fast to implement [26]. Stochastic modeling also
allows for accounting of potentially wider range of conditions that may not be necessarily represented
in poorly sampled data. Moreover, by means of stochastic simulators, effectively intrinsic variability,
not associated with forced signals (e.g., by global warming), can be generated; this variability is
important because it places uncertainties on projections. However, very little work has been done on
stochastic generation of monthly rainfall data [85] because in the past low attention was paid to totals
at this time aggregation.

The aims of this study are:

(a) to propose a stochastic procedure for modeling precipitation at monthly scale;
(b) to analyze dry and wet periods through the application of the standardized precipitation index

(SPI) to a set of monthly rainfall series generated by the proposed model through a Monte Carlo
procedure. These results have been compared with the ones obtained through the application of
the drought severity index (DSI).

In particular, the model has been applied to a set of monthly rainfall series observed in Southern
Italy (the region of Calabria).

2. Methodology

2.1. Standardized Precipitation Index

In this study, dry and wet periods were expressed using the SPI [86] on different time scales.
Indeed, it is generally agreed that the SPI on short-term scales (e.g., 3 or 6 months) describes drought
affecting vegetation and agricultural practices, while on long-term scales (e.g., 12 or 24 months)
it is a broad proxy for water resource management [40–42]. A detailed description of the SPI has
been proposed previously [87]. Although a classification restricted only to drought periods has been
originally proposed [86], it has become customary to use the index to classify wet periods as well.
Table 1 reports the climatic classification according to the SPI, provided by the National Drought
Mitigation Center (NDMC).
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Table 1. Climate classification according to the SPI values [86].

SPI Value Class Probability (%)

SPI ě 2.0 Extremely wet 2.3
1.5 ď SPI < 2.0 Severely wet 4.4

1.0 SPI < 1.5 Moderately wet 9.2
0.0 SPI < 1.0 Mildly wet 34.1

´1.0 ď SPI < 0.0 Mild drought 34.1
´1.5 ď SPI < ´1.0 Moderate drought 9.2
´2.0 ď SPI < ´1.5 Severe drought 4.4

SPI < ´2.0 Extreme drought 2.3

Despite its widespread application, some limitations of the SPI calculation must be addressed.
In fact, as evidenced by a previous study [88], the SPI is an index with several univariate probability
distribution recommendations that typically rely on the Kolmogorov–Smirnov test. However, this
test has been shown to be relatively insensitive in previous statistical analyses [89] and requires
time-consuming Monte Carlo simulation of critical values when applied to distributions derived
from the data [90,91]. Moreover, probability distribution fitting for the SPI is also complicated by
the presence of periods with zero precipitation, as has been previously described [92], and current
procedures do not adequately capture the likelihood of zero precipitation events.

2.2. Drough Severity Index (DSI)

Based on the accumulated monthly rainfall deficit concept of a previous report [93], the drought
severity index (DSI) is evaluated through the precipitation anomalies (mm) defined in this work with
reference to the 1961–1990 mean [25,94,95]. Two indices, DSI3 and DSI6, can be used by means of
different termination rules. Considering the DSI3, if the precipitation anomaly in month t is denoted as
Xt and is negative and the precipitation in the preceding 3-month period (i.e., t ´ 1, t ´ 2, t ´ 3) is also
lower than its mean, then a drought sequence can start. In this case, the positive value assumed for DSI3
is proportional to the deficit in month t. Considering the next month (t + 1), if its precipitation deficit is
´Y mm, and the mean monthly precipitation total for the preceding 3 months has not been exceeded,
then DSI3 for the month (t + 1) is X + Y. On the contrary, if the precipitation anomaly is positive, the
drought can continue provided that the 3-monthly mean total has not been exceeded. The termination
of a drought event occurs when the 3-monthly mean total is exceeded, thus assigning a value of zero to
DSI3. DSI6 is calculated identically, using the 6-month mean to identify drought termination. In order
to allow comparisons between different rain gauges, the DSI values can be standardized by dividing
the absolute deficit by the site mean annual precipitation, and then multiplying by 100, thus expressing
the accumulated precipitation deficit as a percentage of the annual mean total precipitation.

2.3. Stochastic Modelling of Monthly Rainfall

Let Hi,j be the sequence of random variables describing the monthly total rainfall, where j
represents the month and i represents the year, counted from a non-specified origin i = 0. Defined
Nj as the number of days of the j-month and I0 as a generic reference value of the daily rainfall, the
dimensionless random variables,

Xi,j “
Hi,j

Nj I0
(1)

indicate a sequence that can be described as a discrete cyclostationary parameter stochastic process
with period P equal to 12 (months).

The model proposed in this paper is useful to describe pluviometric regimes in which there is a
scarce probability that the Hi,j values should be equal to zero. With this condition, it can be assumed
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that, for Xi,j > 0 and, by adopting the transformation Yi,j “ Xλ
i,j for λ > 0, the sequence of random

variables Zk:

Zk “
Yi,j ´ µY,j

σY,j
with k “ 12i` j (2)

is a standardized stationary Gaussian stochastic process.

The two functions µY,j “ Ei
`

Yi,j
˘

and σY,j “

c

Ei

´

Y2
i,j

¯

´ µ2
Y,j are appointed to the

deseasonalization of the monthly rainfall process, while the transformation Yi,j “ Xλ
i,j is finalized to the

Gaussianization of the same process. The mean µY,j and the variance σ2
Y,j functions can be described

by means of the truncated Fourier series:

µY,j – rµY,j “
1
2

apµq0 `

Npµq

h
ÿ

m“1

”

apµqm cos
´π

6
jm

¯

` bpµqm sin
´π

6
jm

¯ı

(3)

σ2
Y,j – rσ2

Y,j “
1
2

a0
pσ2q `

Npσ2q

h
ÿ

m“1

”

apσ
2q

m cos
´π

6
jm

¯

` bpσ
2q

m sin
´π

6
jm

¯ı

(4)

where Npµqh and Npσ
2q

h are the number of harmonics used for the mean and variance functions,

respectively, and ap¨q0 , ap¨qm , bp¨qm are the Fourier coefficients for each of the mean and variance functions.
Given a fixed value of the parameter λ and considering a period of N years, on the basis of a sample
of observed monthly rainfall, hi,j, it is possible to evaluate a transformed sample yi,j “ xλi,j. The

parameters apµq0 , apµqm , bpµqm of the function rµY,j, for a fixed number of harmonics Npµqh , can then be
estimated with the use of the least squares method by minimizing the function expressed by the
following equation:

S2
µ

´

apµq0 , apµq1 , bpµq1 , ...
¯

“

N´1
ÿ

i“0

12
ÿ

j“1

»

—

–

yi,j ´
1
2

apµq0 ´

Npµq

h
ÿ

m“1

fµ
´

j, m; apµqm , bpµqm

¯

fi

ffi

fl

2

(5)

where fµ
´

j, m; apµqm , bpµqm

¯

“ apµqm cos pjmπ{6q ` bpµqm sin pjmπ{6q.
The estimation of the coefficients for the truncated Fourier series expansion of the mean

function can be performed by solving a system of 1` 2Npµqh linear algebraic equations in 1` 2Npµqh

unknowns, obtained by equaling to zero the partial derivatives of S2
µ

´

apµq0 , apµq1 , bpµq1 , ...
¯

, with respect

to apµq0 , apµqm , bpµqm . Rarely, i.e. when the temporal span of the sample is a multiple of the period P and
when the series do not have any missing monthly data, the trigonometric interpolation theory provides
the estimations of the coefficients apµq0 , apµqm , bpµqm in explicit form.

An analogous procedure can be performed for the estimation of the function rσ2
Y,j, for a fixed

number of harmonics Npσ
2q

h .
The estimation of the number of harmonics to be used for the mean and for the variance should

be done by testing both the hypotheses Hpµq0 and Hpσ
2q

0 that the sample mean and variance, mY,j and
s2

Y,j, derive from statistical Gaussian universes with mean and variance respectively equal to rµY,j and

rσ2
Y,j. Thus, by assuring a parameter parsimony criterion, and given a fixed value of the parameter λ,

the number of harmonics can be detected as the smallest numbers that give values of rµY,j and rσ2
Y,j, for

which Hpµq0 and Hpσ
2q

0 cannot be rejected with a specified significance level α.
The extremes of the non-rejection intervals of the tests can be easily evaluated [96]. In fact, given

that Yi,j are Gaussian variables, the distributions of the sample means follow a Student’s law and the
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sample variances are distributed following a gamma distribution, with scale and shape parameters
equals to 2 and (Nj ´ 1)/2, respectively.

The procedure for identifying the number of harmonics, which must be used for the mean and
the variance, has to be repeatedly applied in order to evaluate the values λ̂ of the parameter λ, which
makes Gaussian the random variable Zk and, more specifically, minimizes the function expressed by
the following equation:

S2
G pλq “

g2
1,Z pλq

σ2
g1,z

`
rg2,Z pλq ´ 3s2

σ2
g2,z

(6)

where g1,Z and g2,Z are the sample skewness and kurtosis coefficients, evaluated on the basis of the NK
observed values of Zk, while σ2

g1,z
and σ2

g2,z
indicate their sample variances:

σ2
g1,z
“ 6NK pNK ´ 1q{ rpNK ´ 2q pNK ` 1q pNK ` 3qs (7)

σ2
g2,z
“ 24NKpNK ´ 1q2{

”

pNK ´ 2q
´

N2
K ´ 9

¯

pNK ` 5q
ı

(8)

The values of skewness, g1,Z
`

λ̂
˘

, and kurtosis, g2,Z
`

λ̂
˘

, can then be used to test the Gaussianity of
the process of the Zk. The Gaussianity hypothesis cannot be rejected if g1,Z

`

λ̂
˘

and g2,Z
`

λ̂
˘

fall within
the intervals:

´

´gpNKq

1,Z;1´α{2; gpNKq

1,Z;1´α{2

¯

(9)
´

gpNKq

2,Z;α{2; gpNKq

2,Z;1´α{2

¯

(10)

where gpNKq

1,Z;1´α{2 is the percentile 1-α/2 of the sample skewness distribution of the standardized

Gaussian law with dimension NK, while gpNKq

2,Z;α{2 and gpNKq

2,Z;1´α{2 are the percentiles α/2 and 1 ´ α/2 of
the sample kurtosis distribution of the standardized Gaussian law with dimension NK.

The required percentiles can be evaluated through Monte Carlo simulation techniques after
having analyzed the correlative features of the variable Zk.

Correlative Structure

Usually, the sequence of random variables Zk with k = 1, 2, . . . , shows a weak correlative structure
which, if significant, can be modeled as an autoregressive process of order p. Being Zk standardized
Gaussian variables, and given a white noise standardized Gaussian process Wk, then:

Zk “ ψ0Wk `

p
ÿ

l“1

φlZk´l (11)

Using the sample values rZ,l of the autocorrelation coefficients of lag l = 1, ..., p of the sequence Zk,
it is possible to obtain the estimations φ̂l of the parameters ϕl by solving the Yule-Walker system, and

to estimate ψ0 as ψ̂0 “

b

1´
řp

l“1 φ̂lrZ,l [97].
The p-order of the autoregressive process can be fixed as the minimum value for which cannot

be rejected the hypothesis Hpρνq

0,p that the sample biases wp,k “
´

zk ´
řp

l“1 φ̂lzk´l

¯

{ψ̂0, with k = p + 1,

p + 2, are uncorrelated for lag ν = 1, 2, . . . The hypothesis Hpρνq

0,p can be tested, at a significance level α,
by using the Anderson test [98,99]. The test must be applied also in the case p = 0, for which W0,k = Zk
and w0,k = zk, in order to verify the hypothesis that the process Zk can be considered as white noise.
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3. Case Study

The study area (the region of Calabria) is a peninsula with an oblong shape occupying the southern
part of Italy. It has a surface of 15,080 km2 and a coastline of 738 km on the Ionian and Tyrrhenian Seas.
Calabria has a length of about 250 km and a width ranging between 31 and 111 km. The maximum
elevation is 2267 m a.s.l., while the average elevation is 597 m a.s.l. [100].

Because of its geographic position and mountainous nature, Calabria has a high climatic variability
with a typically dry summer subtropical climate, also known as the Mediterranean climate [101]. Its
coastal zones are characterized by mild winters and hot summers with little precipitation. In particular,
the Ionian side, which is influenced by currents coming from Africa, has high temperatures with short
and heavy precipitation, while the Tyrrhenian side is influenced by western air currents and presents
milder temperatures and considerable orographic precipitation. In the inland zones there are colder
winters (with snow) and fresher summers (with some precipitation) than those marking the coastal
zones [102].

Monthly precipitation data have been collected and published in the region of Calabria by the
former Italian Hydrographic Service. In this work, particular attention has been given to the problems
arising from the low quality and inhomogeneities of the data series. Thus, the monthly database
used in the further analysis was a part of the high-quality one presented in a previous study [103], in
which a multiple application of the Craddock test [104] to detect the inhomogeneities was performed.
In particular, in the present work, a set of 12 monthly total precipitation series, which were found
to be homogeneous for the period 1916–2011, were selected. In Figure 1, the study area and the
characterization of the rainfall series through box plots are presented. The main features of the rain
gauges are shown in Table 2, together with the percentages of missing data. The percentage of gaps in
the series ranges between 1.5 and 12.4%, and is mostly detected during the Second World War period.

Table 2. Main features of the selected rain gauges.

Code Rain Gauge Longitude
(Degrees)

Latitude
(Degrees)

Elevation
(m a.s.l.)

First
Year

Last
Year

Missing
Data (%)

970 Cassano allo Ionio 16.319 39.783 250 1921 2011 10.4
1010 Cosenza 16.265 39.287 242 1916 2011 3.5
1030 San Pietro in Guarano 16.314 39.346 660 1922 2011 2.5
1100 Cecita ex Acquacalda 16.538 39.400 1180 1923 2011 7.1
1700 Isola di Capo Rizzuto 17.094 38.961 90 1922 2011 10.6
2310 Capo Spartivento 16.056 37.927 48 1921 2011 12.4
2510 Scilla 15.720 38.252 73 1939 2011 2.3
2600 Cittanova 16.078 38.352 407 1916 2011 11.5
2760 Joppolo 15.905 38.592 185 1929 2011 2.3
2830 Filadelfia 16.293 38.787 550 1920 2011 3.3
2890 Tiriolo 16.510 38.940 690 1941 2011 2.9
3160 Campotenese C.C. 16.068 39.873 965 1922 2011 1.5
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Figure 1. Localization of the selected rain gauges on a DEM of the region of Calabria (a) and 
characterization of the rainfall series through box plots: (b) annual rainfall for each rain gauge;  
(c) monthly rainfall distribution for the whole set of rain gauges. The bottom and top of the box are 
the first and third quartiles, the band inside the box is the median, the ends of the whiskers represent 
the minimum and maximum of all of the data. 

Estimation of the Model Parameters 

All the monthly total rainfall series present some months with no data. For this reason, the 
estimation of the truncated Fourier coefficients for mean and variance functions have been made, as 
mentioned in Section 2.2, with the use of the least squares method by solving systems of linear 
algebraic equations, assuming I0 = 1 mm. Instead, in the procedure for the evaluation of the 
parameter λ, the minimum of the function in Equation (6) has been evaluated by applying the Brent 
algorithm, which was preceded by the search of a bracketing interval for the minimum [105]. 

For the 12 rain gauges selected in this work, Tables 3 and 4 report the estimated values of λ̂, of 
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mean function (Table 3), 2 harmonics have been evaluated for all the rain gauges with the exception 
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Cassano allo Jonio 0.473 2 1.256 0.473 0.158 −0.022 −0.121 ----- ----- 

Cecita 0.442 2 1.448 0.543 0.251 0.011 −0.129 ----- ----- 
Cittanova 0.401 2 1.551 0.587 0.246 −0.026 −0.199 ----- ----- 
Cosenza 0.477 2 1.429 0.637 0.248 0.005 −0.183 ----- ----- 
Filadelfia 0.477 2 1.626 0.675 0.274 0.027 −0.184 ----- ----- 

Isola Capo Rizzuto 0.315 2 1.000 0.450 0.135 −0.020 −0.167 ----- ----- 
Joppolo 0.498 2 1.361 0.620 0.169 −0.006 −0.196 ----- ----- 

S.Pietro in Guarano 0.513 2 1.480 0.692 0.278 0.011 −0.214 ----- ----- 
Scilla 0.484 2 1.295 0.553 0.090 −0.080 −0.175 ----- ----- 

Tiriolo 0.405 2 1.451 0.591 0.210 −0.019 −0.138 ----- ----- 

Figure 1. Localization of the selected rain gauges on a DEM of the region of Calabria (a) and
characterization of the rainfall series through box plots: (b) annual rainfall for each rain gauge;
(c) monthly rainfall distribution for the whole set of rain gauges. The bottom and top of the box are the
first and third quartiles, the band inside the box is the median, the ends of the whiskers represent the
minimum and maximum of all of the data.

Estimation of the Model Parameters

All the monthly total rainfall series present some months with no data. For this reason, the
estimation of the truncated Fourier coefficients for mean and variance functions have been made,
as mentioned in Section 2.2, with the use of the least squares method by solving systems of linear
algebraic equations, assuming I0 = 1 mm. Instead, in the procedure for the evaluation of the parameter
λ, the minimum of the function in Equation (6) has been evaluated by applying the Brent algorithm,
which was preceded by the search of a bracketing interval for the minimum [105].

For the 12 rain gauges selected in this work, Tables 3 and 4 report the estimated values of λ̂, of the

number of harmonics Npµqh and Npσ
2q

h , and of the Fourier coefficients. As to what concerns the mean
function (Table 3), 2 harmonics have been evaluated for all the rain gauges with the exception of the
Capo Spartivento rain gauge, for which 3 harmonics are needed.

Table 3. Coefficient λ̂ and Fourier coefficients for the mean function rµY,j.

Rain Gauge λ̂ Npµq

h âpµq

0 {2 âpµq

1 b̂pµq

1 âpµq

2 bpµq

2 âpµq

3 bpµq

3

Campotenese 0.466 2 1.730 0.649 0.265 0.009 ´0.203 —– —–
Capo Spartivento 0.338 3 0.962 0.504 0.089 ´0.080 ´0.151 ´0.021 0.050
Cassano allo Jonio 0.473 2 1.256 0.473 0.158 ´0.022 ´0.121 —– —–

Cecita 0.442 2 1.448 0.543 0.251 0.011 ´0.129 —– —–
Cittanova 0.401 2 1.551 0.587 0.246 ´0.026 ´0.199 —– —–
Cosenza 0.477 2 1.429 0.637 0.248 0.005 ´0.183 —– —–
Filadelfia 0.477 2 1.626 0.675 0.274 0.027 ´0.184 —– —–

Isola Capo Rizzuto 0.315 2 1.000 0.450 0.135 ´0.020 ´0.167 —– —–
Joppolo 0.498 2 1.361 0.620 0.169 ´0.006 ´0.196 —– —–

S.Pietro in Guarano 0.513 2 1.480 0.692 0.278 0.011 ´0.214 —– —–
Scilla 0.484 2 1.295 0.553 0.090 ´0.080 ´0.175 —– —–

Tiriolo 0.405 2 1.451 0.591 0.210 ´0.019 ´0.138 —– —–
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Table 4. Fourier coefficients for the variance function.

Rain Gauge Npσ2q

h apσ2q

0 {2 âpσ2q

1 b̂pσ2q

1 âpσ2q

2 b̂pσ2q

2 âpσ2q

2 b̂pσ2q

2

Campotenese 2 0.345 0.112 0.020 0.010 0.048 —– —–
Capo Spartivento 2 0.140 0.024 ´0.036 ´0.029 ´0.017 —– —–
Cassano allo Jonio 2 0.205 0.039 ´0.010 0.003 0.041 —– —–

Cecita 2 0.232 0.051 ´0.002 0.019 0.015 —– —–
Cittanova 1 0.224 0.005 ´0.026 —– —– —– —–
Cosenza 2 0.259 0.082 0.024 ´0.007 0.051 —– —–
Filadelfia 3 0.353 0.024 0.008 0.037 0.022 ´0.058 0.005

Isola Capo Rizzuto 3 0.157 0.014 ´0.062 ´0.035 0.006 ´0.017 ´0.001
Joppolo 1 0.282 0.033 ´0.004 —– —– —– —–

S.Pietro in Guarano 2 0.310 0.094 0.032 ´0.006 0.031 —– —–
Scilla 1 0.241 0.015 ´0.017 —– —– —– —–

Tiriolo 2 0.236 0.045 0.021 ´0.010 0.029 —– —–

Different results have been obtained for the variance function (Table 4). In fact, 1 harmonic has
been evaluated for 3 out of 12 rain gauges, 2 harmonics for 7 rain gauges, and 3 harmonics for the
other 2 rain gauges. Moreover, the comparisons among the observed values, mY,j and s2

Y,j, the modeled

values, rµY,j and rσ2
Y,j, and the dimension of the non-rejection intervals of the hypotheses Hpµq0 and

Hpσ
2q

0 are shown in Figure 2 for the Cosenza and Campotenese C.C. rain gauges.
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mean (blue) and the variance (red) functions, evaluated for the Cosenza (a,b) and the Campotenese
C.C. (c,d) rain gauges.

By using the estimated values of the parameters, and by means of Equation (2), it was possible
to build the observed sample zk, with zero mean and unit variance, and the sample coefficients of
skewness, g1,Z, and kurtosis, g2,Z. These values have been used to test the Gaussianity of the process Zk,

by verifying the non-rejection of the hypotheses Hpg1q
0 and Hpg2q

0 (Table 5). Moreover, the comparisons
between the cumulative frequency of the observed values and the cumulative distribution function
(cdf) of the standardized Gaussian law have been reported in Figure 3, for the Cecita ex Acquacalda

and Scilla rain gauges. The non-rejection of the hypotheses Hpg1q
0 and Hpg2q

0 and the good fitting with
the observed values (Figure 3) confirm the goodness of the Gaussianization of the Zk process.
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Table 5. Gaussianity test based on the coefficients of skewness and kurtosis.

Rain Gauge NK g1,Z ˘gpNKq

1,Z;0.975 gpNKq

2,Z;0.025 g2,Z gpNKq

2,Z;0.975

Campotenese 1055 ´0.006 ˘0.148 2.731 2.813 3.315
Capo Spartivento 957 ´0.005 ˘0.155 2.718 2.857 3.333
Cassano allo Jonio 969 ´0.005 ˘0.154 2.720 2.746 3.331

Cecita 985 0.012 ˘0.153 2.722 3.114 3.328
Cittanova 1020 ´0.001 ˘0.151 2.726 3.164 3.321
Cosenza 1112 ´0.028 ˘0.144 2.738 2.814 3.304
Filadelfia 1067 ´0.001 ˘0.147 2.732 2.994 3.313

Isola Capo Rizzuto 962 ´0.013 ˘0.155 2.719 2.828 3.332
Joppolo 968 0.008 ˘0.154 2.720 3.184 3.331

S.Pietro in Guarano 1047 0.005 ˘0.149 2.730 3.046 3.316
Scilla 857 0.000 ˘0.162 2.706 2.951 3.352

Tiriolo 827 0.001 ˘0.165 2.702 3.021 3.357

For all the rain gauges, the sequences of observed values zk show low linear correlation coefficients,
but they are not low enough to consider the process Zk uncorrelated. In fact, the application of the
Anderson test, with a lag νmax = 24, to the zk series, evidenced that the hypothesis of uncorrelated
process is non-rejectable only for the Cassano allo Jonio, Capo Spartivento and Joppolo rain gauges.

For the other 9 rainfall series, in order to describe the correlative structure, it was sufficient to
adopt an autoregressive model of order p = 1. In fact, after the estimation of the parameters φ̂1 “ r1,z

and ψ̂0 “
b

1´ r2
1,Z, the application of the Anderson test, always till a lag νmax = 24, to the sequence of

the sample bias w1,k, showed the non-rejectability of the hypothesis of uncorrelated process. Table 6
shows a synthesis of the application of the Anderson test to the selected 12 rain gauges, limited only to
the lag ν = 1.

Table 6. Anderson test applied to the autocorrelation coefficient of lag ν = 1.

Rain Gauge rpNK,0q

Z,1;0.025 rZ,1 rpNK,0q

Z,1;0.975 Hpρ1q

0,0 rpNK,1q

W1 ,1;0.025 rW1 ,1 rpNK,1q

W1 ,1;0.975 Hpρ1q

0,1

Campotenese ´0.062 0.070 0.060 rejected ´0.062 ´0.004 0.060 not rejected
Capo Spartivento ´0.065 0.005 0.063 not rejected —– —– —– —–
Cassano allo Jonio ´0.065 0.042 0.063 not rejected —– —– —– —–

Cecita ´0.064 0.067 0.062 rejected ´0.064 0.003 0.062 not rejected
Cittanova ´0.063 0.113 0.061 rejected ´0.063 ´0.004 0.061 not rejected
Cosenza ´0.060 0.065 0.058 rejected ´0.060 0.004 0.058 not rejected
Filadelfia ´0.062 0.117 0.060 rejected ´0.062 ´0.008 0.060 not rejected

Isola Capo Rizzuto ´0.065 0.073 0.063 rejected ´0.065 0.007 0.063 not rejected
Joppolo ´0.064 0.061 0.062 not rejected —– —– —– —–

S.Pietro in Guarano ´0.062 0.097 0.060 rejected ´0.062 ´0.011 0.060 not rejected
Scilla ´0.069 0.154 0.066 rejected ´0.069 ´0.017 0.066 not rejected

Tiriolo ´0.070 0.103 0.068 rejected ´0.070 ´0.013 0.068 not rejected
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Figure 3. Comparison between the cumulative frequency of the observed values and the cdf of the
standardized Gaussian law for the Cecita ex Acquacalda (a) and Scilla (b) rain gauges.

4. Results and Discussion

After the parameter estimation by means of the selected rainfall database, 104 years long synthetic
series have been generated for each rain gauge through a Monte Carlo procedure, reproducing the
proposed model.

Then, the SPI was evaluated at two different time scales: 3-month SPI, which reflects short- and
medium-term moisture conditions, and 12-month SPI, which is linked to long-term precipitation
patterns and can impact on streamflows, reservoir levels, and even groundwater levels. The results
obtained in terms of the occurrence probabilities of wet and dry conditions were compared with the
class probability shown in Table 1.

In Figure 4, the results of the 12-month SPI for two rain gauges are shown (Isola di Capo Rizzuto
and Capo Spartivento).
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Figure 4. Values of the 12-month SPI for fixed monthly occurrence probabilities of wet and dry
conditions, evaluated for the simulated data of the Isola di Capo Rizzuto (a) and the Capo Spartivento
(b) rain gauges. According to the theoretical values proposed in another publication [86], each
color identifies the prefixed value of the occurrence probability of wet (blue scale) and dry (red
scale) conditions.

In this figure, by means of the simulated data, the SPI values corresponding to the probability
of extreme (2.3%), severe (4.4%) and moderate (9.2%) conditions have been detected for each month.
As a result, the probabilities proposed in another publication [86] in the evaluation of the SPI were
quite different from the ones obtained by the application of the SPI to the 104 simulated years. For
example, for the Isola di Capo Rizzuto rain gauge (Figure 4a), the occurrence probabilities of the
extreme values confirmed the correspondent SPI values previously proposed [86], while the severe
and moderate probabilities values showed a different behavior. Similarly, for the Capo Spartivento
rain gauge (Figure 4b), the extreme and moderate probabilities differed from the correspondent SPI
values proposed in Table 1, while only the severe probabilities agree with them. This is very important,
since for most practical applications the SPI is essential in terms of classification (Table 1) and not as
arithmetic values [87].

As regards to the 3-month-SPI, Figure 5 presents some box plots that summarized the regional
monthly occurrence probabilities of the different wet and dry classes. In particular, the box plots
corresponding to extreme, severe and moderate dry and wet conditions have been shown together
with the theoretical values proposed by [86]. From these analyses it has emerged that in Calabria, as
in other Italian regions [43], the highest probability to detect extreme drought (Figure 5a) or severe



Water 2016, 8, 39 12 of 21

drought (Figure 5b) conditions, were mainly observed in the wet seasons and, in particular, in the
autumn period. In fact, the autumn and the spring months showed the highest values of the mean
occurrence probabilities of drought, while the minimum values have been detected in August.
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Figure 5. Box-plots of the regional monthly occurrence probabilities of extreme drought (a); severe
drought (b); moderate drought (c); extremely wet (d), severely wet (e) and moderately wet (f) conditions
for the 3-month SPI. The red lines indicate the theoretical values proposed by [86]. The bottom and
top of the box are the first and third quartiles, the band inside the box is the median, the ends of the
whiskers represent the minimum and maximum of all of the data.

Moreover, in the summer period, the occurrence probabilities of drought conditions showed a
high regional variability, with large difference values between the several rain gauges. Conversely, the
highest probability to detect extremely wet (Figure 5d) or severely wet (Figure 5e) conditions, were
mainly observed in winter. No remarkable differences emerged for the moderate dry (Figure 5c) and
wet (Figure 5f) conditions.

With regards to the comparison between the occurrence probabilities of wet and dry conditions
evaluated from the simulated data and the class probability shown in Table 1, the different dry and wet
mean occurrence values generally fluctuate around the values proposed by [86], but higher probability
of extreme drought (Figure 5a) can be observed.
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Similarly to Figure 5, also for the 12-month SPI, the box plots with the regional monthly occurrence
probabilities of the different wet and dry classes have been evaluated (Figure 6). As opposed to
Figure 5, in these box plots there are few differences between the occurrence probabilities evaluated
in the different months, in particular for the dry conditions. In fact, highest probabilities to detect
extreme drought (Figure 6a) or severe drought (Figure 6b) conditions can be observed in the summer
period. Moreover, only for the extreme drought (Figure 6a) and in the summer period, the occurrence
probabilities of drought conditions showed a high regional variability. The most important result of the
12-month SPI analysis emerged from the comparison between the occurrence probabilities of wet and
dry conditions evaluated from the simulated data and the class probability shown in Table 1. In fact,
the extreme (Figure 6a) and the severe drought (Figure 6b) mean occurrences values generally fluctuate
around the values proposed by [86], and the moderate drought (Figure 6c) presented slightly higher
mean occurrences values than these. By contrast, the wet conditions (Figure 6d–f) always showed
lower mean occurrences values than those presented in Table 1.
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Figure 6. Box-plots of the regional monthly occurrence probabilities of extreme drought (a); severe
drought (b); moderate drought (c), extremely wet (d); severely wet (e) and moderately wet (f) conditions
for the 12-month SPI. The red lines indicate the theoretical values proposed by [86]. The bottom and
top of the box are the first and third quartiles, the band inside the box is the median, the ends of the
whiskers represent the minimum and maximum of all of the data.
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These results indicate greater probability of dry conditions than wet conditions when long-term
precipitation patterns are considered, with consequences on streamflows, reservoir levels, and
groundwater levels.

Generally, from the box plots of Figures 5 and 6 it can be observed that the 3-month SPI does
not greatly vary in comparison to the 12-month SPI. The only exception are the box plots which refer
to the extreme wet conditions (Figures 5d and 6d) where, in 10 out of 12 months, the probability of
the 3-month SPI evidenced a greater spread than the 12-month SPI. These results agree with the ones
shown in Figure 7 and with past studies in the region of Calabria [41,42], which evidenced that there
is a great spatial heterogeneity of the SPI12 while the SPI3 shows a spatial homogeneity. Moreover,
as a further result, the model spreads higher in summer than in the other seasons. This result can be
due to the Mediterranean climate of the region, which shows high climatic variability with a typically
dry summer subtropical climate. The rain gauges with the higher spread in summer are located in the
Ionian side of the region, which is influenced by currents coming from Africa and is characterized by
short and heavy precipitation in particular in the summer period.
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In fact, for almost all the rain gauges, the lowest probability values have been detected for the wet 
conditions, while the highest probability values have been detected for the dry conditions. For 
example, for the Cosenza rain gauge (code 1010), the probabilities that the 12-month SPI belong to 
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Figure 7. Box-plots of the regional occurrence probabilities of extreme, severe and moderate drought
and wet conditions for the 3-month SPI (left) and the 12-month SPI (right). The lines indicate the
theoretical values proposed by [86]. The bottom and top of the box are the first and third quartiles, the
band inside the box is the median, the ends of the whiskers represent the minimum and maximum of
all of the data.

Figure 7 shows the box plots with the occurrence probabilities of the different wet and dry classes
evaluated for the whole data series.

In particular, for the 3-month SPI (Figure 7a), there are no marked differences between the
evaluated mean occurrences probabilities and the ones previously proposed [86], and the same
happens between the occurrence probability of the corresponding dry/wet classes. Instead, for the
12-month SPI (Figure 7b) strong differences between the evaluated mean occurrences probabilities and
the ones shown in Table 1 have been detected, with the drought and wet conditions which present
respectively higher and lower values than the ones previously proposed [86].

Detailed results for each rain gauge have been shown in Table 7. The results confirm more chance
for dry conditions than wet conditions when long-term precipitation patterns are considered. In fact,
for almost all the rain gauges, the lowest probability values have been detected for the wet conditions,
while the highest probability values have been detected for the dry conditions. For example, for the
Cosenza rain gauge (code 1010), the probabilities that the 12-month SPI belong to the extreme classes
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(SPI < ´2 and SPI > 2) are 4.2% and 2.0%, respectively. The same happens for the severe SPI classes
(´2 < SPI < ´1.5 and 1.5 < SPI < 2) where dry conditions show higher probabilities (5.9%) than wet
conditions (4.0%). A similar behavior is shown by the 3-month SPI, even though with lower marked
differences between dry and wet conditions (Table 7). These results, which evidence the highest
probability values evaluated for the dry conditions, are visually described in Figure 8. The different
colors of the figure represent several probability classes. In fact, the colors associated to the ranges with
higher probabilities can be observed only for dry conditions. On the contrary, the lower probability
classes can be identified mainly for the wet conditions.

Table 7. Probability of the simulated data to fall within each SPI class evaluated for each rain gauge.

Months SPI Class 970 1010 1030 1100 1700 2310 2510 2600 2760 2830 2890 3160

3

SPI < ´2 2.6 3.0 3.3 2.9 2.3 2.7 2.5 2.7 2.3 2.3 2.9 2.6
´2<SPI< ´1.5 4.2 4.3 5.1 4.5 4.1 4.6 4.0 4.2 4.0 4.9 4.5 4.4
´1.5 < SPI <´1 8.4 8.7 9.1 9.1 10.2 9.2 8.5 8.6 8.2 8.8 9.1 8.5

1 < SPI < 1.5 9.4 9.3 9.5 9.0 8.6 9.1 9.2 9.4 9.3 9.7 9.0 9.3
1.5 < SPI < 2 4.2 4.3 4.6 4.0 4.3 4.3 4.0 4.3 3.8 4.6 4.0 4.1

SPI > 2 1.7 1.9 2.4 1.9 2.7 2.9 1.5 2.4 1.5 2.4 2.0 1.8

12

SPI < ´2 1.7 4.2 3.1 2.4 2.7 1.7 2.2 1.3 2.4 2.2 1.9 1.3
´2 < SPI <´1.5 3.6 5.9 5.1 4.7 4.9 4.1 4.2 3.5 4.3 4.0 4.4 3.5
´1.5 < SPI <´1 8.5 10.6 9.8 9.9 10.1 9.3 9.2 8.0 9.1 8.0 10.1 8.5

1 < SPI < 1.5 8.8 8.3 8.5 8.0 8.0 8.2 8.2 8.9 9.0 9.9 6.4 7.7
1.5 < SPI < 2 3.5 4.0 3.9 3.3 3.8 3.8 3.3 3.5 3.8 4.7 2.3 2.7

SPI > 2 1.2 2.0 1.6 1.4 2.5 1.9 1.2 1.5 1.7 2.1 0.7 0.9
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Some results obtained from the application of the SPI are confirmed by the DSI, evaluated for
each rain gauge on two time scales (3 and 6 months) using the synthetic monthly precipitation series.
Table 8 compares the two indices (DSI3 and DSI6) at each location, in terms of percentages of months
for which the drought severity index was negative, positive or equal to zero (no rainfall deficit). As
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was the case in a previous publication [25], for all the rain gauges a six-monthly rule (DSI6) hinders
the development of a drought sequence. In fact, the deficit emerges considering rainfall behavior over
three, rather than six months with a maximum percentage decrease of 9% (ID 1700) passing from
DSI3 to DSI6. The different results obtained with DSI6 also appear when DSI values equal to zero are
considered. For DSI3 the percentages of months with positive values are always greater than those
equal to zero. On the contrary, for DSI6 there are rain gauges for which months with DSI equal to zero
are greater than those with positive values. Some of the DSI features confirm the results of SPI. For
example, the probabilities of extreme drought for SPI on large scale (in this study, 12 month-SPI) are
often lower than those relative to 3-month SPI. Moreover, some of the rain gauges with the highest
probabilities of extreme drought are the same, showing high percentages with positive values of DSI3
(i.e., ID 1030, 2310, 2600, 2890, 3160).

Table 8. Percentages of the simulated monthly data to fall within each DSI class evaluated for each
rain gauge.

DSI DSI Class 970 1010 1030 1100 1700 2310 2510 2600 2760 2830 2890 3160

DSI3
Negative 0.5 0.4 0.4 0.5 0.5 0.5 0.3 0.4 0.4 0.4 0.3 0.3
Positive 56.1 53.5 57.0 50.5 55.9 59.5 58.9 63.1 56.0 55.6 62.5 65.2

Zero 43.4 46.0 42.6 49.0 43.6 40.0 40.7 36.6 43.6 44.0 37.1 34.5

DSI6
Negative 0.9 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.9 0.9 0.8 0.7
Positive 52.0 48.3 52.7 43.5 46.9 54.5 55.0 59.3 50.5 49.3 59.7 64.0

Zero 47.1 50.7 46.4 55.6 52.3 44.7 44.2 39.9 48.6 49.8 39.5 35.3

The results of this paper confirm that, due to the long-term trend of global warming, there
is a higher chance of dry conditions than of wet conditions [106,107]. This is a critical issue for
an agricultural region, such as Calabria, that suffers climate change [108–110], which is a major
driver of agricultural and meteorological drought. In fact, precipitation and temperature anomalies
caused by climate change will induce agro-meteorological drought [111]. In addition, water is usually
significantly contaminated by organic matter derived from agricultural production and sewage, which
may further aggravate the agricultural drought risk [112].

5. Conclusions

Unlike most natural hazards such as earthquakes and cyclones, both of which can strike quickly,
drought does not usually have a sudden beginning or end. It is an insidious hazard caused by a
period of abnormally dry weather, persisting long enough to produce a serious hydrologic imbalance.
While a drought is unlikely to cause human deaths in most developed countries, a drought in a
developing country without adequate access to aid can be devastating. In fact, drought can often be a
natural hazard with the biggest economic impact, resulting in very costly and dramatic impacts on
the environment such as stock losses, vulnerability to fires (especially in forested areas), crop damage,
soil erosion, power blackouts if your community is reliant on electricity from hydro dams, and water
supply shortages. The severity of a drought depends upon the degree of moisture deficiency, duration,
and size of the affected area.

Monitoring dry and wet periods using meteorological indices, such as rainfall, is an essential
component for drought preparedness. The variability of the rainfall is intrinsically present in its process,
and it places uncertainties on projections. The use of the stochastic approach and the simulation
procedure can effectively generate the variability of the rainfall process, and addresses the problem
of quantity and reliability of the data used to fit the rainfall distribution. In the present paper, a
model of monthly precipitation has been proposed. It adopts variable transformations, finalized to the
deseasonalization and to Gaussianization of the monthly rainfall process, and includes a procedure
for testing the autocorrelation. The model provided a good representation of the monthly rainfall
for the selected 12 rain gauges of Calabria (Southern Italy). For this reason, 104-year-long synthetic
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series have been generated for each rain gauge through a Monte Carlo procedure, and dry and wet
periods in the region of Calabria were analyzed using the SPI applied to the simulated series. The
index was calculated at two different time scales: 3-month SPI, which reflects short and medium-term
moisture conditions, and 12-month SPI, which is linked to long-term precipitation patterns and
can have an impact on streamflows, reservoir levels, and even groundwater levels. The occurrence
probabilities of extreme, severe and moderate wet and dry conditions have been evaluated for each
month, and compared with the corresponding probability classes commonly adopted in the literature.
The comparison evidenced some differences, in particular for the 12-month SPI, for which higher
probability values for dry conditions and lower probability values for wet conditions have been
detected. Analogous results, as further confirmation of the good representation provided by the
proposed model, have been obtained by means of the application of the DSI, based on the accumulated
monthly rainfall deficits evaluated through the precipitation anomalies.

The advantage of the proposed model is that the stochastic approach overcomes the problems of
quantity and reliability of the data, and can well reproduce the statistical characteristics of observed
data, thus allowing a better prediction of the occurrence probabilities of extreme dry/wet conditions.
Moreover, the stochastic model has the advantage of being applicable everywhere and for any gauge,
because it does not depend on station altitude and climatic zone. For its characteristics, the model
can also be applied to precipitation monthly grids, but this application depends on the grid size. In
fact, the whole procedure is highly time-consuming, and its application is not recommended for too
detailed grid sizes. Anyway, the proposed model can be considered an attractive tool for management
decision-making, allowing the identification of a drought risk. Finally, properly adapted, the model
can also be applied together with the climate projection obtained from global circulation models as a
reliable tool for drought estimation in a changing climate.
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