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Abstract: Post-processing has received much attention during the last couple of years within the
hydrological community, and many different methods have been developed and tested, especially
in the field of flood forecasting. Apart from the different meanings of the phrase “post-processing”
in meteorology and hydrology, in this paper, it is regarded as a method to correct model outputs
(predictions) based on meteorological (1) observed input data, (2) deterministic forecasts (single time
series) and (3) ensemble forecasts (multiple time series) and to derive predictive uncertainties. So far,
the majority of the research has been related to floods, how to remove bias and improve the forecast
accuracy and how to minimize dispersion errors. Given that global changes are driving climatic forces,
there is an urgent need to improve the quality of low-flow predictions, as well, even in regions that
are normally less prone to drought. For several catchments in Switzerland, different post-processing
methods were tested with respect to low stream flow and flooding conditions. The complexity of the
applied procedures ranged from simple AR processes to more complex methodologies combining
wavelet transformations and Quantile Regression Neural Networks (QRNN) and included the
derivation of predictive uncertainties. Furthermore, various verification methods were tested in
order to quantify the possible improvements that could be gained by applying these post-processing
procedures based on different stream flow conditions. Preliminary results indicate that there is no
single best method, but with an increase of complexity, a significant improvement of the quality of
the predictions can be achieved.

Keywords: error correction; forecasts; floods; droughts; wavelets; neural nets; quantile regression;
predictive uncertainty

1. Introduction

In general, “post-processing” refers to a process of improving model outputs regarding predefined
loss functions or skill scores. Within this study, post-processing encompasses a model for correcting
the errors of historical simulations and real-time forecasts, as well as the estimation of the model and
forecast uncertainty. Especially in the field of hydro-meteorological Ensemble Predictions Systems
(EPS), the importance of post-processing has been acknowledged in order to remove systematic bias
and increase forecast skill (see for example, Brown and Seo [1], Zhao et al. [2] and Hemri et al. [3],
to name a few). It is also one of the major themes of the international initiative called HEPEX
(Schaake et al. [4]). In this paper, error correction and predictive uncertainty models are combined
into a set of different post-processing methodologies. These methodologies were tested based on
two forecasting experiments running at the Swiss Federal Institute WSLto tackle two very divergent
environmental problems: floods (Addor et al. [5]) and droughts (Zappa et al. [6]).

Although it has been widely accepted that post-processing can have a significant positive impact
on the quality of the model predictions, there is still a need to demonstrate its usefulness and economic
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implications for decision makers running operational applications. One of the objectives of this study
is to check whether even models producing good results could be further improved by applying simple
post-processing tools. Another goal is to evaluate post-processing tools with respect to stakeholder
requirements, including civil protection agencies for flooding and water reservoir managers for
low-flows and flooding.

Whereas most time series-based post-processing approaches include autoregressive parameters
for incorporating memory effects (e.g., Xiong and O’Connor [7]), more physically-driven models try
to analyze and reproduce the underlying processes through decomposition into sub-processes with
different time horizons (e.g., fast-responding surface run-off, as opposed to long-lasting sub-surface
and groundwater processes). The mathematical decomposition of time series into different levels
of resolution could be interpreted as a simplified statistical description of signals analogous to
physical models. This partition of the processes into high- and low-frequency components could
be fulfilled efficiently by the use of Fourier analysis and Wavelet Transformations (WT). Details about
decomposition methods can be found in Shumway and Stoffer [8]. The combination of the WT
with autoregressive time series model approaches makes it possible to correct errors caused by
different geo-physical processes and, hence, linked to different time scales, simultaneously. Similar to
this decomposition approach, knowledge extraction methods based on neural networks have been
proposed by Jain and Kumar [9].

In addition to the minimization of these simulation/forecast errors, the most reliable Predictive
Uncertainty (PU) should also be estimated. The PU is important, because it helps to improve the
quality of the result and to increase trust in the result, so that stakeholders are more willing to accept
and apply the results (Todini [10]).

Other statistical approaches often applied in hydrological forecasting are neural networks (see
for example, Kişi [11] and Rezaeianzadeh et al. [12]) and Quantile Regression (QR) models (e.g.,
Weerts et al. [13]). Recently, methods have been proposed for combining QR models with neural
networks in order to capture possible estimation problems stemming from non-linearities. In this
paper, various approaches combining WT and QR methods based on Neural Networks (Wave-QRNN,
or simply QRNN) are applied. In Section 2, these approaches are explained and tested. The concept of
PU and the related verification methods are outlined in Sections 3 and 4. Finally, after a description of
the study area and data, the forecast system and the practical model implementation in Sections 5–7,
the results of this study and the discussion of its applicability in different operational forecasting
systems is summarized.

2. Error Correction

In the most simple case, the correction of flow forecast systems will compare the model simulation
at each prediction step with the observation realized at this time and fits an auto-regressive model
with time lag 1(AR(1)) to these time series of errors. However, there is a problem extrapolating
this error beyond the one step ahead prediction. A generalization of the AR models is the Vector
AutoRegressive(VAR) models (for example, Gilbert [14] and Zivot and Wang [15]), which describe the
evolution of more variables at the same time depending on possibly different lag times for each variable.

In the work of Bogner and Kalas [16], an error-correcting method was developed combining
wavelet transformations (e.g., Beylkin and Saito [17], Chou and Wang [18]) and Vector AutoRegressive
Models with eXogeneousinput (Wave-VARX). The idea was to incorporate not only the most recent
information of the error in the correction model, but also information with time lags of several hours
and days. This could be achieved very efficiently using wavelet transformations, resulting in time
series decomposed into different scales with information about the details and smoothed (i.e., high
and low frequency) components for each scale separately. The wavelet-based method for the error
correction in the present study is based on a non-decimated wavelet transform, which is given by
the à trous algorithm (Dutilleux [19]), and has been applied for example in Benaouda et al. [20] for
forecasting purposes. The resulting vectors of decomposed stream flow observations constitute the
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VAR model, and the decomposed predictions (simulations and forecasts) comprise the exogenous
input of the correction model. In Bogner and Pappenberger [21], the results of this method were
compared to simpler ARX and VARX models, indicating some significant improvements.

In standard linear regression, the average relationship between a set of predictors and the response
variable is summarized with a single slope parameter describing this relationship. Therefore, linear
regression models only provide a partial view of the link between the response variable and predictors
specified by the conditional-mean function and by the assumption that the standard deviations of the
error terms are constant (homoscedasticity). However, in hydrology, heteroscedasticity is a common
phenomena, when, for example, the difference between observed and simulated stream flow values
increases with rising discharge. These kinds of problems could be solved by the use of Quantile
Regression models (QR), which look at changes in the different quantiles of the response specified by
the conditional-quantile function [22–24]. The QR model facilitates the analysis of the full conditional
distributional properties of the response variable, and additionally, it has the advantage of not making
any assumptions about the error distribution.

Therefore, QR is a method to estimate a set of parameters βτ dependent on the quantile τ, and
Koenker and Bassett Jr. [22] define the τ-th regression quantile (0 < τ < 1) as any solution, βτ , to the
quantile regression minimization problem:

min
βτ∈IR

n

∑
i=1

ρτ (yi − ξτ (xi, βτ)) (1)

where ρτ (yi − ξ (xi, βτ)) is a function of τ and yi − ξτ (xi, βτ) and is defined as:

ρτ (yi − ξ (xi, βτ)) =

{
τ (yi − ξ (xi, βτ)) ∀yi ≥ ξτ (xi, βτ)

(τ − 1) (yi − ξ (xi, βτ)) ∀yi < ξτ (xi, βτ)
(2)

If ξτ

(
xi, β̂τ

)
is formulated as a linear function of parameters and {xi : i = 1, ..., n} denote a

sequence of explanatory variables, the resulting minimization problem can be solved very efficiently
by linear programming methods (Koenker [24]).

Artificial neural networks turned out to be a very popular and successful method to treat
non-linearity, a common phenomena in hydro-meteorology and, hence, in QR models applied in
this field. The estimation of these networks is data driven and does not require restrictive assumptions
about the form of the basic model. In the case of forecasting, most often, a single hidden layer
feed-forward network (Zhang et al. [25]) is applied. Therefore, it consists of a set of inputs, which
are connected to a set of units in a single hidden layer, which, in turn, are connected to an output.
Thus, the inputs of this network correspond to the explanatory variables, xi, in a regression model and
the output is the dependent variable, yi. In some studies AR models and neural networks have been
combined into hybrid neural networks (see for example, Jain and Kumar [26] and Abrahart et al. [27]).
White [28] presents theoretical support for the use of quantile regression within an artificial neural
network for the estimation of potentially non-linear quantile models, and in Taylor [29], Cannon [30],
some applications are shown. In the neural network applied in this paper, the decomposed wavelet
coefficients of the simulated/forecast stream flows represent the explanatory input variables, and
the observed stream flow corresponds to the output of the network (see Figure 1a,b). Although not
shown in this paper, the comparison of the non-linear QRNN with the linear QR version revealed
some significant improvements, especially for the first three days (≈up to hour 72). Since the accuracy
and reliability of these first time intervals are very important for decision makers, the QRNN is the
preferred version.

Besides the minimization of the error of the simulation and the forecast, it is essential to provide
the end-users with an estimate of the uncertainty of these corrected predictions, as well. In order
to make the different procedures for deriving such a predictive uncertainty comparable, all of the
input and output data are transformed to the normal space beforehand applying the Normal Quantile
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Transformation method (NQT). In [31–33], the theory behind the NQT is outlined, and its application
is demonstrated, e.g., in Krzysztofowicz [34] and Todini [35].
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Figure 1. Wavelet decomposition and neural network. (a) Normal transformed time series of the
simulated stream flow and its first five levels of wavelet decomposition (details); (b) neural network
structure comprising 1 input layer: 5 nodes of details (d1,..,d5) + 1 smoothed signal decompositions
(s5) of the simulation/forecast + 1 node of observed series yj for j = 1, . . . , n− ∆t (denoted as ARx) as
input nodes (I1,...,I7), 1 hidden layer with 9 nodes (H1, . . . , H9) + bias coefficient B1, 1 output layer
(O1), i.e., the observed series yi for i = 1, . . . , n + bias coefficient B2.

3. Predictive Uncertainty

Decisions related to uncertain future events need careful balancing out of the costs and the
expected benefit. Therefore, decision making requires the quantification of the total uncertainty about
a hydrologic predictand (such as river stage, discharge or run-off volume) in terms of a probability
distribution, conditional on all available information and knowledge (Krzysztofowicz [36]). This means
that in order to estimate the expected benefit, it is necessary to assess the probability density of the
future occurrence as a measure of the predictive uncertainty. In Todini [35], this concept of the PU
is explained, and its application in flood forecasting systems is outlined in detail in Reggiani and
Weerts [37].

The Hydrological Uncertainty Processor (HUP) is applied to the ARX-based models (i.e.,
AR(1), VARX and Wave-VARX error corrections) for each lead time ∆t separately following the
work of [36,38,39], which is based on the Bayesian formulation and a meta-Gaussian distribution
family [40,41].
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As already mentioned above, in the first step, all of the historical observed stream flow values
and the corresponding hydrological model predictions are transformed into normal space using the
quantiles associated with the order statistics (Krzysztofowicz [34] and Kelly and Krzysztofowicz [41]).
Next, the a priori model will be formulated, which, in the most simple case, will rest on the assumption
that the NQ transformed stream flow follows a Markovian lag one process. Furthermore, the likelihood
function will rest on the assumption that the stochastic dependence between the transformed variates
is governed by a simple normal-linear equation. Given that the prior density and the likelihood
function are normal-linear, the theory of conjugate families of distributions (De Groot [42]) can be
applied, and the posterior density can be derived.

The application of the HUP for operational flood forecasting purposes has the advantage that
the fitting of the HUP to historical data can be calculated off-line, and only a small set of estimated
parameters will have to be stored. The back-transformation of the corrected predictions and their
probability density functions (pdfs) to the real-space is based on Generalized Additive Models (GAM;
Hastie and Tibshirani [43]) in order to avoid problems possibly arising for extreme values (more details
can be found in Bogner et al. [44]).

The QRNN results in direct estimates of the inverse cumulative density function (i.e., the quantile
function), which in turn allows the derivation of the predictive uncertainty (see for example, [45–47]),
where the application of the QR in order to estimate Predictive Uncertainties (PUs) is outlined. If the
number of estimated quantiles within the domain {0 < τ < 1} is sufficiently large, the resulting
distribution could be considered as continuous. In Quiñonero Candela et al. [48], the cdf, respectively
pdf, is constructed by combining step interpolation of probability densities for specified τ-quantiles
with exponential lower and upper tails. In this study, the pdf is constructed by monotone re-arranging
the τ-quantiles and estimating a log-normal distribution to these quantiles for each lead-time ∆t.

Another more straightforward approach could be the estimation of the parameters of the
predictive distribution directly with a conditional density estimation neural network (Cannon [30] and
Li et al. [49]). However, this direct method yielded discontinuities across forecast horizons with rather
unrealistic jumps between consecutive lead times, which degrades the applicability of this method.

The advantage of the proposed quantile re-arranging and the estimation of the log-normal
distribution is two-fold and prevents efficiently known problems occurring with QR: firstly, it
eliminates the problem of the crossing of different quantiles (i.e., the unrealistic, but possible
outcome of the non-linear optimization problem yielding lower quantiles for higher stream flow
values (Chernozhukov et al. [50]); e.g., the value of the 0.90 quantile is higher than the value of the
0.95 quantile), and secondly, it permits the extrapolation to extremes not included in the training
sample (Bowden et al. [51]).

In order to demonstrate the improvement achieved by the proposed method combining wavelets
and QRNN for extreme stream flow conditions, i.e., low-flow and flooding, different verification
measures will be applied and tested.

4. Verification

The objective of this study will not be the development of novel verification tools, but the
usage of already existing ones and combining hydrological and meteorological evaluation criteria.
Different verification measures are applied depending on whether the performance of deterministic
time series or probabilistic densities should be evaluated.

4.1. Deterministic Evaluation

The quality of point prediction models, such as the deterministic output of a hydrological model,
will be usually assessed with the well-known Mean Absolute Error (MAE) and the Nash–Sutcliffe
(N-S) coefficient [52]. In order to estimate the percentage of improvements of the correction method in
comparison to the uncorrected simulation/forecast, the failure index, which was proposed recently by
Madadgar et al. [53], will be applied.
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Basically, the idea of this failure index is to look at the movement of the correction and to count
how often the simulated/forecasted value gets closer to the observed value applying a correction
method. Thus, two different kinds of failures could result from the correction/movement: Failure 1
corresponding to a movement in the opposite direction away from the observation; Failure 2 results
from a movement in the right direction, but more than two times the distance δ between the uncorrected
simulated and the observed value (see Figure 2).

Lead−time [h]

0 1 2 3 4 5 6 7 8 9 10

− −

δ

{

Improvement

Failure 1

Failure 2

observed
simulated/forecast
2 x δ

Figure 2. Example of the measure of the failure index (i.e., failure ratio).

Larger values of the failure ratio mean that the correction method has more frequently affected
the performance negatively, and thus, the efficient performance of the correction method manifests in
a small failure index.

4.2. Probabilistic Evaluation

In Gneiting et al. [54] and Gneiting and Balabdaoui [55], the term calibration is used for describing
the statistical consistency between the distributional forecasts and the observations and is a joint
property of the predictions and the events that materialize. An analysis tool for assessing the calibration
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of ensemble forecasts is the verification rank or Talagrand histogram (e.g., Jolliffe and Stephenson [56]),
and analogously for pdf forecasts, the Probability Integral Transform (PIT) was proposed by Dawid [57].
Quite often in the hydro-meteorological literature, the term reliability is used instead of calibration;
thus, forecasts are called reliable if their probabilities match the observed frequencies. The predictive
Quantile-Quantile (Q-Q) plot is a good way for analyzing reliability, since it is easy to interpret, and
it shows how well the observations correspond to realizations from the predictive distribution (Laio
and Tamea [58], Renard et al. [59]). If Fi is the cdf of the random variable Yi and yi is the time series of
realizations, i.e., the observed stream flow, the probability values p of Fi(yi) = p(Yi ≤ yi) will follow a
uniform distribution on the interval [0, 1], only if the realizations yi are consistent with Fi.

The sharpness refers to the resolution of a probabilistic forecast and is a property of the forecast
only describing the spread of the forecast pdf, i.e., the more concentrated the forecast pdf, the sharper
the forecast. The sharpness can be evaluated visually by box-plots illustrating the width of the
prediction intervals (Gneiting and Balabdaoui [55]) or by some simplified indexes defined, for example,
as the relative precision of the prediction (Renard et al. [59]).

4.2.1. Continuous Ranked Probability Score

The Continuous Ranked Probability Score (CRPS) addresses both the sharpness and the reliability,
is defined as the integral of the Brier score at all possible threshold values t for the continuous
predictand (Hersbach [60]) and can be interpreted as a general version of the mean absolute error
(Gneiting and Raftery [61]). It compares the forecast probability distribution with the observation, and
both are represented as cdfs. Therefore, an ensemble of predictions can be converted into a piecewise
constant cdf with jumps at the different ensemble members, and the observation is a Heaviside
distribution with a single step from zero to one at the observed value of the variable. In the case of
QR models, the cdf is derived with quantile estimates. If F is the predictive cdf and y is the verifying
observation, the CRPS is defined as:

CRPS(F, y) =
∫ ∞

−∞
[F(t)− H(t− y)]2 dt (3)

where H(t − y) denotes the Heaviside function. This measure will be used for the analysis of
forecasts based on the Consortium for Small-scale Modeling-Limited-area Ensemble Prediction System
(COSMO-LEPS) forecast system (Montani et al. [62]) and for the analysis of the predictive densities
derived with ARX-based models and QRNN models.

4.2.2. Quantile Score

Since the output of the QRNN model will be quantiles, it seems reasonable to evaluate the
performance with a skill score, which has been developed for predictive quantiles (Koenker and
Machado [63] and Friederichs and Hense [64]), the so-called Quantile Score (QS). It is defined by
the check function ρτ given in Equation (2) and sums over a weighted absolute error between
quantile forecasts and observations. In Bentzien and Friederichs [65], a decomposition of the QS
has been proposed, which provides information about reliability and sharpness (resolution). Thus, the
information of the QS is similar to the CRPS, but whereas the CRPS averages over the complete range
of forecast thresholds and probability levels, the QR looks at specific τ-quantiles; hence, it is more
efficient in revealing deficiencies of different parts of the distributions, especially with respect to the
tails of the distribution. However, for the verification of very low and high quantiles, a large sample
size is necessary in order to estimate the score at these quantiles properly.

5. Data

At the Swiss Federal Institute WSL, there are two forecast systems running operationally targeting
two divergent objectives, one for providing information about droughts in general and low-flow
conditions at selected catchments in Switzerland (Zappa et al. [6]) and one for forecasting flood events
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in order to protect the city of Zurich (Addor et al. [5] and Zappa et al. [66]). In Figure 3, the catchment
of the Sihl, which represents the flood forecast system of Zurich, as well as the catchment of the
Thur, which is taken as an example of the low-flow forecast system, are highlighted. In Table 1, some
hydrological relevant characteristics of these two catchments are summarized.

The Sihl River flows through Zurich and represents the largest flood threat for this most populated
city of Switzerland. To anticipate extreme discharge events and to provide decision support in case of
flood risk, the hydrometeorological ensemble prediction system (HEPS) was launched operationally in
2008. The resulting hydrological forecasts are eventually communicated to the stakeholders involved
in the Sihl discharge management (Addor et al. [5], Ronco et al. [67]).

The drought.ch platform provides information about ongoing and forecast droughts and water
deficiencies in Switzerland. The general situation is estimated taking into account current runoff
in Swiss rivers, precipitation over the last few weeks, soil moisture simulations, groundwater
level, snow cover information, drought in forests, levels of lakes and reservoir lakes and the water
temperature of Swiss rivers (Zappa et al. [6]). The platform does not provide official warnings, but
is thought of as an information platform for a broad user group (about 500 registered users as of
December 2015). The evaluated forecasts concerning the drought.ch application relate to the Thur
River (Fundel et al. [68] and Joerg-Hess et al. [69]) and have been running since 2011, and the archived
forecast outcomes are first evaluated here.

Figure 3. Catchment of the Sihl (yellow) and the Thur (green), which represent the flood forecast,
respectively the low flow forecast system. Swiss GIS elements reproduced with the authorization of
swisstopo (JA100118).

Table 1. Some characteristic values of the 2 catchments. MHQis the mean annual maximum daily
discharge. NM7Qis obtained by taking the moving averages of the daily observations with a window
size of 7 days for each year and then estimating the mean of the annual minima of these averaged series.

Catchment Surface Area Mean Elevation MHQ NM7Q
km2 m.a.s.l. m3/s m3/s

Sihl 336 1060 132 2.8
Thur 1696 770 592 9.2
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6. Forecast Systems

The stream flow forecasts of the Sihl and the Thur catchment are driven by the
COSMO-Limited-area Ensemble Prediction System (LEPS, Montani et al. [62]), which is nested into
the ensemble prediction system of ECMWF(Molteni et al. [70], Buizza et al. [71]). COSMO stands
for the Consortium for Small-scale Modeling. The Sihl flood forecasting system is supplemented
operationally with two deterministic numerical weather predictions versions of the COSMO produced
at MeteoSwiss, the COSMO-2 and COSMO-7 (see Table 2); however, this paper will focus on the
application and verification of COSMO-LEPS alone.

These limited-area atmospheric forecasts are taken as input for the hydrological model.
The stream flows are estimated by the use of the conceptual hydrological model PREVAH
(Precipitation-Runoff-EVApotranspirationHRU Model). Originally, PREVAH was based on hydrologic
response units (HRU), i.e., clusters of raster grids of similar hydrological properties (Gurtz et al. [72]).
This HRU version is used for the Sihl catchment. Because of the elongated shape of the basin,
proper flood wave propagation is essential. Therefore, PREVAH is coupled with a hydraulic model
called FLORIS, a commercial 1D simulation program developed in the 1990s by the Laboratory of
Hydraulics, Hydrology and Glaciology (VAW) of the ETHZurich. Recently, a fully-distributed PREVAH
version was developed, which is targeted for low-flow and water resources assessment studies
(Kobierska et al. [73]), and it is used within the drought.ch platform, hence at the Thur catchment, as
well (e.g., Joerg-Hess et al. [69] and Speich et al. [74]). Further information about PREVAH’s structure,
physics, tunable parameters and tools can be found in Viviroli et al. [75].

Table 2. Numerical weather prediction systems. COSMO-LEPS, Consortium for Small-scale
Modeling-Limited-area Ensemble Prediction System.

System Spatial Resolution Forecast Horizon Ensemble Update Cycle
km2 h Members h

COSMO-2 2.2 × 2.2 24 - 3
COSMO-7 6.6 × 6.6 72 - 8
COSMO-LEPS 7 × 7 132 16 24

7. Modeling Implementation

For the calibration of the ARX and the QRNN parameters, historical time series of observations
and corresponding model simulations are necessary. Since hydro-meteorological forecasts show a
strong lead time dependence, it is necessary to estimate these model error parameters for each lead
time separately in order to combine these estimates with real-time forecasts. For both catchments, the
series are decomposed into six levels of detail. The waveVARX and VARX models include three time
lags each, whereas the ARX is a simple AR(1) model.

The QRNN setting is a single hidden layer feed-forward network, where the input layer comprises
eight nodes (six nodes for the details, one node of the smoothed wavelet coefficients and one node for
the time lagged observed series yj up to the last available time step j = 1, ..., n− ∆t); the hidden layer
consists of 10 nodes plus the bias coefficient and one output layer plus the bias coefficient (see Figure 1b
for an example with seven input nodes). The number of hidden layer nodes has been chosen by trying
to balance the computational costs and capturing as much as possible the non-linear complexity of the
data. The number of quantiles τ was set to nine: τ = {0.01, 0.05, 0.1, 0.25, 0.5, 0.7, 0.9, 0.95, 0.99}.

In order to avoid the well-known problems of crossing quantiles and the extrapolation of neural
networks, the quantiles of the QRNN method have been approximated for each lead time by a
log-normal distribution. Other possibilities have been tested, as well, like the combination of a
monotone rearrangement method [50] with the method proposed by [48] of the step interpolation
of the quantiles and exponential tails. The step-interpolation method would be advantageous in the
case of multi-modal distributions or distributions departing from the lognormal assumption, which is,
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however, not the case in the analyzed datasets. Thus, the second approach is preferred, because the
step-interpolation has more computational time consumption and showed no improvements at all.

Additionally, two different ways of density aggregations have been tested for deriving the density
of the total ensemble. One method is based on averaging the quantiles of the 16 ensemble members
directly, and the other one is calculated by averaging the probabilities derived from the approximated
pdfs similar to the work of [76], which will be called QRNN-q-ave., respectively QRNN-p-ave.

For the ARX-based models, the PU is estimated for each lead time by assuming that the pdf of
the 16 ensemble members could be approximated with a normal distribution, as they were all, as
previously mentioned, transformed in the normal space. Thus, the uncertainty stemming from the
model and the uncertainty from the forecast can be integrated into the total PU as outlined in the work
of [38]. A detailed report about these methodologies of ensemble aggregation is under preparation.

8. Results

The calibration and evaluation of the applied post-processing methodologies is separated into
two parts: the first part is based on historical observations and corresponding simulations, which
are split into two parts, one half for calibrating and one half for validating the error correction
models. This second half of the first part is used for calibrating the HUP parameters, as well as for
the ARX-based models. The second part is used for running the model in quasi-operational mode
applying the fitted correction and uncertainty parameters to the members of the ensemble forecasts
and for validating the forecasts. In Table 3, the different periods available for the two catchments
are summarized.

Table 3. Time ranges and periods available for the calibration and evaluation of the Thur and the
Sihl catchments. HUP, Hydrological Uncertainty Processor.

Catchment Time Resolution
Observation/Simulation Forecasts

Calibration Validation/Calibration (HUP) Validation

Thur daily 1981–1995 1996–2010 2011–2015
Sihl hourly 2009–2011 2011–2014 2011–2015

8.1. Thur Catchment

For the Thur catchment, a period of 30 years (1981–2010) of historical daily observations and
simulations was available, and the first 15 years were used for calibrating the ARX-based and the
QRNN parameters. The second half of this period was used for validation and for calibrating the HUP
parameters necessary for the ARX-based models. The forecast horizon of the COSMO-LEPS forecasts
is 5.5 days, and therefore, a set of five different parameters need to be estimated (the first half day is
disregarded because of the time delay between forecast initialization and availability).

These parameters are applied to the archived forecast data from 2011–2015, and the verification
measures were calculated. Each of the 16 ensemble members of the COSMO-LEPS-based forecast is
treated as a single deterministic forecast and corrected individually. The deterministic verification
measures are then calculated by averaging the 16 members. In the case of the QRNN, where the
result was comprised of a set of different quantile estimates ranging from 0.01–0.99 for each ensemble
member, only the median is used and averaged for further evaluation.

The results are evaluated applying the classical N-S coefficient for flood forecast, the logarithmic
N-S for low-flow verification and the failure ratio. The CRPS and the quantile score are used for
evaluating the behavior of the ensemble forecast system (see Figures 4–7).
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Figure 4. Classical Nash–Sutcliffe (N-S) coefficients (left) and logarithmic N-S (right) for different
post-processing methods applied to forecasts based on COSMO-LEPS and for the period 2011–2015 for
the Thur catchment.
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Figure 5. Failure ratio for different post-processing methods for the Thur catchment. A failure ratio
below 0.5 means that the (post-processed) forecast is better than the reference model simulation.
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Figure 6. Continuous Ranked Probability Score (CRPS) for the Thur catchment. The CRPS is negatively
oriented, which means the lower the better.
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Figure 7. Quantile score for the 0.05 (left) and 0.95 (right) quantile at a lead time of three days
(Thur catchment).

8.2. Sihl, Zurich

Since the operational forecast for the Sihl is running hourly, a set of 132 parameters for the
ARX-based and QRNN models needs to be estimated, i.e., for each hour of the forecast horizon of
the COSMO-LEPS.

Another difference between the Sihl and the Thur catchment is in the way the single ensemble
members are incorporated in the post-processing model.

In the case of the Sihl catchment, the lognormal approximation of the quantiles
(wave-QRNN-logN) method and the two different density aggregation methods, the quantile,
respectively, the probability averaging method (QRNN-q-aver and QRNN-p-aver; see Section 7),
were applied in order to take advantage of as much information as possible from the ensembles.

To calibrate the post-processing models at the Sihl, a period from 2009–2014 was available, where
the first half was used for estimating the ARX-based model and QRNN parameters and the second
half was used for validation and to calibrate the HUP parameters (Table 3, Figure 8). To verify the
operational forecast system (i.e., the hindcast) itself, a period from 2011–2015 was analyzed (Figure 9).
Besides the CRPS, an example of a reliability verification, the predictive quantile-quantile plot, is
shown. In this graph, the zi, the probability integral transformed variables, are plotted versus their
empirical cumulative distribution function, Ri/n (where Ri are the ranks of the ordered vector of
zi´s, i = 1, . . . , n).

The model has been running quasi-operational with the COSMO-LEPS forecasts (hindcast) for
approximately five years (2011–2015). There is a temporal overlap of the model validation and
the hindcast period of four years (2011–2014); however, the meteorological datasets are different
(observed data for the validation period, respectively COSMO-LEPS forecast data during the hindcast
period); thus, the resulting stream flow series show differences, as well. The forecast time resolution is
hourly; however, the forecasts are updated only once per day, when the new 12:00 o’clock run of the
COSMO-LEPS forecast becomes available.
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Figure 8. Deterministic verification measures for the uncorrected and post-processed model simulations
for the validation period 2012–2014 at the Sihl (Zurich). Upon: the Nash-Sutcliffe efficiency coefficient;
Middle: the mean absolute error; Bottom: the failure ratio.
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Figure 9. Deterministic verification measures for the uncorrected and post-processed forecasts (i.e.,
hindcasts) for the verification period 2011–2015 at the Sihl (Zurich). Upon: the Nash-Sutcliffe efficiency
coefficient; Middle: the mean absolute error; Bottom: the failure ratio. The dashed vertical line in black
indicates the time, when the hydrological forecast starts to be driven by the meteorological forecast,
which is delayed a couple of hours because of technical restrictions.



Water 2016, 8, 115 15 of 20

Lead−time [h]

C
R

P
S

1 16 30 45 59 74 88 103 117 132

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

raw COSMO−LEPS
QRNN − q−aver.
QRNN − p−aver.
Wave−VARX
VARX(3)
ARX(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sihl forecast
Lead−time: 72h

zi

R
i

n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●

raw COSMO−LEPS
QRNN − q−aver.
Wave−VARX

Figure 10. Probabilistic verification measures for the uncorrected and post-processed forecasts (i.e.,
hindcasts) for the verification period 2011–2015 at the Sihl (Zurich). Upon: Continuous ranked
probability score; Bottom: example of a predictive Quantile-Quantile (Q-Q) plot for a lead-time of
72 h. In the Q-Q plot, zi, the probability integral transformed variables, are plotted versus their
empirical cumulative distribution function, Ri/n (where Ri are the ranks of the ordered vector of zi´s,
i = 1, . . . , n).

9. Discussion

9.1. The Thur Catchment

It is interesting to see that both Nash–Sutcliffe efficiency measures for the mean COSMO-LEPS
clearly indicate that the post-processing significantly improves the system for all lead times in
comparison to the uncorrected raw ensemble mean (Figure 4) for the Thur catchment. However, the
logarithmic N-S for evaluating low-flow conditions shows, apart from the most simple AR(1) model,
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very similar improvements across all methods, whereas there are differences looking at the classical
N-S, which is known to be more sensitive to flood events. The failure ratio also shows similar results
(Figure 5), indicating that the more complex post-processing methods produce similar improvements
in the quality of the forecast for the Thur catchment. Regarding the probabilistic behavior of the
forecast, the CRPS produced similar results to the failure ratio (Figure 6), which is confirmed when
looking at the quantile score for low-flow conditions. In Figure 7, the quantile scores for probability
levels of 0.05 and 0.95 and for lead times of three days are shown. In this example, the wave-VARX and
the QRNN methodology are superior for low-flows (0.05 level), being closer to the 1:1 line. However,
in general, all forecasts overestimate the very low observed quantiles, whereas the opposite happens
for high quantiles (shown on the left in Figure 7).

9.2. Sihl, Zurich

The results of the Sihl catchment for the model validation period (2011–2014) clearly indicate
the improvement due to applying the different post-processing methods, with the QRNN method
(see Figure 8) being the best. In all three measures (MAE, Nash–Sutcliffe coefficient and failure ratio),
the QRNN method with quantiles approximated by a log-normal distribution (wave-QRNN-logN)
obtained the best results. For the validation period, the meteorological observations are used as
input; hence, the MAE and the Nash–Sutcliffe coefficients remained constant for the uncorrected
predictions for all lead times. The results of the hindcast period (2011–2015) driven by meteorological
forecasts are similar to the validation period for the deterministic verification measures based on
model averages and the CRPS, as well (Figures 9 and 10). Although these first results show
no clear preference regarding the averaging method applied to the QRNN method, quantile
averaging (QRNN-q-ave.) or probability averaging (QRNN-q-ave.), in daily operational usage, the
QRNN-quantile-averaging method results more often appeared under-dispersive and produced rather
unreliable and overconfident ensembles forecasts.

Because of the limited period for verification, only a few flood events were observed during
the hindcast period. As mentioned previously, the hourly forecasts of the next 5.5 days (i.e., 132 h)
are issued once per day (after the 12:00 COSMO-LEPS forecast run has been completed). If the
forecast peak is persistent, it will appear the first time in the forecast with a lead time of five days
and subsequently at a lead time of four till one. Usually, the biggest differences between observations
and simulation/forecast will occur at these times of the peaks, and therefore, the verification measure
will show the biggest changes at these times. Consequently, the measures are shifted from a lead
time of 1–5. Thus, these single peaks dominate the scores, which explains the strong periodic daily
cycle occurring in Figures 9 and 10. Unfortunately, this limited amount of flood events prevents a
meaningful application of the quantile score for extreme probability levels. In place of the QS, the
predictive Q-Q plot is shown for a lead time of 72 h, although the same is valid for the other lead
times, as well. It is interesting to see that the raw forecast is much more unreliable in comparison
to the post-processed forecast, showing problems with the spread of the ensemble forecast (i.e., it is
under-predictive in the example). This lack of reliability is important to point out, because, for example,
the Nash–Sutcliffe efficiency of the raw forecast and the QRNN method are very similar for all of
the lead times. These results highlight once again the importance of looking at different verification
measures.

10. Conclusions

In this paper, different post-processing methods are tested for two different applications: low-flow
forecasting and flood forecasting. The tests were carried out in Switzerland using the Thur catchment
for low-flow applications and the Sihl catchment for flood forecasting. Method validation was
separated into deterministic (MAE, Nash–Sutcliffe coefficient and the recently-developed failure
ratio) and probabilistic evaluation measures (CRPS, predictive quantile quantile plot). In order to test
the forecast quality regarding low-flow conditions, the logarithmic Nash–Sutcliffe measure and the
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novel quantile score were evaluated for the Thur catchment, which is is also part of the drought.ch
information platform. For the evaluation of the flood warning system at the Sihl/Zurich, the same
measures have been applied, but not the logarithmic Nash–Sutcliffe and quantile score, because of the
limited forecast period available for analyzing.

In general, all of the results confirmed the positive impact of post-processing for both experiments,
even though the raw model simulations showed very good results. Only for the most simple ARX(1)
model, the improvements were not significant within a few time steps ahead and should not be used
for low-flows or for flood event forecasts. The new method of quantile regression neural network
produced some additional improvements, but further tests and longer forecast series are needed for
a thorough analysis. The verification of the low -flow conditions for the Thur catchment showed
that the results of the logarithmic Nash–Sutcliffe and the quantile score show some slight preferences
towards the QRNN method; however, more datasets have to be verified to make a decisive conclusion.
For the validation and the hindcast period of the Sihl catchment, the QRNN method outperforms the
other post-processing models significantly based on almost all analyzed verification measures and
demonstrates the usefulness of this new methodology.
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