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Abstract: Five rapid visual stream assessment methods were applied to 65 restored streams in North
Carolina, and the results were correlated with measured macroinvertebrate community metrics to
evaluate predictive ability. The USEPA Rapid Bioassessment Protocol (RBP), USDA Stream Visual
Assessment Protocol (SVAP), Peterson’s Riparian Channel and Environmental Inventory (RCE),
NCSU Eco-Geomorphological Assessment (EGA), and NCSU Stream Performance Assessment (SPA)
were applied by teams with expertise in hydrology, fluvial geomorphology, and aquatic ecology.
Predictions of most macroinvertebrate metrics were improved by re-weighting assessment variables
using principal component analysis (PCA) and including watershed factors (e.g., size, slope, land
use). The correlations of EGA, RCE, SPA and SVAP assessment results to macroinvertebrate metrics
were most improved by variable re-weighting using PCA, while the correlations of RBP were most
improved by adding watershed parameters. Akaike’s Information Criterion (AIC) indicates that PCA
re-weighting including watershed parameters improves the predictor model for the total number of
dominant EPT taxa more than using the sum total raw points for all five assessment methods. To
demonstrate the application of the study results, a single-value index was generated for the RBP
method using principal component regression (PCR) based on the EPT (Ephemeroptera, Plecoptera
and Trichoptera) taxa metric.
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1. Introduction

1.1. Stream Restoration Definition and Goals

Stream restoration projects are implemented to enhance water quality, better manage riparian
zones, improve in-stream habitat, promote fish passage, and stabilize streambanks [1]. Many funding
agencies have realized the need to ensure that restoration projects are meeting the intended objectives.
However, the biggest challenge for many mitigation programs is accurately and efficiently assessing
stream functions within a regulatory program’s time and resource constraints [2].
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The US Environmental Protection Agency (EPA) [3] defines ecological restoration as “the
restoration of chemical, physical, and/or biological components of a degraded system to a
pre-disturbance condition.” Restoration often strives to recover both structure and function to degraded
riverine ecosystems [4]. A common assumption often paired with the goal of returning both structure
and function is that “if you build it they will come.” USEPA [5] ascertains that strengthening structural
or functional components will improve water quality and habitat, which will lead to improvements in
aquatic and terrestrial communities that depend on water. However, establishing links between the
biological outcomes that result from the changes or inputs to the ecosystem can be difficult. Further,
the functional uplift—improvement in physical, chemical and biological conditions that occur in
ecosystems—due to restoration or enhancement can be confounded by factors that exist upstream or
within the catchment. Therefore, there is a need to define the relationships between physical attributes
and habitats in restored streams with respect to the biotic communities that serve as indicators of
stream health similar to what has been done in un-restored streams [6–8]. These relationships can in
turn be used to guide future restoration design, monitoring and assessment.

1.2. Stream Assessment Methods and Their Prediction of Biological Condition

Biological assessments are designed to characterize the status and monitor the trends of water
resources, and macroinvertebrates are the most widely used assemblages for these assessments [9].
Rapid bioassessments are designed to be efficient, cost-effective tools for screening aquatic life support
of streams [9,10]. Several existing rapid stream assessments may be useful for evaluating condition
and the potential functional uplift of a stream achieved by restoration projects. Examples of existing
visual rapid stream assessments include the visual habitat assessment portion of the USEPA Rapid
Bioassessment Protocol (RBP) [10], the USDA Stream Visual Assessment Protocol (SVAP) [11,12],
the Riparian Channel and Environmental Inventory (RCE) [13], the Qualitative Habitat Evaluation
Index (QHEI) [14], and the Bureau of Land Management (BLM) Proper Functioning Condition (PFC)
method [15]

Habitat-based rapid assessments such as the RBP, QHEI and SVAP often show high correlation
with one another; however, a strong relationship between these assessments and those based on
hydrologic function is often lacking (i.e., PFC) [12,16,17]. Further, quantitative assessments are more
labor intensive and significant uncertainty remains in their ability to detect habitat changes associated
with management actions [18].

Establishing links between physical, chemical, and biological factors in streams has been difficult
without adding the confounding factors associated with restoration, such as extensive changes in
geometry, soil disturbance, and inclusion of man-made structures. Several studies have worked to
develop habitat, morphology, and stability assessments that correspond to biotic measures of streams
with limited success. Despite Stauffer and Goldstein [16] finding good correlation among QHEI,
RCE, and RBP stream assessments, all three methods failed to statistically relate to biotic community
metrics. Hughes et al. [19] tested the SVAP, QHEI, and RBP assessments and USEPA quantitative rapid
bioassessments on 51 agricultural streams in 10 states. They found high correlation among the four
physical habitat indices (Pearson 0.87–0.88), but only low to moderate correlation with previously
calculated metrics for fish and macroinvertebrates. Some quantitative metrics, such as substrate mean
diameter, were found to better correlate with macroinvertebrate metrics than the qualitative metrics.
Similarly, the Natural Resources Conservation Service (NRCS) [12] tested the SVAP in several states
finding moderate correlations to biotic integrity in Virginia and weak correlation to macroinvertebrate
and fish community metrics in the Carolinas. Their comparison of the SVAP to the QHEI in Ohio
streams revealed much higher correlation. Hughes et al. [19] speculate that poor correlation may be
due to water catchment, riparian, and/or chemical factors that are not accounted for. Cortes et al. [20]
assert that despite several stream assessments existing in Europe, Australia, and the United States,
successful integration of these procedures with biological descriptors is rare.
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While significant work has been done to develop and apply qualitative and quantitative sampling
methods to assess stream habitat condition [18], application of these methods to stream restoration
and enhancement projects to determine restoration potential and functional uplift is limited. As such,
Sommerville & Pruitt [18] recommend a nationwide effort to conduct further testing of assessments in
a variety of ecoregions to improve regulatory and management decisions affecting these resources.
They conclude that stream assessments used for the Clean Water Act Section 404 (CWA 404) should
include: classification to narrow the natural variability of streams, objectivity to limit observer bias,
quantitative methods, an emphasis on fluvial geomorphology and careful management of the data
from these assessments. The National Research Council [4] concurs that hydrology and fluvial
geomorphology principles and analytical methods should be applied more extensively to stream
restoration projects.

1.3. Watershed Links to Stream Condition

Expecting watershed conditions to explain relationships between stream assessment scores and
biotic outcomes is reasonable, given that research since the 1970s has linked watershed development
and hydrologic factors to stream condition, function, and health. As little as 10% impervious
cover has been linked to stream degradation, with the severity increasing as impervious cover
increases [21]. Urban cover or impervious cover can result in increased peak discharges [22], channel
enlargement [23,24] and associated erosion, a decline in water quality and habitat as well as a decline
in macroinvertebrate community metrics [7]. Booth [6] concluded that biological condition was highly
variable with low levels of anthropogenic development, but was consistently poor at high levels of
impervious cover percentage and associated urban cover. Despite this strong relationship, most of the
rapid assessment procedures capture little if any watershed factors in their evaluation procedures.

1.4. Identifying Procedures for Improving the Predictive Capability of Rapid Stream Assessments

Restoration and enhancement projects are typically implemented with a goal of improving
stream health, which can be evaluated using macroinvertebrate communities or other biological
indicators. Monitoring of project effectiveness is often limited by resource constraints, meaning that
comprehensive biological monitoring and assessment is rarely conducted in conjunction with the
common geomorphic assessments of physical condition. As a complement to biological assessment,
several rapid stream assessments have been developed to evaluate stream conditions. These rapid
assessments primarily focus on physical attributes and habitat in the stream that are believed to
influence the quality of the water resource and the condition of the resident aquatic community [10].
These rapid assessments are typically based on visual and/or quantitative measures that are summed or
averaged to produce single value scores. The resulting score is then compared to a set of standard scores
in ranges that reflect an expected level of biotic, ecological or environmental integrity. A weakness
of these approaches is that they either assign subjective importance to assessment variables or they
assume each of the assessment measures are equally indicative of stream health, and consequently
are often not good predictors of macroinvertebrate community or other biotic metrics. We suggest
in this paper that a viable alternative is to minimize the subjectivity of variable weights in order to
explicitly define stream health in terms of macroinvertebrate metrics. This can be done by regression of
macroinvertebrate metrics on the assessment variables, where ordination methods (such as Principal
Component Analysis, PCA) are applied to address collinearity between measured components and
improve prediction. Further, we hypothesize that in addition to PCA, inclusion of watershed condition
factors will improve the ability of the stream assessments to predict macroinvertebrate metrics.

A primary objective of this research was to identify tools that can be used to evaluate restoration
need and potential functional uplift for stream restoration projects. This study included assessment
and analysis of restored streams only and applied rapid habitat assessment tools for evaluating
ecological conditions in restored streams. However a more comprehensive effort should include
assessment of un-restored streams representing a variety of ecological conditions (e.g., degraded
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to high-quality reference streams). Improvements in richness and diversity of aquatic organisms
(e.g., fish and macroinvertebrates) is often a desired goal for many restoration efforts. To gauge
the potential use of rapid stream assessment methods as tools for measuring functional uplift, five
assessment methods were tested to determine how well they predicted stream health as measured by
macroinvertebrate community metrics. The number of dominant EPT taxa (EPT taxa), which includes
taxa from the “pollution sensitive” macroinvertebrate orders of Ephemeroptera (mayflies), Plecoptera
(stoneflies) and Trichoptera (caddisflies), was chosen for the prediction analysis. EPT taxa were chosen
for this and other select graphical and statistical analyses because they are widely used as indicators of
environmental disturbances and urbanization [25], they show a response to a wide array of pollutants
over both long-term and short-term exposures, they are an indicator of flow persistence [26], and they
are considered an appropriate richness measure for evaluating stream health [10]. A final objective
of this study was to provide techniques for improving rapid habitat assessment tools so that they
can serve as better indicators of the biological communities that can be expected to colonize restored
streams. For demonstration purposes, a new single-value index based explicitly on EPT taxa prediction
was developed for the RBP method by defining variable weights using coefficients obtained from
Principal Component Regression (PCR).

2. Materials and Methods

2.1. Stream Assessment

This research effort applied five rapid stream assessment methods to 65 restored streams including
two new methods and three existing methods. The two new methods developed include the
Eco-Geomorphological Assessment (EGA) and the Stream Performance Assessment (SPA) [27]. Both
methods focus on restored streams with an emphasis on fluvial geomorphology as recommended by
others [4,18]. The SPA is a rapid visual qualitative assessment that is comparable in scope and effort to
the three existing methods (RBP, RCE and SVAP). The EGA, in contrast, requires more extensive effort
and expertise and is a combination of quantitative and qualitative measures.

The EGA was developed to evaluate restored streams for the N.C. Clean Water Management Trust
Fund (CWMTF) [28]. The EGA was designed as a rapid assessment that includes semi-quantitative
and quantitative sampling combined with qualitative visual assessments for morphology, stream
structures, vegetation, and macroinvertebrates. The EGA assessment requires a team with field
expertise in aquatic macroinvertebrate taxonomy, macroinvertebrate sampling procedures, vegetation
identification and assessment, fluvial geomorphology, and knowledge of stream restoration practices,
including in-stream vane, weir, and riffle structures. Restoration project sites were assessed during a
2- to 4-hour site visit by a team of four to eight people. The assessment includes scoring 55 individual
variables for total possible points of 172. Table 1 lists the overall categories assessed, numbers of
variables, and the total points. The point values for each variable were designed to facilitate field
scoring. Most variables were assessed on a scale of whole numbers ranging from 1 to 4, with 1 = poor,
2 = fair, 3 = good and 4 = excellent. However, number class definitions were tailored to certain specific
variables. For example, for assessment of planted trees and shrubs, 1 = dead/missing, 2 = damaged,
3 = stressed/patchy and 4 = healthy. The EGA combines averaging and adding of the subcategories
which are then tallied for a total point value.

The second assessment developed is the SPA, which is a rapid visual assessment that is very
similar to the three existing methods applied. The SPA was developed based on seven factors that
are key elements of stream restoration design: channel bedform, channel pattern, in-stream habitat,
sediment transport, streambank condition, streambank vegetation, and floodplain function. Channel
bedform and in-stream habitat are further broken into sub-variables (five and seven, respectively) that
are individually evaluated. As a result, there are 17 total components that are individually evaluated
at each project site. The total possible point value for the SPA is 110 (Table 2) [27]. Unlike the EGA,
the SPA is intended to be a rapid systematic method that can be implemented by a single assessor
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with training and experience in stream morphology and ecology, similar to the other three visual
methods applied.

Table 1. EGA stream restoration assessment components.

Evaluation Categories Sub-Categories No. of Variables Max. Possible Points

Channel Condition
Bedform Condition 10 20
Dominant Substrate Material 3 12
Streambank Stability 6 24

Riparian Habitat Riparian Vegetation 5 20
Floodplain Condition 6 24

Macro invertebrates
Community Structure 6 24
Cover and Refuge 12 20

In-stream Structures
Structure Function 4 16
Structure Condition 3 12

Total Points 55 172

Table 2. Stream Performance Assessment (SPA) categories and point values.

Evaluation Category Sub-Category Points

Bedform (riffle-pool or step-pool
or ripple-pool features)

Riffles-Pools present in regular alternating sequence 3
Riffles-Pools properly located 3
Riffles appropriate length & slope 3
Riffles clean washed course material 3
Pools adequate length & depth; point bar slopes 3

Pattern Appropriate to valley slope and type 10

In-Stream Habitat Large woody debris (excluding root wads) 3
Leaf packs 3
Stable undercut banks 3
Root mats and/or fine roots along toe of streambanks 3
Overhanging vegetation 3
Root wads and/or large root masses along
streambanks 3

Bedrock, boulders or boulder clusters 2

Sediment Transport Evaluate bed incision or deposition 15

Streambank Condition Estimate percentage of streambanks eroding 20

Streambank Vegetation Evaluate bank vegetative cover and presence of
invasive plants 15

Floodplain Function Evaluate bank height ratio and floodplain width 15

Total Points 110

Each SPA and EGA variable was assigned a point range designed to facilitate field evaluation
of each specific parameter, similar to the RCE method. In contrast, the SVAP and RBP assign equal
weight to all variables assessed. The SPA, RBP and RCE all add individual variable point values to
determine a sum total rank while the SVAP averages the point values for all variables assessed at each
stream. The purpose of the five rapid stream assessment methods include:

EGA: Assessment of four major components of stream restoration
SPA: Assess eco-geomorphological performance of restored streams
RBP: Describe the overall quality of stream physical habitat
RCE: Assess the physical and biological conditions of small streams
SVAP: Evaluate the condition of aquatic ecosystems associated with wadeable streams
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Comparisons of the five stream assessment methods including which variable categories are
assessed by each method are provided in Tables 3 and 4.

Table 3. Characteristic comparisons of five rapid stream assessment methods.

Characteristic EGA SPA RBP RCE SVAP

Number of Variables 55 17 13 19 15
Equal variable weights X X
Unequal variable weights X X X
Variable points summed X X X
Variable points averaged X
Sum/Average combined X

Table 4. Variable comparisons among five rapid stream assessment methods.

Assessment Categories EGA SPA RBP RCE SVAP

Bedform X X X X X
Substrate 1 X X X X X
Streambank stability X X X X X
Riparian vegetation X X X X
Riparian width X X X X
Riparian completeness X
Floodplain accessibility X X X
Aquatic insects 2 X X X
Fish X
In-stream habitat X X X X X
Structures (x-vanes, etc.) X
Debris dams X
Channel pattern X
Sediment transport X X X
Channel velocity X
Channel flow X
Channel modification X X
Land use 3 X
Width-to-depth ratio X
Algal presence X X
Water clarity X
Fish barriers X
Manure presence 1 X
Salinity1 X

1 Embeddedness (substrate), manure presence, and salinity variables were not included in statistical analyses
for the SVAP as these variables were not applicable to all sites; 2 The aquatic insect variable from the EGA,
SVAP and RCE was not included in the statistical analyses; 3 Land Use characterized immediately beyond the
riparian zone.

2.2. Site Selection

Sixty-five restored streams throughout North Carolina (Figure 1) were selected for
eco-geomorphological condition assessment including macroinvertebrate sampling. The selection
of streams assessed was a non-randomized sample based on available project documents and data,
funding and physical access. Only restored streams that applied natural channel design restoration
practices [29] including modifications to channel and/or floodplain geometry and/or additions of rock
and log structures were included [30]. The degree of restoration varied from enhancement (grading of
floodplain benches and addition of rock and/or log structures) to complete channel relocation and/or
reconfiguration of channel size and shape. Between March of 2011 and May of 2012, all 65 streams were
visited and all five stream assessment protocols were applied. The streams are located in a wide range
of ecoregions, watershed conditions, bed material size classes, valley type, and restoration approaches.
Projects ranged in age from new construction to 15 years old. All sites were visited during March
to October.
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2.3. Macroinvertebrate Sampling

Aquatic macroinvertebrate samples were collected using methods adapted from the N.C. Division
of Water Quality [31]. Samples were collected from at least one location within the restored stream
feature. Macroinvertebrates were collected by a kick net sample from a riffle area, a sweep net
sample from bank habitats, a leaf pack sample, and visual inspections of stable substrate material.
All specimens were identified to the lowest practical taxonomic level (i.e., genus and in some cases
species) in the field by an experienced macroinvertebrate biologist and all dominant taxa (two or more
organisms) were recorded. Sampling results were used to calculate five macroinvertebrate metrics:
number of dominant taxa (dominant taxa), number of dominant EPT taxa (EPT taxa), EPT abundance,
% shredders and predators, and number of indicator taxa (indicator taxa).

2.4. Watershed Assessment

Watershed analysis was conducted using ArcGIS Desktop 10.0 software [32] in order to measure
six watershed parameters including basin slope, time of concentration (tc), watershed size, runoff
curve number (CN), percentage of impervious cover (% impervious), and percentage of developed
land (% developed). Drainage boundaries for the downstream end of each restored stream reach were
manually delineated, referencing contours, aerial photography, and hydraulic unit boundaries where
applicable. Soil data from 31 counties containing the target watersheds were obtained from the Natural
Resources Conservation Services [33]. Watersheds were divided by hydraulic soil group (A, B, C, or D)
according to soil type. Land use data were obtained from the USGS National Land Cover Dataset [34].
Land cover data were reclassified to represent eight land cover classes: open water, developed, barren,
forested, shrubland, herbaceous, cultivated, and wetlands according to the Multi-Resolution Land
Characteristics Consortium (MRLC) 2001 Landcover definitions [35]. The landcover data were then
combined with the processed soils data to generate a composite runoff Curve Number (CN) for each
watershed [36]. The CN is an empirical parameter used in hydrology for predicting direct runoff or
infiltration from rainfall excess [37].

The percentage of impervious cover was determined using the 2006 USGS National Land
Cover Dataset Percent Developed Imperviousness [34]. A series of polygons that represent percent
impervious cover in 10% intervals was produced. Each polygon area was summarized to compute a
composite value for the total impervious area of each individual watershed. Manual measurements
were also taken in ArcGIS to determine the slope of the drainage basin and to estimate time of
concentration (tc) in minutes using the Kirpich Equation [38] for each restored reach. Time of
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concentration is the time required for water to flow from the most remote point in a watershed
to the watershed outlet [39]. While the Kirpich Equation is generally limited to small rural watersheds
(ď0.8 km2), it provided a consistent reasonable comparison of watershed size, morphology and the
associated flow path.

2.5. Statistical Analyses

2.5.1. Comparing Assessment Methods

Total raw points for the five stream assessments were compared using paired comparison with
Pearson’s correlation coefficient. The five macroinvertebrate metrics were then regressed on the total
raw point values for each of the five stream assessments using linear regressions. Not all component
variables were included for the EGA, RCE and the SVAP methods. Because some streams had very
few structures (cross-vanes, rootwads, etc.) or a limited number of structure types, only two structure
variables (rather than 7) including a single overall average condition score and a single average of the
four key function scores were included in the EGA. The macroinvertebrate scoring components, totaling
24 possible points, were also removed from the EGA score because these point values are directly based
on the metric values obtained from macroinvertebrate sampling. Similarly, the macroinvertebrate
variable for the RCE and SVAP were also removed since these parameter scores were also based directly
on the macroinvertebrate sampling. Manure presence, embeddedness and salinity variables were
removed from the SVAP as these variables were not applicable at many of the streams. Eliminating
variables from the EGA, RCE and SVAP allowed for consistent and thus comparable score tallies for
all 65 streams assessed. A visual correlation diagram displaying the correlation coefficients, the results
of significance from the comparison tests and bivariate scatterplots with least squares fitted lines was
prepared to graphically show the results. EPT taxa were also included in the correlation visualization
diagram with the five stream assessment methods in order to evaluate correlation and significance
between EPT and the assessment methods.

2.5.2. Improving Prediction of EPT Taxa Using Ordination and Regression Tools

PCR was applied to improve predictions of macroinvertebrate metrics as it is designed as a
prediction tool for high-dimensional correlated data [40]. PCR was conducted first on the individual
variable scores for each of the five assessment methods. The first step for the PCR analysis was to
conduct PCA on the matrix of individual variables. The assessments all include individual scoring of
multiple variables ranging from as low as 11 variables for SVAP to 44 variables for the EGA. Many of
the individual variables lack independence, thus they exhibit collinearity. For example, streambank
stability in most cases is strongly influenced by both floodplain access and streambank vegetation.
Bedform relates to channel pattern, e.g., pools usually form in the outside bends of meandering
streams [41]. PCR was also conducted on a matrix that included assessment variables for each method
combined with six watershed variables, and a final PCR analysis was completed for a matrix of the six
watershed variables alone.

In all three PCR analysis scenarios, PCA was implemented on the scaled and centered full matrix
of individual variables (PRCOMP in R) [42]. Enough principal components (PCs) were retained to
explain at least 75% of the variance. Each of the five macroinvertebrate metric values were then
regressed on the resulting PC scores using multiple linear regressions. Residual plots were checked for
normality and constant variance. Coefficients of determination were obtained for all PCR analyses and
were compared among scenarios and to the regression analyses of total raw stream assessment points.

2.5.3. Determining the Influence of Watershed

To evaluate the influence of watershed condition on predicting macroinvertebrate community
metrics, watershed variables were compared directly to macroinvetebrate metrics and were combined
with the individual stream assessment variables using PCR for predicting the metrics. Each of five
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macroinvertebrate metrics were compared to the six watershed metrics obtained from GIS analysis
(basin slope, tc, watershed size, CN, % impervious, % developed) using multiple linear regression.
All macroinvertebrate metrics were graphically compared to the six watershed variables individually
to explore potential correlations. In addition, a biplot of the first two watershed PCs was prepared
to visualize the variability among watershed conditions for the 65 streams assessed and to identify
redundancy in watershed variables. A biplot is a two-dimensional graph that allows for visualization of
high-dimensional data. The PC1 and PC2 scores for each stream are displayed as points and watershed
variables as vectors. If the angle between two variable vectors is small, they are strongly associated
relative to PC1 and PC2. The cosine of the angle between them approximates their correlation [43].

2.5.4. Determining the Best Model to Predict EPT Taxa

Akaike’s Information Criterion (AIC) was used to compare the goodness of fit for three linear
models using the stream assessments and watershed variables to predict the total number of dominant
EPT taxa, including 1) total raw points, 2) PCA of individual variables, and 3) PCA of individual
variables combined with watershed factors. Further, Akaike’s Information Criterion (AIC) was used to
compare the goodness of fit for each of these three linear models for predicting the total number of
dominant EPT taxa. AIC is a “goodness-of-fit” measure that considers the value of adding variables
to a model [44]. AIC can be used for any regression approach and is designed to prevent overly
complex models where numerous predictors are added to mathematically improve a statistical model
(e.g., increase in R2), without contributing useful information. AIC penalizes the model based on the
addition of predictors in order to minimize unnecessary additional variables. AIC scores for each
of the three models were generated for all five stream assessment methods. To evaluate predictive
performance of each model, cross-validation using a leave-one-out method was also performed. Each
model was iteratively formulated 65 times by removing one single observation at a time from the data
set. A predicted score for the missing observation and the associated prediction error were then calculated.
The sum of the prediction errors equates to the overall prediction error or cross-validation score [45].

2.5.5. Creating Stream Assessment Indices

Using PCA creates new predictor variables (PC scores) that change emphasis for each assessment
component variable to eliminate collinearity between these predictors or explanatory variables, while
maximizing their variability in values. As such, the PC scores should better predict macroinvertebrate
metrics. However, using the multiple PC scores for each stream (in order to explain 75% or more of
the variability) makes comparisons among streams difficult. Therefore, a single-value index based
on PCR is desirable for facilitating its application. As such, indices that are designed to modify the
existing stream assessment methods so that they better predict macroinvertebrate metrics were created.
The indices are based on macroinvertebrate counts as they are useful proxies for stream health. For
example purposes, a re-weighted index was developed for the RBP method by using the results of
PCR with EPT taxa. The steps for creating the index included:

1. Perform PCA on the centered and scaled matrix of individual variables for the stream assessment
method. Retain enough PCs to explain 75% of the variability.

2. Calculate PC scores for all streams for each retained PC.
3. Regress EPT taxa on the PC scores to obtain regression coefficients.
4. Obtain scaled weights for each variable by multiplying the matrix of PCA variable loadings (i.e.,

a matrix whose columns contain the eigenvectors) by the regression coefficients.
5. Calculate un-scaled weights or multipliers by dividing the scaled weights by the standard

deviation for each variable.
6. Calculate new single-value index scores for each stream by multiplying the un-scaled weight by

the original raw variable point values (as scored in the field) for each stream. The re-weighted
point values for each variable are then summed to compute the single-value index score.
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The scaled weights from step 4 provide insight into the relative importance of each variable for
correlation to EPT taxa, while the un-scaled weights from step 5 are multipliers that can be used with
the original data as it was collected from the field to calculate new "relative" ranks or index scores for
each stream. While this effort focuses on macroinvertebrates and EPT taxa in particular, the predictive
approach outlined could be applied to any proxy of interest. Using the results of the PCR statistical
analysis that included watershed factors, another set of re-weighted indices were developed for the
RBP stream assessment method.

3. Results

3.1. Comparing Assessment Methods

Comparisons of total raw points for each of the five stream assessments for the 65 restored streams
using paired comparisons with Pearson’s correlation coefficient (Figure 2) indicated that all methods
were significant and positively correlated (r = 0.57 to 0.76; p < 0.0001) to each other. The most significant
correlations were for the EGA to SPA (r = 0.76) and the EGA to RBP (r = 0.71).
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Figure 2. Correlation visualization diagram comparing total raw points for five stream assessment
methods and EPT Taxa values for 65 streams using correlation, results of test for association between
paired samples using Pearson’s correlation coefficient and bivariate scatterplots with a weighted least
squares fitted line. Significance indicated by *** ď 0.0001, ** ď 0.001, * ď 0.01. The x-axis (including
axis scale) for each scatterplot corresponds to the column label (vertical) and the y-axis corresponds to
the row label (horizontal).
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When the five macroinvertebrate metrics were regressed on the total points of all five assessment
methods, many of the macroinvertebrate metrics were significantly related to the assessment methods
(Table 5) as well. However, low coefficients of determination (ranging from 0.07 to 0.42) revealed
substantial variability in the macroinvertebrate metric data not explained by the total raw points for
each stream assessment method (Table 6). Dominant taxa, EPT taxa, EPT abundance, and indicator
taxa were all very significantly related (p < 0.001) to the EGA and the RBP. In contrast, SPA was the
only significant predictor of % shredders and predators (p < 0.05). Overall, the SPA and RCE were less
significant predictors of the macroinvertebrate metrics among the five assessment methods. The SVAP
raw score was not significant for any of the macroinvertebrate metrics. EPT taxa were then compared
with the total raw point values for all five stream assessment methods using a visual correlation
diagram (Figure 2). This comparison indicates some correlation between all five assessment methods
and with EPT taxa (except for the SVAP). Correlation is strongest for the RBP (r = 0.61; p < 0.0001).

Table 5. Results of slope significance based on p-values obtained from linear regressions of five
macroinvertebrate metrics compared to total raw points for five stream assessment methods. n = 65 for
all metrics except DIC where n = 52 streams. Significance indicated by *** ď 0.0001, ** ď 0.001, * ď 0.01,
¨ ď0.05, ns = not significant.

Dominant Taxa EPT Taxa EPT Abundance % Shredders &
Predators Indicator Taxa

EGA *** *** *** ns ***
SPA ¨ * ¨ ¨ *
RBP *** *** *** ns ***
RCE * ** ns ns **

SVAP ns ns ns ns *

3.2. Improving Prediction of Macroinvertebrates Using Principal Component Regression

PCA analysis on the matrix of individual variables for all five stream assessment methods
was conducted. PCR was then performed by regressing the five macroinvertebrate metrics on the
resulting PCs (explaining a minimum of 75% of the variability). The regression analyses revealed
that the PCs obtained from all five habitat methods were significant predictors for four of the five
macroinvertebrate metrics, including dominant taxa, EPT taxa, EPT abundance, and indicator taxa.
In contrast, % shredders and predators were only significantly related to the EGA and RBP (p = 0.049
and p = 0.018, respectively) despite the re-weighting of variables through PCA. In addition, substantial
improvements in the coefficients of determination were observed when each of the macroinvertebrate
metrics were regressed on PC scores as the explanatory variables as compared to the total raw points
(Table 6). Improvements in prediction were most significant for the EGA, SPA, SVAP, and RCE
compared to all taxa metrics except for % shredders and predators, producing R2 values in the range
of 0.32 to 0.68. In comparison, the increases in R2 values were less significant for the RBP.

3.3. Determining the Influence of Watershed Condition

Multiple linear regression was used to determine relationships between each macroinvertebrate
taxa metric and the six watershed variables. Coefficients of determination for each macroinvertebrate
metric regressed on the six watershed variables are provided in the bottom two rows of Table 6. EPT
taxa exhibited the strongest correlation with watershed variables. Scatterplots of EPT taxa versus
each of the six watershed variables are provided in Figure 3. Watershed size and basin slope were
log-transformed to better show the range of values for these two variables (see figures 3e and 3f
for EPT taxa). Dominant taxa, EPT taxa, EPT abundance, and indicator taxa all exhibited notable
decline in macroinvertebrate metric scores in relation to impervious cover exceeding 5% to 10%.
Macroinvertebrates showed a significant decline at around 30% developed and at CN values in the
range of 65 to 70. Macroinvertebrate metrics did not exhibit a strong linear relationship with watershed
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size. It should be noted that high EPT abundance was primarily associated with medium sized
watersheds of greater than 2.6 to less than 26 square kilometers. A strong positive relationship was
revealed for dominant taxa, EPT taxa (Figure 3f), EPT abundance and indicator taxa to basin slope.
Similar to the stream assessments, % Shredders and Predators exhibited little to no relationship with
watershed variables.
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Figure 3. EPT taxa plotted in relation to six watershed parameters (n = 65 streams) with (a) EPT taxa
versus % Impervious cover; (b) EPT taxa versus % Developed; (c) EPT taxa versus curve number; (d) EPT
taxa versus time of concentration; (e) EPT taxa versus watershed size in square kilometers; (f) EPT taxa
versus basin slope.

In addition, PCA was applied to the watershed variables. The first two PCs were retained as they
explained 78.6% of the variance. A biplot of the individual scores for the first two PCs are shown in
Figure 4. The stream symbols are coded by urban compared with rural land use. A strong grouping of
urban compared with rural streams is revealed. Redundancy in the % impervious, % developed and CN
variables is revealed by the close negative alignment of the vectors for these three variables. Multiple
linear regression analyses of the five macroinvertebrate metrics to six watershed factors resulted in
higher coefficients of determination than when the metrics were regressed against the watershed PCs
(from PCA) (see last two rows in Table 6). This indicates that it is necessary to retain all the watershed
variability (not limit to 75%) in order to more effectively predict the macroinvertebrate metrics.
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Figure 4. Biplot of the first two principal components for watershed conditions with stream symbols
coded by urban compared with rural classification (n = 65 streams).

PCA was next reapplied using the stream assessment variables combined with six watershed
variables (CN, % impervious, % developed, watershed size, basin slope, and tc). One additional PC
was retained for each stream assessment method except the SVAP in order to explain a minimum
of 75% of the variance. The multiple linear regression analysis of the five macroinvertebrate metrics
on the retained PCs indicated that the addition of watershed variables to the PCA further improved
coefficients of determination for most of the stream assessment comparisons (Table 6).

Coefficients of determination from linear regression of five macroinvertebrate metrics compared to
each of five stream assessments for 65 streams using three approaches—1) total raw stream assessment
score, 2) PCA of individual assessment variables, and 3) PCA of individual assessment and watershed
variables combined—are provided in Table 6. All five stream assessment methods realized increased
coefficients of determination when watershed factors were added to the PCR analysis and compared to
most of the five macroinvertebrate metrics. However, little to no change occurred for all five methods
relative to % shredders and predators. The RBP method experienced the greatest increase in coefficients
of determination as a result of adding watershed factors. The other four methods, SPA, SVAP, RCE
and EGA, experienced a benefit from both PCA and the addition of watershed factors.
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Table 6. Coefficients of determination and significance of the slope based on p-values obtained from linear regression of five macroinvertebrate metrics compared to
five stream assessments for 65 streams using three approaches: 1) total raw points, 2) PCA of individual habitat variables and 3) PCA of individual habitat variables
combined with six watershed variables. Coefficients of determination are also included from multiple linear regression analyses of five macroinvertebrate metrics to
six watershed factors and to watershed PCs (from PCA). Slope significance indicated by *** ď 0.0001, ** ď 0.001, * ď 0.01, ‚ ď 0.05, ns = not significant.

Dominant Taxa EPT Taxa EPT
Abundance

% Shredders &
Predators Indicator Taxa No. of

Variables
Total No.

of PCs
% Variability

Explained by PCs

EGA Total Points 0.24 *** 0.29 *** 0.23 *** 0.03 ns 0.26 *** 1
PCA EGA 0.61 *** 0.68 *** 0.62 *** 0.29 ¨ 0.58 *** 44 11 76.3
PCA (EGA +Watershed) 0.74 *** 0.81 *** 0.72 *** 0.26 ns 0.70 *** 50 12 77.3
SPA Total Points 0.07 ¨ 0.10 * 0.07 ¨ 0.09 ¨ 0.14 * 1
PCA SPA 0.49 *** 0.47 *** 0.32 * 0.16 ns 0.39 ** 17 7 78.1
PCA (SPA + Watershed) 0.66 *** 0.68 *** 0.53 *** 0.20 ns 0.56 *** 23 8 78.8
RBP Total Points 0.31 *** 0.37 *** 0.33 *** 0.03 ns 0.42 *** 1
PCA RBP 0.37 *** 0.46 *** 0.39 *** 0.20 ¨ 0.45 *** 13 5 77.4
PCA (RBP + Watershed) 0.63 *** 0.72 *** 0.59 *** 0.24 ¨ 0.65 *** 19 6 77.4
RCE Total Points 0.15 * 0.11 ** 0.16 ns 0.01 ns 0.31 ** 1
PCA RCE 0.45 *** 0.49 *** 0.45 *** 0.20 ns 0.65 *** 18 8 78.7%
PCA (RCE + Watershed) 0.70 *** 0.73 *** 0.63 *** 0.16 ns 0.73 *** 24 9 78.2%
SVAP Total Points 0.02 ns 0.04 ns 0.05 ns 0.01 ns 0.33 . 1
PCA SVAP 0.33 ** 0.39 *** 0.34 ** 0.09 ns 0.66 ** 11 6 80.3%
PCA (SVAP + Watershed) 0.58 *** 0.67 *** 0.56 *** 0.11 ns 0.66 *** 17 6 75.7%
Watershed 0.65 *** 0.70 *** 0.55 *** 0.22 ns 0.52 *** 6
PC Watershed 0.41 *** 0.43 *** 0.34 *** 0.09 ns 0.40 *** 6 2 78.6%
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3.4. Comparing Models for Goodness of Fit Relative to EPT Taxa

Both applying PCA and including watershed factor substantially improved prediction of EPT taxa
over using the total raw point scores for the five habitat assessment methods (Figure 5). AIC scores
were generated for three linear models comparing stream assessment scores and watershed variables
to EPT taxa, including: (1) total raw points, (2) PCs from PCA of individual variables, (3) PCs from
PCA of individual variables combined with watershed parameters, to compare their goodness of fit.
AIC was also applied to validate that the added predictors are contributing useful information and not
just serving to mathematically improve the statistical model (e.g., increase in R2). Resulting AIC scores
for each of three models are provided in Table 7. The AIC scores indicate that the PCA of the individual
variables that includes watershed parameters for the five stream assessment methods provides the
best fit for EPT taxa (lowest AIC score). Retaining the separate PC scores for the linear regressions,
which resulted in a range of 5 to 12 predictors (PCs) depending on the stream assessment method
and whether or not watershed factors were included, provide a better fit model that the original total
raw points for all methods (lower AIC scores) despite the penalty applied by AIC for the additional
predictors. The numbers of PCs retained were based on selecting those that explain at least 75% of
the variability of the habitat data. Cross-validation using a leave-one-out method was performed to
evaluate predictive performance of each of the regression models. The overall prediction error or
cross-validation score is also provided in Table 7. The RBP produced the lowest combined AIC and
CV Score (349 and 11) among the five assessment methods for total raw score. However, the multiple
linear regression of the six watershed variables produced both lower AIC and CV scores than the raw
score for the five assessment methods (311 and 6.9). Despite the more time-consuming nature of the
EGA assessment, this method produced the lowest combined AIC and CV scores for the PCR models,
the lowest AIC score for the PCR with watershed models and the lowest overall AIC score among all
models evaluated (294). The PCA of the RCE method combined with watershed produced the lowest
cross-validation score (6.3) and the third lowest AIC score (308).
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Figure 5. Coefficients of determination (R2) resulting from prediction of EPT taxa values for 65 streams
using three linear models of five rapid assessment methods and watershed variables including: (1) total
raw points, (2) PCs from PCA of individual variables, (3) PCs from PCA of individual variables
combined with watershed parameters.
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Table 7. Akaike’s Information Criterion (AIC) scores and cross-validation (CV) scores for three linear
models to predict EPT taxa by five separate stream assessment methods and by watershed variables.
The number of predictors (#) is also provided for each model.

Linear Regression of
Total Raw Score PCR PCR (Assessment +

Watershed Variables)

AIC CV # AIC CV # AIC CV #
EGA 356 13.1 1 324 8.8 11 294 7.1 12
SPA 371 16.6 1 349 10.8 7 319 7.3 8
RBP 349 11.2 1 347 10.4 5 307 7.4 6
RCE 366 15.4 1 348 11.3 8 308 6.3 9
SVAP 376 17.7 1 357 12.3 6 316 6.5 6
Watershed 311 6.9 6 344 9.9 2

3.5. Five Stream Assessment Indices

To demonstrate how the stream methods can be reconfigured to incorporate the ordination and
regression analysis benefits, a re-weighted index was prepared for the RBP assessment method based
on the PCA and PCR to EPT taxa. The scaled and un-scaled weights for the RBP method are provided in
Table 8. The scaled weights provide insight into the relative importance of each variable for correlation
to EPT taxa, while the un-scaled weights are multipliers that can be used with the original data as it
was collected from the field to calculate new "relative" ranks or index scores for each stream. Points for
individual variables as determined in the field are multiplied by the un-scaled weight before summing
the points to determine the final single value index score for each stream. The RBP was selected for
index development demonstration since it is readily available for use from the US EPA and is currently
used by many agencies and biological assessment practitioners. The variables are sorted from largest
to smallest by coefficient weights. The larger weights are shown in bold to indicate those variables that
have the strongest influence on EPT taxa. In the case of RBP, bedform, substrate and flow variables
most strongly influence correlation with EPT taxa.

Table 8. RBP Index scaled and un-scaled (multiplier) weights. Variables with larger scaled weights
(absolute value ě 0.4) are shown in bold. Scaled weight indicates the relative importance of each
variable for prediction of EPT taxa. The multiplier can be used with the field collected data points for
each variable to calculate new index scores for each stream.

Variable # Variable Name Scaled Weight Multiplier

3 Pool variability or velocity 1.10 0.20
7 Channel sinuosity or riffle frequency 0.84 0.16
1 Epifaunal substrate 0.83 0.23
2 Pool substrate or embeddedness 0.69 0.18
5 Channel flow status 0.56 0.10
8 Bank stability LB 0.42 0.38
9 Bank stability RB 0.38 0.34
4 Sediment deposition 0.26 0.07

11 Vegetative protection RB 0.05 0.02
6 Channel alteration 0.04 0.01

10 Vegetative protection LB 0.01 0.00
13 Riparian zone RB –0.07 –0.03
12 Riparian zone LB –0.18 –0.06

A second re-weighted index was prepared for the RBP assessment methods based on PCR to EPT
taxa with the addition of watershed factors for the PCA analysis. The scaled and un-scaled weights
for the RBP method are provided below in Table 9. The variables are sorted from largest to smallest
by coefficient weights. The larger weights are shown in bold to indicate those variables that have the
strongest increase in the prediction of EPT taxa. In the case of RBP with watershed factors included,
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bedform, basin slope, watershed size, and flow variables have the strongest positive prediction of EPT
taxa. In addition, CN, % impervious and % developed have a strong negative prediction of EPT taxa.
Watershed condition (both topography and land use condition) and streambed substrate and habitat
were the strongest predictors of EPT taxa for all five of the re-weighted habitat assessment indices.

Table 9. RBP Index (including watershed factors) scaled and un-scaled (multiplier) weights. Variables
with larger scaled weights (absolute valueě 0.4) are shown in bold. Scaled weight indicates the relative
importance of each variable for prediction of EPT taxa. The multiplier can be used with the field
collected data points for each variable to calculate new index scores for each stream.

Variable # Variable Name Scaled Weight Multiplier

7 Channel sinuosity or riffle frequency 0.86 0.16
14 Basin Slope 0.81 19.13
3 Pool variability or velocity 0.74 0.13
5 Channel flow status 0.63 0.12
2 Pool substrate or embeddedness 0.53 0.14

16 Watershed Size 0.43 0.05
4 Sediment deposition 0.38 0.10
1 Epifaunal substrate 0.37 0.10
8 Bank stability LB 0.19 0.17
9 Bank stability RB 0.14 0.12

15 Time of Concentration 0.06 0.00
6 Channel alteration –0.01 0.00

13 Riparian zone RB –0.14 –0.05
11 Vegetative protection RB –0.15 –0.08
10 Vegetative protection LB –0.17 –0.09
12 Riparian zone LB –0.23 –0.07
19 % Impervious –0.40 –0.03
18 % Developed –0.49 –0.01
17 Curve Number –0.75 –0.09

4. Discussion

Five stream assessment methods, the EGA, RCE, SPA, RBP and SVAP, were applied to 65 restored
streams located throughout North Carolina. Paired comparison of the total raw points for the five
stream assessments revealed that all methods were significant and positively correlated (r = 0.57
to 0.76) to each other. These results are similar to those found by others when comparing stream
assessment method points at non-restored streams [12,16,17,19]. In addition, macroinvertebrates were
also collected from all 65 restored streams. Linear regression of macroinvertebrate metrics to the five
stream assessment methods resulted in some significant relationships; however, unexplained variance
in data was high, as demonstrated by low coefficients of determination. Weak correlation results
are similar to other studies that compared rapid assessment results to fish and macroinvertebrate
community or biotic integrity metrics [12,16,19].

Recognizing the inextricable links between watershed condition and biotic condition of streams,
watershed assessment was conducted on all 65 streams and six metrics were obtained including CN, %
impervious, % developed, watershed size, basin slope, and tc. Regression of macroinvertebrate metrics
to all six watershed factors resulted in higher coefficients of determination than PCR indicating that
all the watershed variability is important to predicting the macroinvertebrate metrics. This supports
the findings of Booth [6] that multiple factors are responsible for the decline of macroinvertebrate
communities. EPT taxa exhibited the strongest correlation with watershed variables. Dominant taxa,
EPT taxa, EPT abundance, and indicator taxa all exhibited notable decline in macroinvertebrate metric
scores in relation to impervious cover exceeding 5% to 10%. The decline is slightly lower than the 7%
to 14% impervious range reported by others [21]. Macroinvertebrates showed a significant decline at
around 30% developed and at CN values in the range of 65 to 70.
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To address issues of collinearity and subjective importance assigned to assessment variable
weights and/or the assumption that all measured variables are equally indicative of stream health,
macroinvertebrate metrics were regressed on PCs obtained from PCA of individual assessment variable
points. Following dimension reduction and re-weighting of the specific stream assessment variables
using PCA and subsequent linear regression of the macroinvertebrate metrics on the resulting PCs, the
prediction by the SPA, EGA, SVAP and RCE stream assessments for several of the macroinvertebrate
metrics greatly improved. This supports the assertion by the NRCS that equal weighting of the SVAP
variables dampened the effect of specific key variables that strongly influenced the biotic condition of
the streams evaluated [12]. These results suggest that stream assessment metrics (both quantitative
and visual) may prove useful in assessing condition and perhaps functional uplift of stream restoration
projects, as long as individual variables are weighted to maximize the prediction of the desired
outcomes (e.g., aquatic life).

To incorporate the importance of watershed factors in the prediction of macroinvetebrate metrics,
the PCR analyses were modified to include a combined matrix of watershed factors with stream
assessment variables. This approach further improved prediction of macroinvertebrate metrics for most
of the stream assessments. The RBP benefited more from the addition of watershed factors, while the other
four methods, SPA EGA, SVAP, and RCE, significantly benefited from both PCA and watershed factors.

Several of the stream assessment methods (following PCA and addition of watershed variables)
were good predictors of dominant taxa, indicator taxa, EPT Taxa and EPT abundance metrics.
In contrast, prediction of % shredders and predators was much weaker by all the stream assessments,
despite re-weighting of variables and inclusion of watershed condition variables. Therefore, the
variables scored by the rapid assessment method are not relevant to all biotic metrics and statistical
testing must first occur to determine which biotic metrics of interest are best predicted by the rapid
assessment(s) of choice. An evaluation of AIC scores validated that the additional predictors (PCs
for individual assessment variables and watershed factors) did contribute useful information for
the prediction of EPT taxa and are not simply providing an improvement in correlation. The AIC
analyses revealed that the PCR of the EGA method combined with watershed variables was the best
fit model for predicting EPT taxa (lowest AIC score), while the RCE method combined with watershed
variables produced the lowest cross-validation score. The AIC and CV analyses also showed very
good prediction of EPT taxa with the multiple linear regression of the six watershed factors, which
retained 100% of the variability of the watershed variables. This outcome reinforces the notion that
reach-scale stream restoration efforts alone cannot be expected to mitigate for hydrologic or chemical
alterations that are responsible for the loss of sensitive taxa [46], as watershed condition are strong
controlling variables for these conditions. This finding also suggest that perhaps macroinvertebrate
species composition or biodiversity measures are not appropriate endpoints for restoration ecology
efforts in urbanized settings [47].

In addition, a new, re-weighted index was generated for all five stream assessment methods based
on PCR predictions for EPT taxa. In the case of RBP, bedform, substrate and flow variables have a
strong positive influence on the prediction of EPT taxa while CN, % impervious and % developed
have a strong negative prediction of EPT taxa. Watershed condition (both topography and land use
condition) and streambed substrate and habitat were the strongest predictors of EPT taxa for all five
of the re-weighted habitat assessment indices. Potter et al. [8] also found watershed variables to
explain more variability in macroinvertebrate community than riparian variables in North Carolina.
Further, Richards and Host [48] found substrate in addition to woody debris to highly correlate with
macroinvertebrate richness and composition using ordination statistics. In contrast, Cortes et al. [20]
found riparian variables to be the determinant factors for macroinvertebrate assemblages in Portugal
using ordination of the River Habitat Survey (RHS) variables. Surprisingly, for the SVAP index,
riparian vegetation is a significant negative factor in predicting EPT taxa.

These results indicate that ordination approaches that address collinearity among assessment
variables and subjective variable weights can improve prediction of macroinvertebrate communities
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made with rapid physical and habitat assessments. These results are similar to Wright et al. [49], who
applied multiple discriminant analysis (MDA) to predict macroinvertebrate groupings (obtained from
ordination) in 268 sites in Great Britain using 28 environmental variables with a 76.1% success rate.
In contrast, Goforth and Bain [49] combined a watershed and habitat protocol obtained from map
and aerial photo analysis with the RCE in an attempt to predict several biotic metrics. The protocol,
known as the Watershed Habitat Evaluation Biotic Integrity Protocol (WHEBIP), includes geology,
morphology, season, flow and water chemistry variables. However, investigators had limited success
in predicting benthic macroinvertebrate community measures despite adjusting metric weightings
of the WHEBIP through an iterative process. However, this approach was likely less successful than
Wright et al. [50] and this study as it does not appear that collinearity among the individual variables
of the WHEBIP and RCE assessments were addressed.

Unlike many other ecological assessment measures, the indices developed in this study using
PCR and watershed factors reflect the range of stream conditions found in North Carolina and are
designed to maximize prediction of macroinvertebrate populations in these streams. The resulting
indices may serve as a scale for evaluating restoration potential as well as the ecological functional
uplift of various management and restoration efforts. However, the indices generated by this effort are
preliminary and limited in application due to being developed from restored streams only. Refinement
of the indices would require assessment and macroinvertebrate sampling of a full range of stream
conditions including high-quality reference and impaired streams in addition to restored streams. In
addition, consideration should be given to adding water chemistry, flow and sampling season, as all of
these factors have relevance to macroinvertebrate metrics [51–54]. The SPA was applied to 156 restored
and un-restored streams between 2006 and 2012 [27]. The un-restored streams exhibited a range
of conditions from degraded to high quality reference streams. That effort was useful in identifying
factors where restoration efforts have achieved reference quality geomorphic condition (e.g., streambank
vegetation and condition, pattern, floodplain function and sediment transport) and in many cases where
restoration projects have not met the mark for establishing high quality bedform and habitat.

This study documents how rapid stream assessments may be tailored to a specific region and
aquatic community (e.g., fish, mussels, benthic macroinvertebrates, or a multi-metric index of biotic
integrity) by creating an index using PCR. Because of the ease in implementing rapid assessments,
many more streams can be assessed with more frequent visits to streams for assessment. The statistical
procedures outlined by this project can improve the value of these assessments by improving their
reliability for predicting the biotic community that is considered a good indicator of stream health.
Specifically, developing the index requires a one-time effort to collect data through biological sampling,
applying a rapid assessment method of choice, and conducting a GIS-based watershed analysis
on numerous streams in a region that exhibit a wide range of physical and biological conditions.
The resulting stream condition index can serve as a scale for determining restoration need and potential
uplift, and for gauging project performance over time. Further, the inclusion of watershed condition in
the index development will help project designers and managers establish realistic biological uplift
goals for streams in developed watersheds, which cannot reach the same conditions as those in
un-developed watersheds. The ordination approach outlined by this effort is similar to procedures
followed since the 1970’s to develop regional water quality and biotic indices [55] and for identifying
factors that influence biotic communities [56].

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/8/4/143/s1;
Table S1: Principal component scores for six watershed variables for 65 streams, Table S2: Eco-geomorphological
Assessment Method (EGA) index scaled and un-scaled (multiplier) weights, Table S3: Stream Performance
Assessment (SPA) index scaled and un-scaled (multiplier) weights, Table S4: Riparian Channel and Environmental
Inventory (RCE) index scaled and un-scaled (multiplier) weights, Table S5: Stream Visual Assessment Protocol
(SVAP) index scaled and un-scaled (multiplier) weights, Table S6: Eco-geomorphological Assessment Method
(EGA) index (including watershed factors) scaled and un-scaled (multiplier) weights, Table S7: Stream Performance
Assessment (SPA) index (including watershed factors) scaled and un-scaled (multiplier) weights, Table S8: Riparian
Channel and Environmental Inventory (RCE) index (including watershed factors) scaled and un-scaled (multiplier)
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weights, Table S9: Stream Visual Assessment Protocol (SVAP) index (including watershed factors) scaled and
un-scaled (multiplier) weights.
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Abbreviations

CN Soil Conservation Service runoff curve number
EGA NCSU’s Eco-Geomorphological Assessment
EPT Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies)
GIS Geographical Information Systems
NCD Natural Channel Design
PC Principal Component
PCA Principal Component Analysis
RBP USEPA’s Rapid Bioassessment Protocol
RCE Riparian Channel and Environmental Inventory
SPA NCSU’s Stream Performance Assessment
SVAP USDA’s Stream Visual Assessment Protocol
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