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Abstract: The assessment of collective risk for flood risk management requires a better understanding
of the space-time characteristics of flood magnitude and occurrence. In particular, classic formulation
of collective risk implies hypotheses concerning the independence of intensity and number of events
over fixed time windows that are unlikely to be tenable in real-world hydroclimatic processes
exhibiting persistence. In this study, we investigate the links between the serial correlation properties
of 473 daily stream flow time series across the major river basins in Europe, and the characteristics of
over-threshold events which are used as proxies for the estimation of collective risk. The aim is to
understand if some key features of the daily stream flow data can be used to infer properties of extreme
events making a more efficient and effective use of the available data. Using benchmark theoretical
processes such as Hurst-Kolmogorov (HK), generalized HK (gHK), autoregressive fractionally
integrated moving average (ARFIMA) models, and Fourier surrogate data preserving second order
linear moments, our findings confirm and expand some results previously reported in the literature,
namely: (1) the interplay between short range dependence (SRD) and long range dependence
(LRD) can explain the majority of the serial dependence structure of deseasonalized data, but losing
information on nonlinear dynamics; (2) the standardized return intervals between over-threshold
values exhibit a sub-exponential Weibull-like distribution, implying a higher frequency of return
intervals longer than expected under independence, and expected return intervals depending on
the previous return intervals; this results in a tendency to observe short (long) inter-arrival times
after short (long) inter-arrival times; (3) as the average intensity and the number of events over
one-year time windows are not independent, years with larger events are also the more active
in terms of number of events; and (4) persistence influences the distribution of the collective risk
producing a spike of probability at zero, which describes the probability of years with no events,
and a heavier upper tail, suggesting a probability of more extreme annual losses higher than expected
under independence. These results provide new insights into the clustering of stream flow extremes,
paving the way for more reliable simulation procedures of flood event sets to be used in flood risk
management strategies.

Keywords: European stream flow extremes; collective risk; persistence; clustering; return intervals;
long range dependence; nonlinearity

1. Introduction

Extreme river floods are one of the major natural hazards that have affected European countries
for centuries [1–3], causing many deaths and billions US$ damages in the last decades [4,5].
Historical records worldwide show that floods tend to cluster in time (e.g., [3,6]). This phenomenon
concerning the temporal fluctuation of floods can be related to the dynamics of processes exhibiting
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long range dependence (LRD) or temporal persistence. This type of dynamics has widely been studied
since its recognition by Hurst [7], resulting in a range of diagnostics (e.g., [8–12]) and modeling
tools [13–17].

Dealing with stream flow processes, the interaction between short range dependence (SRD) and
LRD can affect the recognition of the actual dynamics and the estimation of parameters summarizing
SRD and LRD behavior. From a diagnostic perspective, the interplay of SRD and LRD has usually been
studied attempting to separate the (small) temporal scales in which SRD acts and (large) temporal
scales in which LRD dominates (e.g., [18,19]), or modifying LRD detection methods accounting for
SRD (e.g., [20]). Detection and identification of SRD and LRD are also affected by the sample size.
In fact, LRD is an asymptotic property of the process that should be studied on the largest scales (i.e., in
the tails), and several thousand observations are required for instance to correctly estimate the Hurst
parameter H (which quantifies the linear part of LRD) for signals simulated by autoregressive moving
average (ARMA) models, whose behavior is SRD but mimics LRD [21,22]. In order to model stream
flow fluctuations, fractional integrated autoregressive moving average (ARFIMA) models [15,16] are a
classical and well-established option (e.g., [22–26]).

However, both analyses and models commonly focus on the overall process (e.g., daily or
monthly stream flow), while extreme values are investigated as a by-product. In the last decade, more
attention has been paid to the statistics (magnitude and frequency of occurrence) of extreme values
of persistent processes (e.g., [27–29] and references therein ). Such works investigated (monofractal)
processes characterized by autocorrelation functions with power-law decay or (multifractal) processes
exhibiting nonlinear temporal dependence structure and vanishing linear autocorrelation (e.g., [30,31]).
Based on that theoretical framework, Bogachev and Bunde [32] analyzed 32 long stream flow time
series recorded worldwide, and found that the empirical distributions of the standardized return
intervals (or inter-arrival times) between extremes exceeding high (percentile) thresholds collapse
into a set of patterns depending only on the threshold, but not on the location, and well described by
gamma-type distributions. They also showed that such empirical distributions are well reproduced
by the corresponding empirical distributions of data of the same length drawn from a process with
power-law decaying autocorrelation function with a unique effective exponent ξeff = 0.4, whereby the
exponent ξeff differs from the measured correlation exponent ξ (which ranges between 0.4 and 0.8)
owing to the interplay between linear and nonlinear dependence in the data and the finite-size
effects [32]. For the stream flow records analyzed, the authors also highlighted that H ranges between
0.6 and 1.

Therefore, since the distribution of the return intervals can be parameterized by the autocorrelation
exponent ξ, and ξ is related to H for a number of theoretical processes (some of which are used in the
following sections), the estimation of H is a key aspect to define a link between the overall process
(e.g., daily stream flow) and the behavior of the corresponding extreme values. As mentioned above,
several methods are available to infer LRD and compute H, and studies conducted on worldwide
long stream flow records using different approaches highlighted that stream flows are generally
characterized by H ∈ (0.5, 1) at large time scales [18,19,22,32–36].

Since the persistence properties of complex river systems impacts on natural hydrological
variability in a changing environment [3,6], this study further investigates the link between SRD/LRD,
simple but informative models reproducing such properties, and the occurrence statistics of the
corresponding extreme values. Based on the increasing importance of insurance and reinsurance
as non-structural methods to hedge against natural hazards, we treat the topic considering some
key properties that should be taken into account to develop modeling strategies improving current
risk assessment procedures. In this respect, the assessment of the so-called collective risk S is
a typical problem faced in insurance and reinsurance practice. Dealing with floods, for a fixed
flood-prone area, the collective risk is the total claim amount regarding the portfolio of (re)insured
properties as a collective that produces a random number N of claims in a certain time period
(e.g., one year) [37] (p. 41).



Water 2016, 8, 152 3 of 25

In this study we investigate the dynamics of daily stream flow series from a collective risk
viewpoint, treating the exceedances over given thresholds as proxies for claim amounts, and defining
S as the accumulation of claim amounts over fixed one-year time windows. In more detail, we study
the properties of the return intervals R between over-threshold events, the number N of exeedances,
and S . These characteristics are therefore interpreted in terms of temporal persistence to link the
behavior of the extreme values to that of the whole process, in order to pave the way for modeling
approaches of extreme values based on a more efficient use of the information contained in the entire
sequences of data. The paper is organized as follows: data sets and methods are presented in Section 2,
empirical results are shown in Section 3, and concluding remarks are summarized in Section 4.

2. Data and Methodology

2.1. Data

The data set comprises 473 daily stream flow time series across the major basins in Europe
(data obtained from the Global Runoff Data Centre (GRDC), Federal Institute of Hydrology, Koblenz,
Germany). The time series were selected in order to have the maximum number of sequences with
maximum temporal overlap (namely, 37 years from 1968 to 2005) and less than 10% of missing values.
Figure 1 shows the study area and stream gage locations, while the time series of the number of stations
available in a given year (out of 473) and histogram of the record length for the 473 stations are shown
in Figure 2. The list of stations and related information are provided in the supplementary material
(Table S1).

Figure 1. Map showing the location of the 473 stations included in this study.
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Figure 2. (a) Time series of the number and percentage of stations available in a given year (out of 473);
(b) Histogram of the record length for the 473 stations.

2.2. Methods

As the stream flow series exhibit positively skewed marginal distributions and strong seasonality
that depends on climatic zones and basin response dynamics, the data are preliminary transformed
and deseasonalized by the following procedure. Data are transformed to normality by normal quantile
transformation (NQT) ψ = Φ−1(Fn(x)), where Φ−1 denotes the inverse of the standard Gaussian
cumulative distribution function, Fn(x) = 1

T+1 ∑ 1{xt≤x} is the Weibull version of the empirical
cumulative distribution function, 1{•} is the indicator function, and T is the sample size.

For a given sequence of stream flow observations ψt, t = 1, ..., T, the empirical average value for
each calendar day {m̃i}i=1,...,365 and the calendar-day standard deviation {s̃i}i=1,...,365 are computed.
The seasonal components m̃i and s̃i are then smoothed by local scatter plot smoothing (LOESS) [38]
following the rationale of the seasonal-trend decomposition based on LOESS (STL) procedure [39],
obtaining smoothed seasonal components mi and si. Thus, deseasonalized time series yt are obtained
by subtracting mi from xt and then dividing by si as follows

yt =
ψi,t −mi

si
, for i = 1, ..., 365 and t = 1, ..., T. (1)

As is well known, this procedure removes the seasonality of the first two moments of the time
series and is standard in hydrological analyses (e.g., [16,19,23,25] among others). The marginal
transformation is performed to rectify heteroskedasticity and non-normality of the residuals of the
models fitted to the deseasonalized time series [16] (pp. 464–465). The deseasonalization is applied to
mitigate the effect of seasonality on subsequent analyses.

To characterize the dynamics of extreme stream flow values, we performed an over-threshold
selection using three different percentage thresholds yp (95%, 98%, and 99%), making the analysis
independent of the specific site and allowing a sensitivity study of the results. We therefore defined the
inter-arrival times or return intervals r between subsequent observations exceeding the threshold(s) yp.
It should be noted that the sequences of values r = 1 day indicate periods with stream flow exceeding
yp, while the return intervals r ≥ 2 denote the durations of periods with yt ≤ yp. Our analyses focus
on the latter subset of r values which properly define the inter-arrival time between blocks of extreme
values. To allow a better comparison and recognition of a possible general behavior (e.g., [29–32,40,41]),
for each time series and each threshold, the sequence of r values is standardized dividing by the return
period (i.e., the mean return interval) Rp := 1

Np
∑

Np
j=1 rj, where Np is the number return intervals r ≥ 2.

It is known that the statistics of return intervals r of extreme values are related to the nature of the
underlying process. For example, for processes with LRD and autocorrelation function decaying as a
power law C(τ) ∝ τ−ξ of lag τ, r/Rp is characterized by a stretched exponential (Weibull) distribution
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and finite-size effects for r/Rp > 1 and power-law distribution and discretization effects for r/Rp < 1
(e.g., [28,29] and references therein).

fp(r) ∝


1

Rp

(
r

Rp

)ξ ′−1
, for r ≤ Rp

1
Rp

exp
(
−bξ

r
Rp

ξ
)

, for r ≥ Rp

(2)

where fp denotes the probability density function of r for a given threshold yp, ξ ≈ ξ ′, and bξ is a scale
parameter depending on ξ (e.g., [29]). Notice that a power-law distribution for r/Rp characterizes
multifractal signals (e.g., [31]).

These links between the behavior of extreme events and the underlying process allow in principle
a more efficient use of the available information (e.g., daily stream flow) to infer and set up modeling
and simulation strategies for the extremes. The statistics of the r/Rp values for the stream flow
data are therefore compared with those corresponding to a set of models in order to interpret the
properties of the records and identify parsimonious candidate models able to reproduce the main
properties of the observed return intervals of stream flow extremes. To simulate time series allowing
for a fair comparison taking into account both discretization and finite-size effects, we used a set of
parametric and nonparametric models/methods: (1) ARFIMA(p, d, q), where p, d, and q denote the
autoregressive order, the fractional order of differencing, and the moving average order, respectively
(e.g., [14,23,25,42]); (2) fractional Gaussian noise (fGn; [13,43–46]), also known as Hurst-Kolmogorov
process (HK; [47,48]), which is parameterized by the so-called Hurst exponent H; (3) a generalization of
the HK process (gHK; [17]), which involves an additional parameter λ and allows for mixing Markov
SRD behavior and HK LRD dynamics; and (4) iterative amplitude adjusted Fourier transformation
(IAAFT; [49–53]).

ARFIMA models are a classical option allowing the reproduction of both SRD and LRD and
a variety of temporal dependence structures. However, these models rely on the introduction of
additional terms to the simplest versions and show some drawbacks, such as definition in discrete time
that may not necessarily correspond to a continuous-time process, over-parametrization contradicting
the principle of parsimony, identification usually based on the autocorrelation function (ACF), which is
known to be highly biased [54].

The special case ARFIMA(0, d, 0) describes processes with hyperbolically-decaying autocorrelation
function close (but not identical) to the HK process. These models are quite flexible in
reproducing temporal persistence, and their parameters are related by H = d + 0.5. The slope
ξ of the autocorrelation function of ARFIMA(0, d, 0) and HK is proportional to d and H,
respectively. However, the HK process shows some properties which are not physically realistic,
such as the infinite variance of the instantaneous process [54]. In order to overcome these drawbacks,
some extensions have been proposed, e.g. the HK process with low scale smoothing [55], a hybrid HK
process [54], and gHK. In particular, the continuous gHK is a three-parameter process defined by the
autocovariance function [17]:

c(τ) = λ(|τ|/q + 1)−b (3)

where λ has dimension [y2] and denotes the variance of the process, q has dimension [t] and indicates
the limit between HK processes (q � |τ|) and those affected by the minimum scale limit of the
process (q� |τ|), and b = 2− 2H is dimensionless and controls the LRD behavior. The function in
Equation (3) decays exponentially for small time lags and algebraically (i.e., as a power law) for large
scales; thus, it mimics Markovian behavior in the short term and HK persistence in the long term. Such a
process provides a suitable, parsimonious and physically consistent option to high-parameterized
ARFIMA models for daily stream flow dynamics.

IAAFT allows the simulation of surrogate data preserving almost exactly the empirical distribution
function and power spectrum of the observations. IAAFT is often used in nonlinear dynamics studies
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to simulate surrogate data to be used to test nonlinear behavior. IAAFT surrogates are stationary [56]
and temporally symmetric by construction because of randomization of Fourier phases, meaning that
the sampling algorithm does not preserve the forward-backward asymmetry related to the different
dynamics of the hydrographs’ rising limb and recession branch (which are driven by meteorological
forcings and basin response, respectively). Thus, since IAAFT is data driven and the estimated power
spectrum is the reference “truth” and contains no information about the direction of time, IAAFT allows
us to explore the properties of r and S for resampled time series which preserve the moments up to
the second order excluding time irreversibility, which is strong signature of nonlinearity. A simple
measure of asymmetry of a time series under time reversal is the third order quantity [51]

φrev(τ) =
1

T − τ

T

∑
t=τ+1

(yt − yt−τ)
3 (4)

where yt denotes the deseasonalized records, T is the sample size, and τ is the lag. The summary
statistic in Equation (4) can be seen as an index of temporal skewness and therefore be used to check
time irreversibility in both observed and simulated series. Of course, alternative but similar measures
of asymmetry such as the volatility |yt − yt−τ | can be used [57].

Among the diagnostic methods that are available to explore the temporal dependence structure of
daily stream flow series (e.g., [8,9,11,12]), we considered the aggregated variance analysis (also known
as climacogram; [17,47,58]) and the detrended fluctuation analysis (DFA; [59]). Climacogram describes
the variance of the time averaged process as a function of time scale, and allows the analytical
computation of the estimation bias to be included in the model identification and fitting [54].
Climacogram can be used to fit the gHK parameters following for instance the two-stage procedure
suggested by Dimitriadis and Koutsoyiannis [17] and summarized in the Appendix. DFA belongs
to the class of scaled windowed variance (SWV) methods which are similar to the climacogram,
but measure the variance of integrated fGn-like signals by dividing the series into 2Nk = 2 bT/kc
subsamples (or time windows or blocks) of size k resulting from a forward and backward partition of
the time series [10,60], and computing the mean 1

2Nk
∑2Nk

j=1 F2
FA of the subsample variances F2

FA instead

of the variance of the subsample means. F2
FA is the variance of the fluctuations (residuals) from

local trends fitted in each subsample. These local trends are defined as local linear or polynomial
regressions in DFA (a three-order polynomial is used in this study) [10,59–61]. It should be noted
that LRD diagnostics are commonly affected by the presence of seasonal/cyclic patterns [6,62–66];
therefore, the deseasonalization procedure in Equation (1) provides a simple but effective way to
handle this aspect.

To assess the impact of SRD, LRD and nonlinearity on the temporal collective risk, yt are treated
as proxies of insurance claims, and S is defined as

S =
N

∑
j=1

Yj (5)

where Yj is the jth claim proxy (over-threshold flow fluctuation severity), and the total claims S = 0
if N = 0. A classical assumption on the aggregate amount S is to require that N and the individual
claims Yj are independent and identically distributed, and also that N and all claim amounts Yj are
independent to each other; therefore, this study investigates the effects of lack of fulfillment of these
assumptions on S .

3. Results

In this section, we first discuss some general remarks concerning the observed and simulated
time series using simple time series plots and referring to a single sequence of records, and then we
present results concerning the entire data set in more detail.
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3.1. Preliminary Remarks

For the sake of illustration, Figure 3 shows the time series of the first 15 years of daily flows yt and
surrogate signals corresponding to the Elbe River at Magdeburg-Strombruecke (GRDC ID 6340180).

Figure 3 highlights that the stream flow fluctuations are characterized by local (intra-annual) and
global (inter-annual) trends resulting in sequences of flood-rich and flood-poor years [3], which is a
typical behavior for processes showing LRD, as is confirmed by the patterns of the series simulated
by ARFIMA,HK, gHK and IAAFT. In more detail, since in the present context we are not looking for
the optimal model structure, in this study we have used an ARFIMA(5, d, 5) model, which is flexible
enough to describe the dependence structure of the 473 signals even though it is not parsimonious.
For HK, we have used two different estimators of H: the maximum likelihood (ML) estimator [67,68],
and the values obtained by DFA focusing on time scales greater than ≈300 days to account for the
effect of SRD [19] on the estimation of H. Even though HK signals in Figure 3 capture some key
features of the observed sequences, such as inter-annual fluctuations, they are not able to account for
SRD, thus resulting in a lack of local smoothness, which instead characterizes yt. This shortcoming is
overcome by introducing the SRD component. In particular, IAAFT and gHK sequences resemble the
observations very closely, whereas the ARFIMA signal preserves some lack of smoothness at short
terms likely due to the MA components. However, while the agreement with IAAFT is expected as the
resampling algorithm guarantees the almost perfect preservation of the empirical power spectrum and
marginal distribution, the performance of the gHK model is remarkable if we consider that the model
has only three parameters.
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Figure 3. Subsample of normalized and deseasonalized stream flow fluctuations for the Elbe River at
Magdeburg-Strombruecke (GRDC ID 6340180) along with samples simulated by ARFIMA, HK, gHK
and IAAFT. HKML and HKDFA denote HK sequences with H parameter estimated by ML and DFA,
respectively (see text for further details).

As mentioned in Section 2.2, all the approaches used to mimic the sequences yt are not able
to preserve temporal asymmetry. To make a quantitative check, we have computed the temporal
skewness φrev in Equation (4) for the Elbe time series and different lags τ. The significance of
the φrev values was checked by computing the 95% confidence intervals (CIs) under two different
conditions, namely, temporal independence and preservation of the second order properties. Under the
first assumption, CIs have been computed by shuffling (randomizing) the original time series
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(thus, destroying the temporal dependence structure but preserving the marginal distribution)
B = 10, 000 times, then calculating φrev for different lags, and finally computing the empirical
2.5th and 97.5th percentiles over the B values of φrev for each lag. Under the second condition,
the randomization is replaced by IAAFT resampling. Figure 4 shows that the yt series exhibits
significant temporal irreversibility denoted by φrev values characterized by a persistent sign (positive or
negative), and exceeding the CIs at several lags. This conclusion holds for both conditions (lack of
serial correlation, and preservation of second order properties) and is considered a signature of the
nonlinearity of stream flow dynamics. Of course, IAAFT CIs are wider than shuffled CIs owing to
the variance inflation effect of the serial correlation, which however is not sufficient to explain the
observed φrev values. Similar results hold true for the other time series (not shown).
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Figure 4. (a) Coefficient of temporal skewness of normalized and deseasonalized stream flow
fluctuations for the Elbe River at Magdeburg-Strombruecke at several lags; (b) Magnification of
the first 50 lags.

3.2. Climacogram Analysis and DFA: Highlighting SRD and LRD

Figure 5 shows the empirical climacogram (circles) corresponding to the Elbe River signal in
Figure 3, and the theoretical climacograms corresponding to AR(1), HK and gHK with parameters fitted
on the data. The diagram highlights that neither SRD nor LRD models provide a satisfactory fitting,
while their combination describes the empirical behavior very well. To further check the suitability of
gHK and the other methods, we simulated one time series for each model/method (fitted on the data)
and compared the empirical climacograms of the synthetic series with the theoretical climacograms
fitted on the original sequence (Figure 5a). Figure 5b–f shows that ARFIMA, gHK and IAAFT yield time
series whose climacogram is very close to the theoretical gHK and the original empirical one. This result
is expected for IAAFT, which preserves the second order properties by construction, and confirms that
gHK is a parsimonious and effective physically consistent alternative to high-parameterized ARFIMA
models. Of course the empirical climacogram of the HK signal is close to its theoretical counterpart for
the ML estimate of H (Figure 5c), whereas a HK process with H estimated by DFA exhibits remarkable
discrepancies (Figure 5d).

It should be noted that the DFA-based H value was estimated over time scales larger than 102.5

days to account for the crossover of the scaling properties occurring at time scales below ≈1 year
(e.g., [18,19] and references therein). To better understand this point and its effect on modeling, Figure 6
shows the diagrams of the average values of the variance fluctuations F2(k) versus the corresponding
aggregation time scales k. If the signal has a simple scaling behavior F2(k) is expected to scale as kh(2),
where h(m) is the so-called generalized Hurst exponent for the moment of order m, and yields the
Hurst parameter for m = 2 and stationary processes (e.g., [10]). Each panel of Figure 6 shows the
patterns of the ensemble of F2(k) functions corresponding to the 473 time series (observed or simulated).
The crossover in the “observed” F2(k) is well reproduced by gHK and IAAFT. ARFIMA yields some
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discrepancy, whereas HK does not exhibit crossover (as expected). To quantify the crossover, h(2) was
computed for each F2(k) function and two sets of time scales: k < 102.5 and k > 102.5.
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Figure 5. Example of climacograms of observed and simulated series for the Elbe River at
Magdeburg-Strombruecke. Each panel shows empirical climacograms (circles) corresponding to the
observed series (a) and one example series simulated by ARFIMA (b); HK (c,d); gHK (e); and IAAFT (f).
Each panel also shows the biased corrected theoretical climacograms for the first-order autoregressive
AR(1) model, HK, and gHK fitted on the observed series.

Figure 7 highlights that the h(2) values follow two different statistical distributions for the two
classes of time scales, and ARFIMA, gHK and IAAFT are able to reproduce this behavior, whereas
HK models (with ML and DFA estimates of H) do no reproduce the crossover at all (since H ∈ (0, 1),
we refer to Serinaldi [11] and references therein for the interpretation of DFA H values greater than
unity). These results are in agreement with those reported by Kantelhardt et al. [19] with differences
mainly related to a different choice of the crossover time scale, and confirm that the crossover results
from the interplay of SRD and LRD, rather than residual seasonality as is sometimes argued in the
literature [65]. Compared with previous studies, the crossover attribution relies on the use of models
that explicitly account for both SRD and LRD with different degrees of complexity, and allow the
simultaneous reproduction of short and long term dynamics, thus further strengthening conclusions
concerning the nature of the crossover.

The use of ARFIMA and gHK allows also the study of the effect of the simultaneous estimation
of the additional parameters involved in ARFIMA(5, d, 5) and gHK(b, λ, q) models on H estimates
compared with H values resulting from DFA (where H is the only target parameter). The main diagonal
of panels in Figure 8 shows the distributions of H obtained by DFA (HDFA), gHK (HgHK), and ARFIMA
(HARFIMA). The distribution of HDFA values is coherent with DFA results reported in the literature for
different stream flow data sets (e.g., [19,35]). On the other hand, the additional parameters of ARFIMA
and gHK strongly change the H distribution resulting in 60% and 30% of HgHK and HARFIMA values,
respectively, in the range (0.5, 0.55), thus indicating that the simultaneous estimation of SRD and LRD
components tend to favor SRD in several cases; however, this is not surprising when dealing with
finite samples.
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Figure 6. Variance fluctuation functions F2(k) of the 473 flow series versus the corresponding
aggregation time scales k for the observed series (a) and sequences with the same length simulated by
ARFIMA (b); HK (c,d); gHK (e); and IAAFT (f).
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Figure 7. Box plots of the slopes h(2) of the F2(k) functions shown in Figure 6 computed for k < 102.5

and k < 102.5 to highlight the scaling crossover at the time scale k ≈ 102.5.

The pairwise scatter plots and the values of the Kendall correlation coefficient τK in the upper
triangular matrix of panels in Figure 8 show that only HgHK and HDFA are correlated. The spatial
distribution of the H values (lower triangular matrix of panels in Figure 8) shows that HDFA exhibit a
coherent pattern with lower values around the Alpine area and upper Danube, and larger values in the
northern part of the study area and lower Danube. Therefore, persistence tends to coherently emerge
in lower part of the large rivers flowing in the plain areas of northern Europe and lower Danube, and is
less evident in the smaller rivers flowing in the mountainous/hilly areas of southern France, Alps, and
upper Danube. The spatial pattern is less evident or lost for HgHK and HARFIMA as LRD components
in these models are influenced by the SRD part.
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Figure 8. H estimates by gHK, DFA, and ARFIMA: Histograms (main diagonal of panels);
pairwise scatter plots and τK values (upper triangular matrix of panels); and spatial distribution
(lower triangular matrix of panels).

The parameterization of gHK allows further remarks. The upper triangular matrix of panels
in Figure 9 shows that HgHK is positively correlated with λ (which summarizes the variance of the
discrete process at the smaller aggregation scale) and negatively correlated with q (which describes the
scale where LRD behavior emerges). Therefore, signals showing higher persistence tend to show higher
variance at the finest time scale k (for the discrete process). Moreover, the higher the persistence and
the variance (at the finest time scale) the earlier LRD tends to emerge (i.e., the smaller q is) superseding
SRD dynamics. The parameters show no particular spatial patterns (lower triangular matrix of panels
in Figure 8).
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Figure 9. Estimates of gHK parameters H = 1− b/2, λ, and q: Histograms (main diagonal of panels);
pairwise scatter plots, LOESS smoothing curves (red lines), and τK values (upper triangular matrix of
panels); and spatial distribution (lower triangular matrix of panels).

3.3. The Effect of Persistence on Return Intervals’ Statistics

Based on the results above we retained only ARFIMA, gHK and IAAFT for further analysis
concerning return intervals. Denoting Fp the cumulative distribution function of r, the properties of
r are summarized by the diagrams of the negative logarithm of the survival function 1− Fp(r/Rp)

versus r/Rp in log-log plot, as the exponential and Weibull distributions reduce to straight lines,
making the assessment of fitting easier. Figure 10 shows the ensemble of survival functions of the
rescaled return intervals r/Rp corresponding to the 473 time series included in this study for the
percentile threshold p = 0.95 (black circles). Similar results hold for the other thresholds, but with
higher uncertainty owing to the smaller number of over-threshold events (see Figures S1 and S2 in the
supplementary material). Each plot in Figure 10 also shows the standard exponential distribution
(blue line), the Weibull distribution with shape parameter corresponding to the average value of
H (≈0.6) computed by the LSV method for the gHK model (red line), and the ensemble of survival
functions corresponding to time series simulated by different models (grey circles).
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Figure 10. Survival functions of the standardized return intervals between standardized flow values
exceeding the 95% quantile threshold. The axis scales highligth the linear patterns of the exponential
and Weibull distributions making the comparison with the empirical functions easier. In all panels
but (b), black circles indicate the survival functions corresponding to the observed series. In panel
(b) black circles indicate the survival functions corresponding to the observed shuffled (uncorrelated)
data. Grey circles denote survival functions resulting from simulation by Weibull distribution (a);
standard exponential distribution (b); ARFIMA (c); gHK (d); and IAAFT (e). Each panel also shows
theroretical standard exponential distribution (blue line) and Weibull distribution (red line) with shape
parameter equal to the average value of H computed by climacogram.

In more detail, Figure 10a reports the empirical survival functions corresponding to samples
simulated by a Weibull distribution for r with shape parameter related to the H value of the underlying
time series. Figure 10b refers to shuffled time series and highlights the suitability of the exponential
model under the hypothesis of temporal independence. Figure 10c–e refers to the distributions of the
return intervals of extreme events extracted from time series simulated by ARFIMA, gHK, and IAAFT.
For r > Rp, return intervals tend to follow a Weibull distribution and data points collapse, thus
denoting a general dynamic pattern independent from local hydro-climatic factors [32]. It is also
worth noting that the different models reproduce the observed lack of collapse and the departure from
Weibull for r/Rp < 1 due to SRD and discretization effects.

Since past extreme events can strongly affect future events if there is not enough time for recovery,
an important piece of information in flood management is the possible relationship between subsequent
return intervals. These history effects are studied considering the conditional return period Rp(r0),
which is defined as the average of the return intervals (for a fixed threshold) that follow a given r0

value in the sequence of return intervals (e.g., [29]). From a computational point of view, to account
for the skewness of the distribution of r, we considered r0 values within ranges that are identified
by sliding windows with constant width in the logarithmic space. Moreover, given the negligible
difference between the distributions of the standardized return periods r/Rp for the three thresholds,
the corresponding samples were merged to increase the sample size of Rp(r0) within each sliding
window. Under temporal independence, Rp(r0) is equal to the unconditional return period Rp.
Figure 11 shows Rp(r0) versus r0/Rp for the observed and simulated series.
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Figure 11. (a–e) Standardized conditional return periods versus conditioning values of return intervals;
(f) Box plot of standardized conditional return periods R−p /Rp and R+

p /Rp conditioned on the values
of return intervals below (−) and above (+) the median; Results in panel (f) correspond to those in
panels (a–e) but for only two classes of conditioning values.

The persistence results in a tendency of large (small) return periods to follow large (small) return
interval. Therefore, Rp(r0) monotonically increases as r0 increases. Since this behavior characterizes
monofractal and multifractal signals (e.g., [29]), it should be coherent with sequences exhibiting SRD
and LRD. Figure 11 supports this hypothesis: the patterns of Rp(r0) corresponding to observed records
agree with those of ARFIMA, gHK and IAAFT simulations, whereas they differ from those of the
shuffled (uncorrelated sequences) for which Rp(r0) ≡ Rp aside from the uncertainty due to finite-size
effects. As the binning procedure can yield unreliable estimates for short sequences of r values, we also
used a simpler representation considering only two classes of r0, below and above the median of
r values, thus resulting in two conditional return periods R−p (r0) and R+

p (r0). Results are summarized
by box plots in Figure 11, and lead to conclusions similar to those drawn using sliding bins.

A further quantity of interest to estimate the risk of occurrence of an extreme event is the
hazard function wp(t, ∆t) = P[T > t + ∆t|T > t], i.e., the probability of observing at least an event
exceeding the threshold yp within the next ∆t time units, if one exceedance was observed t time
units ago (e.g., [30,41]). The hazard function is related to the probability density function fp and the
cumulative distribution function Fp by the relationships wp(t, ∆t) =

∫ t+∆t
t fp(r)dr/

∫ ∞
t fp(r)dr and

wp(t, ∆t) = [Fp(t + ∆t)− Fp(t)]/[1− Fp(t)]. Figure 12 shows the empirical hazard functions of the
standardized quantity t/Rp (with ∆t = 1) for the observed records (percentile threshold p = 0.95)
and data simulated by ARFIMA, gHK, and IAAFT, along with shuffled uncorrelated data for the sake
of comparison. Each panel also shows the theoretical hazard function corresponding to exponential
and Weibull distributed return intervals (results for the other thresholds are shown in Figures S3
and S4). Compared with the uncorrelated case, SRD and LRD imply that the probability of observing
an exceedance is higher just after the previous event (t� Rp), and lower if a long time has elapsed
after the previous event (t� Rp) (see also [41], for similar results in the context of telecommunication
networks). Dealing with extreme stream flow values, this result contributes to further explain the
clustering phenomenon, i.e. the occurrence of flood-rich and flood-poor periods [3], confirming and
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further strengthening, for a larger database and signals with SRD and LRD, the conclusions reported
by Bunde et al. [69] for five long climate records including the observed annual water levels of the
Nile River (663 years) and the reconstructed stream flow of the Sacramento River (1109 years) and
surrogate data exhibiting linear LRD. Such results can also be used to set up simple but effective flood
alarm system based on return intervals [40,41,70].

Figure 12. Hazard functions based on the standardized return intervals between standardized flow
values exceeding the 95% quantile threshold. Similar to Figure 10, in all panels but (b), black circles
indicate the hazard functions corresponding to the observed series. In panel (b) black circles indicate
the hazard functions corresponding to the observed shuffled (uncorrelated) data. Grey circles
denote hazard functions resulting from simulation by Weibull distribution (a); standard exponential
distribution (b); ARFIMA (c); gHK (d); and IAAFT (e). Each panel also shows theroretical standard
exponential hazard functions (blue line) and Weibull hazard functions (red line) with shape parameter
equal to the average value of H computed by climacogram.

3.4. The Effect of Sampling Uncertainty of Return Intervals’ Statistics

Because of computational burden, the analyses on return interval in Section 3.3 are based on
the comparison of observed time series and one set of sequences of the same size simulated by each
model/method. In other words, one simulated time series is considered for each observed one.
The rationale is that a set of 473 simulated series gives an average picture of the return intervals
resulting from the models considered, since positive and negative at-site discrepancies are smoothed
out, whilst systematic biases remain. However, since we deal with return intervals of extreme events,
which are a few by definition, relatively high uncertainty is expected especially for high values of H.
To explore the impact of the sampling uncertainty, we selected two time series with H > 0.85 flagged
as “pristine” corresponding to 45 years of records from 1968 to 2012 for the French rivers Braye at
Valennes (GRDC ID 6123220) and Escotais at Saint-Paterne-Racan (GRDC ID 6123230).

Figure 13 shows the diagrams of the negative logarithm of the survival function 1− Fp(r/Rp)

versus r/Rp in log-log plot for the two observed series and a set of 100 series simulated by gHK,
ARFIMA, and IAAFT, and 95% threshold. The diagrams show that the bias characterizes all simulated
series when it does exist, thus confirming that the use of single realization for each location can provide
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a fair qualitative picture of the performance of each model in reproducing the observed patterns.
Of course, the uncertainty increases as the threshold increases (Figures S5 and S6), and its magnitude
is comparable to the inter-station variability (Figure 10, Figures S1 and S2).

Figure 13. Survival functions of the standardized return intervals between standardized flow values
exceeding the 95% quantile threshold. Black circles correspond to the observed series while grey circles
indicate an ensemble of 100 simulated time series with the same length of the observed ones. Panels
(a–c) refer to the Braye River while panels (d–f) to the Escotais River. The same interpretation of
Figure 10 applies.

The uncertainty is even higher for the conditional return periods Rp(r0). Figure 14 shows
the patterns of Rp(r0) versus r0/Rp for the observed series, an ensemble of 100 simulated series
and the corresponding median pattern. It is worth noting that the magnitude of the sampling
variability is similar to that of the inter-station variability (Figure 11). In spite of the large variability,
single realizations generally depart from the observed pattern when a systematic bias does exist.
Therefore, this confirms the validity of the analysis in Section 3.3, but on the other side it also highlights
that the size of available records might be insufficient to draw reliable conclusions on the properties of
extremes. A fair communication of this uncertainty is paramount for a well-informed decision process.

3.5. The Effect of Persistence on Collective Risk

As mentioned in Section 1, a common assumption in the computation of S is the independence
between Yj and N. Here, losses Yj denote the deseasonalized flows exceeding yp and N is the number
of such exceedances over 365-day time windows. The relationship between Yj and N is studied by
the Kendall correlation coefficient τK between N and the average value of the deseasonalized flow
intensities 1/N ∑ Yj = S/N. Box plots in Figure 15 show that SRD and LRD introduce significant
correlation between N and S/N. However, ARFIMA, gHK, and IAAFT tend to overestimate the
strength of this relationship. Since the three methods yield similar results, and IAAFT signals differ
from the observed sequences in the statistics of order higher than two, we argue that the difference
should be mainly due to the temporal skewness or higher order properties, and thus to nonlinear
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dynamics that are not captured by linear models and can be related to multifractality/varying scaling
behavior (e.g., [19,71,72]).
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Figure 14. Standardized conditional return periods versus conditioning values of return intervals. Blue
points correspond to the observed series, grey circles denote to an ensemble of 100 simulated time
series with the same length of the observed ones, and red points denote the simulated median patterns.
Panels (a–c) refer to the Braye River while panels (d–f) to the Escotais River. The same interpretation of
Figure 11 applies.

The correlation between Xj and N also impacts on the distribution of S . For example, Figure 16
shows the empirical cumulative distribution function (ECDF) of S for the Escotais River time series
discussed in the previous sections along with the corresponding ECDFs resulting from 100 time series
simulated by ARFIMA, gHK, IAAFT, and shuffling procedure.

The agreement between autocorrelated sequences and the evident discrepancies resulting from
the removal of the temporal correlation show that SRD and LRD imply both events’ clustering and
the increase of the average intensity of such events. Indeed, under SRD and LRD, the distribution of
S exhibits a spike of probability at zero corresponding to years with no exceedances and an upper
tail heavier than under independence, describing the tendency of events in flood-rich periods to be
more extreme than expected under random (Poissonian) arrival dynamics. However, as mentioned
above, ARFIMA, gHK, IAAFT miss some piece of information, thus resulting in expected residual
discrepancies (see also Figure S7 for the case of the Braye River).

For a quantitative assessment involving the entire data set, ECDFs are summarized by a set
of suitable statistics: mean, standard deviation, and four quantiles xp, p ∈ {0.25, 0.50, 0.75, 0.90}.
Figure 17 shows box plots of these summary statistics for observations, shuffled data, and data
simulated by ARFIMA, gHK, IAAFT, and 95% threshold (see Figures S8 and S9 for the other thresholds).
Data drawn from parametric models tend to underestimate the average of S , which in turn is
accurately reproduced by shuffled data and IAAFT, as these series preserve almost exactly the marginal
distribution, apart from random fluctuations related to the resampling procedures. As expected,
correlation has a dramatic effect on the variability (Figure 17b); ARFIMA, gHK, and IAAFT tend to
overestimate the observed standard deviation of S , but yield results similar to each other. Box plots of
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quantiles (Figure 17c–f) confirm that the patterns in Figure 16 and Figure S7 are general, and highlight
that the ECDFs of shuffled data cross the ECDFs of observations and simulations around the x0.75

quantile. Below this quantile, the ECDFs of shuffled data are stochastically dominated by ECDFs of
observations and simulations because of the spike of probability at zero due to years with no events,
while above the 75% quantile we have the opposite behavior because of the higher variability of the
autocorrelated signals, which results in increased clustering and larger S values.
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Figure 15. Box plots of the Kendall correlation coefficient τK between X̄ = S/N and N for observed and
simulated data referring to flow values exceeding the three quantile thresholds. Shaded area denotes
the 95% confidence interval around the zero value for the average sample size of the pairs (X̄, N).
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Figure 16. Illustrative ECDFs of S for observed and simulated data referring to the Escotais River. Grey
lines denote an ensemble of 100 curves resulting from time series simulation.

For the above summary statistics, Figure 18 shows the spatial distribution of the difference
between modeled and observed values reported in Figure 17. We denote this difference as bias even
though this term is not strictly correct because we simply compare the observed values with those
resulting from a single simulated sequences for each location. Nonetheless, if the discrepancies are
random, we expect a spatial random patterns of the differences, while we expect coherent spatial
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patterns if the models show a systematic bias. Figure 18 shows that ARFIMA and gHK underestimate
the mean value of S especially for the Alpine basins, Garonne, and Loire, thus denoting a systematic
lack of fit for time series in that area. The bias of standard deviation does not show particular
spatial patterns. ARFIMA, gHK, and IAAFT underestimate x0.25 in the Alpine basins and Garonne.
No particular spatial patterns are evident for the x0.50 and x0.75 bias, which is generally negative
for ARFIMA, gHK, and IAAFT. These models yield unbiased or slightly positive biased results
for x0.90 with no specific spatial pattern. Similar results hold for the 98% and 99% thresholds (see
Figures S10 and S11).
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Figure 17. (a–f) Summary statistics of S for the 473 time series included in this study, and the 95%
quantile threshold.

Figure 18. Cont.
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Figure 18. Spatial distribution of bias of summary statistics reported in Figure 17. Positive (negative)
values denote model overestimation (underestimation).

4. Conclusions

In this study, we have investigated the properties of daily stream flow fluctuations exceeding high
thresholds analyzing 473 time series recorded in the major basins in Europe, and comparing the results
with those corresponding to synthetic time series simulated by a set of linear models. The aim was
to better understand some aspects concerning the occurrence and magnitude of extreme flow values
and their relationship with the properties of the complete time series in a collective risk perspective,
in order to pave the way for the development of modeling strategies based on the efficient use of all the
available information and not only a limited number of extreme events. Results can be summarized
as follows:

1. Extending previous analyses [19] and resorting to recently proposed tools such as bias-corrected
climacograms and gHK model (merging SRD and LRD), we strengthen the empirical evidence that
the crossover in DFA patterns and the behavior of empirical climacograms of mean daily stream
flow signals can be attributed to the interplay of SRD and LRD rather than residual seasonality
as sometimes argued in the literature. This conclusion is confirmed by the results corresponding
to synthetic signals showing only LRD (simulated by HK model) or SRD and LRD (simulated by
ARFIMA and gHK models and the IAAFT resampling method). In particular, gHK seems to be
a parsimonious, flexible and physically consistent option compared with highly-parameterized
ARFIMA models. However, since all these models/methods are linear, they can reproduce flow
characteristics up to the second order, thus excluding the observed temporal asymmetry, which can
be measured by third-order temporal coefficient of skewness. Time irreversibility provides further
evidence for nonlinearity of stream flow dynamics [73] , thus confirming by a different analysis
the stream flow nonlinear behavior recognized by Kantelhardt et al. [19] by multifractal DFA.
Our analyses also show that the recognition of possible LRD requires additional care and need
to account for the effect of SRD, and use suitable processes as benchmark for comparisons and
validations of empirical results.

2. Focusing on the behavior of the return intervals between over-threshold values, our results further
confirm the behavior previously highlighted by e.g., Bunde et al. [69], and Bogachev and Bunde [32]
for less extensive stream flow data sets. Namely, return intervals tend to follow a sub-exponential
(Weibull-like) distribution, implying a higher (smaller) probability of observing long (short)
return intervals longer (shorter) than expected under independence (i.e., Poisson process with
exponentially distributed inter-arrival times). Moreover, the statistics of conditional return periods
(expected return intervals) show that the sequence of return intervals is no longer independent,
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meaning that short (long) return intervals tend to follow short (long) return intervals. This partly
explains the so-called clustering of extreme events observed in many natural phenomena [69],
and has important practical consequences. For example, reviewing factors influencing private flood
mitigation behavior, Bubeck et al. [74] highlighted that experience with floods is often considered
to have a great impact on the recognition of risk, resulting for instance in a positive relationship
between individual flood risk perceptions in the Netherlands and demand for flood insurance [75].
Moreover, an important role is also played by the severity of the experienced negative consequences
along with the timing of the previous experience, since it can be expected that floods experienced
in the distant past have only a limited influence on individual risk perceptions and mitigation
behavior later [74]. In this respect, Bubeck et al. [74] highlighted that the International Commission
for the Protection of the Rhine (ICPR) estimates that flood awareness mostly diminishes within
seven years after a flood and that only catastrophic disasters are remembered in the long term [76],
and that flood damage is significantly lower in areas where people have recently experienced a
flood event, which is attributed to a better preparedness of the population in the direct aftermath of
a flood [77–79]. The better understanding of the causes of flood clustering is therefore paramount
to set up effective mitigation strategies that are not affected by the flood risk perception related to
the alternation of flood-rich and flood-poor periods.

3. From a collective risk perspective, the previous remarks are further strengthened by the empirical
evidence of the positive correlation of the average intensity of extreme flows and the number of
events over one-year time windows, implying that years that are more active in terms of number
of events tend to exhibit more extreme events also in terms of average magnitude. This behavior
results in distributions of the cumulated flow (which can be seen as a proxy of the potential
annual losses) characterized by a spike of probability at zero, which describes the probability of
years with no events, and a heavier upper tail, which indicates a probability of more extreme
annual losses larger than expected under independence. Concerning these aspects, the linear
models used in this study only partly reproduce the observed behavior. In particular, since IAAFT
preserves almost exactly both marginal distribution and the empirical power spectrum, we argue
that nonlinearity might be the cause of the observed discrepancies between observations and
simulations. However, other factors such as river training, dam building and operation, and other
anthropogenic interventions cannot be excluded. Therefore, we suggest repeating the analyses
reported in this study on data sets of (reasonably) natural stream flow records such as those of the
U.S. Geological Survey Hydro-Climatic Data Network (HCDN-2009; [80]).

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/8/4/152/s1, Table S1
(List of stream gage stations used in the analyses), Figures S1–S11.
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Appendix

The gHK parameters can be estimated following a two-stage procedure based on climacogram [17].
It consists of minimizing two fitting errors:

εs =
T/2

∑
k=1

{
E[γ̂(∆k)]− γ̂

(∆)
d (k)

E[γ̂(∆k)]

}2

(A1)
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εm = max
k=1,...,T/2

∣∣∣∣∣E[γ̂(∆k)]− γ̂
(∆)
d (k)

E[γ̂(∆k)]

∣∣∣∣∣ (A2)

where ∆ denotes the temporal resolution of the observed discrete process (one day, here), γ̂
(∆)
d (k) is

the empirical climacogram estimated from the data, and E[γ̂(∆k)] is the expected one estimated from
the model

γ̂
(∆)
d (k) =

1
T − 1

T

∑
i=1

1
k

 ki

∑
l=k(i−1)+1

Y(∆)
l

− 1
T

T

∑
i=1

Y(∆)
l

 (A3)

E[γ̂(∆k)] =
1− γ(T∆)/γ(k∆)

1− k/T
γ(k∆) (A4)

in which γ is the gHK climacogram

γ(m) =

2λ

((
m
q
+ 1
)2−b

− (2− b)m
q

− 1

)

(1− b)(2− b)
(

m
q

)2 (A5)

with γ(0) = λ. The LSV (least square based on variance) method proposed by Tyralis and
Koutsoyiannis [12] for HK is used to obtain preliminary estimates of λ and b = 2− 2H, which are
used as initial values to minimize εs in Equation (A1); finally, εm (Equation (A2)) is minimized for fine
tuning [17].
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