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Abstract: Statistical modeling of hydrological extremes is significant to the construction of hydraulic
engineering. This paper, taking the Yingluoxia watershed as the study area, compares the annual
maximum (AM) series and the peaks over a threshold (POT) series in order to study the hydrological
extremes, examines the stationarity and independence assumptions for the two series, and discusses
the estimations and uncertainties of return levels from the two series using the Generalized Extreme
Value (GEV) and Generalized Pareto distribution (GPD) models. For comparison, the return levels
from all threshold excesses with considering the extremal index are also estimated. For the POT
series, the threshold is selected by examining the mean excess plot and the stability of the parameter
estimates and by using common-sense. The serial correlation is reduced by filtering out a set of
dependent threshold excesses. Results show that both series are approximately stationary and
independent. The GEV model fits the AM series well and the GPD model fits the POT series well.
The estimated return levels are fairly comparable for the AM series, the POT series, and all threshold
excesses with considering the extremal index, with the difference being less than 10% for return
periods longer than 10 years. The uncertainties of the estimated return levels are the highest for the
AM series, and next for the POT series and then for all threshold excesses series in turn.
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1. Introduction

A significant amount of attention has been paid to hydrological extreme events, which are likely
to increase in frequency in most regions of the world [1–3]. There are two common ways to study
the so called extreme events: one is the annual maximum series (AM) and the other is the peaks
over a threshold (POT) series [4–7]. Rao and Hamed [8] showed that the AM series is statistically
more efficient than the POT series when λ is small ( λ ă 1.65 ), where λ is the mean number of peaks
per year included in the POT series. However, as only the peak flow in each year is considered, the
use of the AM series may involve some loss of information. For example, the second or third peak
within a year may be greater than the maximum flow in other years, and yet they are ignored [6]. This
situation is avoided in the POT series where all peaks above a certain threshold value are considered,
and thus more information about the extremes would be involved in the analysis [6]. In the study of
Madsen et al. [9], they found that the POT model is more advantageous than the AM model in cases
where only short records are available. The POT series also has some obvious disadvantages, and the
major one is that the flood peaks might not form an independent time series, since some flood peaks
may occur on the recession curves of the preceding flood peaks [10]. Thus, both series are used to
indicate high flow extremes and compared to each other in this study.
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Plenty of probability distribution models, e.g., the Log Pearson Type III (LP3), Loglogistic,
Lognormal, Burr, Weibull, Gamma, Generalized Extreme Value (GEV) model, and the Generalized
Pareto distribution (GPD) are commonly used in fitting extreme events [11–13]. Rahmani et al. [14]
used the Weibull distribution to calculate the extreme precipitation frequency in Kansas and its
adjacent states. Du et al. [15] and Xia et al. [6] used the GEV and GPD models to estimate the historical
extreme precipitation frequency in the Haihe and Huaihe river basins of China. Benyahya et al. [12]
compared five probability distributions to identify the appropriate modes for providing the most
accurate seasonal maximum precipitation in southern Quebec, Canada. Some studies show that the
GEV or GPD model provides optimum fitness to extreme events for comparison studies [4,12,16],
while others show different results [13,17].

Most of the extreme value models have been obtained through mathematical arguments that
assume an underlying process consisting of a sequence of independent and stationary variables.
However, for the types of data to which extreme value models are commonly applied, such assumptions
are usually unrealistic [18]. Ling et al. [19] detected an abrupt change in 1993 in the high-flow index
of the annual runoff for the Tarim River basin over the last 50 years. Chen et al. [20] found a change
point in 1991 for the annual maximum flood flow in southern China. Although the usual extreme
value models are still applicable in the presence of non-stationary and temporal dependence [18], the
estimations of the model parameters and return levels based on model fitting would be suspicious
without considering these assumptions [4,20–23]. Therefore, there is a need to investigate the validity of
the stationarity and independence assumptions for the series before probability modeling is performed.

This study uses the AM and the POT series to indicate the hydrological extremes for the Yingluoxia
watershed, and mainly focuses on the following issues: (1) the selection of the threshold for the
POT series and a comparison of the AM and POT series; (2) statistical tests of the stationarity and
independence assumptions for the AM series; and (3) estimations and uncertainties of the return levels
for both series using the GEV and GPD models.

2. Study Area and Data Description

The Heihe River basin, the second largest inland river basin in China, has received a great deal of
attention from the public and from water authorities. Based on the available literatures, most of the
previous studies are mainly focused on the mean flows [24,25]. For better disaster management and
mitigation in general, it is important to be aware that understanding the changes in flow extremes is
more important than understanding the changes in the mean pattern [26].

The Heihe River basin, which originates from the Qilian Mountains, is located between
37˝ N–42˝ N latitude and 97˝ E–102˝ E longitude. The Yingluoxia watershed is the upper reach
of the Heihe River basin (Figure 1). The area of this watershed reaches 10,009 km2 and its altitude
ranges from 3300 m asl to 1700 m asl. About 50% of the total runoff at the watershed outlet is generated
in the mid-mountain zone (>2900 m asl) [27]. With the decreasing of altitude, the annual mean
precipitation decreases from 400 mm to 180 mm, and the annual mean temperature increases from
´3 ˝C to 7 ˝C. There are three hydrological stations in the watershed. The locations and the basic
information for three stations are shown in Figure 1 and Table 1. The flow data of the 36-year, 48-year,
and 66-year flow volumes for the stations are obtained from the National Hydrological Statistical
Yearbook, and they are regularly checked and can be regarded to be of good quality. The annual mean
flow is 13 m3/s, 23 m3/s, and 52 m3/s for QL, ZMSK, and YLX stations, respectively. As is shown
by Figure 2, the inter-annual distributions of monthly flow are quite uneven, highly correlated with
the temporal distributions of precipitation in the basin. Nearly 80% of precipitation is concentrated in
June–September, with the largest frequencies concentrated in July. The annual maximum flow usually
occurs in July or August.
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Figure 1. Locations of the Heihe River basin and the Yingluoxia watershed in China. 

 
Figure 2. Inter-annual distributions of monthly mean flow in the Yingluoxia watershed. 

Table 1. Basic information for three hydrological stations and their statistics on the annual flow in the 
Yingluoxia watershed. 

Station Name  
(Abbreviation) 

Longitude Latitude 
Elevation

(m asl) 
Data 

Period 
Data 

Length 
Annual 

Mean (m3/s) 
Cv Skewness 

Qilian (QL) 100°15′ E 38°11′ N 2787 1967–2011 36 13.00 1.11 2.67 
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Figure 1. Locations of the Heihe River basin and the Yingluoxia watershed in China.
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Figure 2. Inter-annual distributions of monthly mean flow in the Yingluoxia watershed.

Table 1. Basic information for three hydrological stations and their statistics on the annual flow in the
Yingluoxia watershed.

Station Name
(Abbreviation) Longitude Latitude Elevation

(m asl)
Data

Period
Data

Length
Annual

Mean (m3/s) Cv Skewness

Qilian (QL) 100˝151 E 38˝111 N 2787 1967–2011 36 13.00 1.11 2.67
Zhamushike (ZMSK) 99˝591 E 38˝141 N 2810 1957–2011 48 23.16 1.16 3.52

Yingluoxia (YLX) 100˝111 E 38˝491 N 1700 1944–2011 66 51.64 1.07 3.21

Note: For QL station, the data for 1988–1989, 1992, 1997, and 2001–2005 are unavailable. For ZMSK station, the
data for 1988–1989, and 2001–2005 are unavailable. For YLX station, the data for 1988–1989 are unavailable.
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3. Methodology Description

3.1. Probability Modeling

The probability distribution of the AM series can be statistically fitted by making use of the
family of extreme value distributions referred to as the Generalized Extreme Value (GEV), which was
introduced by Jenkinson [28]. GEV distribution has been widely used in the analysis of hydrological
extremes because of its flexibility in representing three asymptotic types of extreme value probability
distributions [4,16]. The cumulative probability function (CDF) for GEV distribution is given by:

F pxq “ expr´
ˆ

1` ξ
x´ µ

σ

˙´ 1
ξ

s ξ ‰ 0 (1)

where µ, σ and ξ are the location, scale and shape parameters, respectively. In the case ξ = 0, the
distribution matches the Extreme Value type 1 (EV1) or Gumbel distribuon.

The POT series usually states that excesses from any sample over a high threshold may follow
such distributions as exponential or Generalized Pareto distributions (GPD). Here, we choose the GPD
to fit the POT series due to its flexibility in representing the different types of extreme value probability
distributions. The theoretical development of the GPD can be found in Coles [18]. The CDF for the
GPD distribution is given by:

G pxq “ 1´
ˆ

1` ξ
x´ u
σu

˙´ 1
ξ

ξ ‰ 0 (2)

where u is the location parameter, also known as the threshold; x ´ u is the series of exceedances over
the threshold. σu and ξ are referred to as the scale and shape parameters, respectively. For a given
shape parameter, the scale parameter controls the mean of the exceedances above the threshold. The
value of u must be specified before fitting Equation (2), since the GPD is a distribution of the threshold
excesses [18]. The shape and scale parameters in GEV and GPD distributions are estimated by the
maximum likelihood estimation (MLE) [29,30].

The Kolmogorov-Smirnov (K-S) test and the Anderson-Darling (A-D) test are performed for
evaluating the suitability of selected probability distributions. Assume a random sample, x1, ¨¨¨xn ,
from some distribution with CDF, F(x). The empirical CDF is Fn(x) = 0, i/N0, 1 for x < x1, xi ď x and x
ď xi+1, x ě xn, where N0 is the number of observations. The statistic Dmax in the K-S test is defined as:

Dmax “ max1ďiďN0

„

F pxiq ´
i´ 1
N0

,
i

N0
´ F pxiq



(3)

If Dmax ą Dα
n (the critical value at the significance level of α), then the null hypothesis that the

data follows a specified distribution is rejected. The K-S test tends to be more sensitive near the center
of the distribution, while the A-D test gives more weight to the tails. The Anderson-Darling statistic,
A2 , is defined as:

A2 “ ´N0 ´

n
ÿ

i“1

p2i´ 1q
!

lnF
´

xpiq
¯

` ln
”

1´ F
´

xpn´i`1q

¯ı)

N0
(4)

where xp1q, ¨ ¨ ¨ , xpnq are the ordered observations, in an increasing order. If A2 ą A2
α (the critical

value at the significance level α), the hypothesis regarding the distributional form is rejected [31].

3.2. Stationarity and Independence Tests

We examine the stationarity and independence assumptions by estimating the features of the
change points in mean, monotonic trends, and autocorrelations for the series. The presence of
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change-points can have a significant impact on the results of the monotonic trend analyses [20],
and we first perform a change-point analysis. The Pettitt test [32], a non-parametric test based on a
version of the Mann-Whitney statistic that allows testing whether two samples are from the same
population, is used to test the high flow extremes data for abrupt changes in the mean. The test statistic,
Ut,n, in the Pettitt test is given by:

Ut,n “ Ut´1 `

n
ÿ

j

sgnpxt ´ xjq pt “ 2, 3, ¨ ¨ ¨ , nq (5)

and k ptq “ max1ďtďn |Ut,n| represents the most significant change point t. n means the data record

length. If k ptq ă
b

´
pn3`n2qln p

2
6 , then the null hypothesis of Pettitt’s test, with the absence of a

changing point, will be accepted, at a specified significance level p such as 0.05 (0 ă p ă 1 ).
The presence of monotonic trends of time series are investigated by means of one of the most

widely used tests, the Mann-Kendall test [33]. This test is non-parametric, making it more robust
against outliers and departures from normality, which usually occurs in hydrological datasets. In the
Mann-Kendall test Zc is given by

Zc “

$

’

’

&

’

’

%

s´1?
varpsq

s ą 0

0 s “ 0
s`1?
varpsq

s ă 0
s “

n´1
ÿ

i“1

n
ÿ

j“i`1

sgnpxj ´ xiq (6)

where n is the data record length, and xi and xj are the sequential data values. When |Zc| ą z1´α{2, in
which z1´α{2 are the standard normal deviates and α is the significance level, H0 (no significant
trend in dataset) will be rejected. Q, the gradient of Kendall, shows the extent of trends.
It means an upward trend when Q is positive and a downward trend when it is negative, where
Q “ Median

´

xj´xi
j´i

¯

( 1 ă i ă j ă n).
We employ the autocorrelation test by examining the autocorrelation coefficients to check the

assumption of independence for the data series. When the absolute values of the autocorrelation
coefficients of different lag times, for a time series with n observations, are not larger than the typical
critical value, i.e., 1.96{

?
n corresponding to the 0.05 significance level, the observations in the time

series can be regarded as being independent from each other.

3.3. Return Level Estimations

When we explore the extreme events, what extreme events might occur on 100-year or even longer
return periods given the much shorter period data available is another active topic [5,22]. Suppose
that a GEV with parameters µ, ξ and σ is a suitable model for the AM series, the estimations of high
flow extremes, x, at a given return period, T, can be obtained from

x “ µ´
σ

ξ

«

1´
ˆ

´ln
ˆ

1´
1
T

˙˙´ξ
ff

ξ ‰ 0 (7)

Suppose that a GDP with parameters ξ and σu is a suitable model for the exceedances of a
threshold, u. The estimations of high flow extremes xm, which is exceeded on average once every m
observations, can be written as:

xm “ u`
σu

ξ
r

´

ζuq
ξ ´ 1

ı

ξ ‰ 0 (8)

in which ζu “
k
n , k is the exceedance data length (for example, k = 32 for QL station shown in Table 2)

and n is the total observations in day (n = 36 ˆ 365 = 13140 for QL station). For the POT series, the
return period represents the average interval between the high flows that exceed threshold value, and
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thus the m-observation return level, xm, is constructed. It is should be noted that there is an important
distinction in meaning between the return periods computed from the AM and POT series. In the
AM series, the return period is the average interval, in which a flood of a given size will occur as an
annual maximum; while in the POT series, the return period represents the average interval between
floods of a given size, regardless of their relation to the year or any other period [34]. It is often more
convenient to give return levels on an annual scale, so that the T-year return level is approximately the
level expected to be exceed once every T years. If there are Ny observations per year, this corresponds
to the m-observation return level, where m = T ˆ Ny [18]. The flow data is daily in this study, so the
T-year return level corresponds to the m-observation return level with m = 365 ˆ T. In this case, we
finally get the return levels at a T-year return period instead of at an m-observation return period.

Table 2. Statistics of the AM and POT series for the three stations in the Yingluoxia watershed.

Station
AM POT

Sample
Size

Maximum
(m3/s)

Minimum
(m3/s)

Mean
(m3/s)

Threshold
(m3/s)

Sample
Size Minimum (m3/s)

Mean
(m3/s)

QL 36 188 (1974) 47 (1994) 97 80 32 81 (1990) 109
ZMSK 48 336 (1960) 87 (1985) 205 170 45 171 (1961, 1986, 2009) 228
YLX 66 845 (1952) 166 (1973) 384 350 45 351 (1981) 467

Note: The year shown in the bracket is when maximum and minimum flows occurred.

4. Results and Discussion

4.1. Threshold Selection and POT Series

Threshold selection for the POT series is not an easy task. Too low a threshold value is likely
to violate the asymptotic basis of the model, leading to bias, while too high a threshold value will
generate a few excesses, with which the model can be estimated, leading to high variance [18]. Scarrott
and MacDonald [35] provided a comprehensive review of threshold selection approaches. In this
article, combined with the consideration of the physical meanings of “high flow extremes”, we mainly
employ two commonly used methods for the selection of the optimum threshold [5,36,37]: one is
examining the mean excess plot carried out prior to model estimation, and the other is assessing the
stability of parameter estimates based on model fittings across a range of different thresholds.

The mean excess plot uses the expectation of GPD excesses, E(X ´ u|X > u = σµ/(1 ´ ξ), as a
diagnostic, defined for ξ <1 to ensure the mean exists. For any higher x > u, the expectation becomes
E pX´ x |X ą xq “ pσu ` ξxq { p1´ ξq , which is linear in x with gradient ξ{ p1´ ξq and intercept
σu{ p1´ ξq . Empirical estimates of the sample mean excesses are typically plotted against a range
of thresholds. The threshold is chosen to be the lowest level where all the higher threshold based
sample mean excesses are consistent with a straight line [35]. Figure 3a presents the mean excess
plot with 95% confidence intervals (CIs) for the daily flow data at YLX station, from the extRemes
package in R. It is noted that the 95% CIs in Figure 3 are not quite right since this figure is based
on the threshold exceedance data, not the POT data series. From Figure 3a, four fitted mean excess
straight lines are detected corresponding to thresholds of 100 m3/s, 350 m3/s, 420 m3/s, and 650 m3/s.
The threshold of 100 m3/s gives 3089 exceedances, corresponding to as many as 47 high flow extremes
occurring per year on average during the period from 1944 to 2011, which deviates from the common
cognition on extreme events. Above 650 m3/s, less than three exceedances are included, which are
too few data points to make meaningful and reliable inferences. For thresholds of 350 and 420 m3/s,
both mean excesses are presented as straight lines. While, there are relatively larger deviations from
the fitted plot, and greater uncertainties on the estimated return levels for the threshold of 420 m3/s.
Figure 3b shows the estimated shape parameter stability plot across threshold values ranging from
100 to >500 m3/s. The shape parameter should be constant above some threshold levels, where
asymptotics begin to apply [16]. From Figure 3b, we find approximately constant estimates for the
shape parameter above the threshold of 350 m3/s, and a very obvious decreasing or increasing
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trend is presented for the parameter estimates after the threshold of 420 m3/s, together with wider
95% CIs. Considering the points mentioned above, the threshold of 350 m3/s, yielding a threshold
exceedance with 82 data, is finally identified for YLX station. Similar procedures are performed
for QL and ZMSK stations, and thresholds of 80 m3/s and 170 m3/s are finally identified for the
two stations. This assessment is largely subjective. Northrop and Coleman [38] and Wadsworth [39]
reduce this subjectivity using a likelihood-based procedure to produce complementary plots that
enable an automated threshold selection.
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Figure 3. (a) The mean excess plot for high flow data at Yingluoxia station (The solid jagged line
is the mean excess plot, with 95% CIs shown as dashed lines. Blue solid lines correspond to the
thresholds u = 100, 350, 420, and 650 m3/s. Vertical dashed lines mark the number of exceedances
corresponding to these thresholds); (b) Threshold stability plots for shape parameter for the high flow
data at Yingluoxia station (Circles are maximum likelihood estimates, with 95% CIs shown as vertical
lines. Two thresholds u = 350 and 420 m3/s are shown by vertical dashed lines).

Figure 4 shows the daily flow time series against series at Lag 1 for the three stations, and the
red lines in the plots represent the thresholds. Above the threshold, a short-term serial correlation
(although it is not strong) seems to exist, indicating the presence of extremal dependence. There are two
commonly used ways to deal with this problem. One is filtering out a set of approximately dependent
threshold excesses, and another is estimating the extremal index [22]. We use the first approach to
obtain an independent series. Considering the specific climatic and geographic conditions in one
region, there is a criterion in the threshold exceedance series to meet the independence condition, and
the successive high flow extremes should be separated by at least as many days as five plus the natural
logarithm of the square miles in the basin area [40]. The three hydrological stations in the study area
control basin areas of 3000–10,009 km2, so the successive high flow extremes should be separated by at
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least as 12–13 days. Only the maximum flow is retained if successive high flow extremes occurred
within the 12–13 days interval, and the rest are filtered out. We then get the POT series from the above
declustering scheme with sample sizes of 32, 45, and 45 for QL, ZMSK, and YLX stations, respectively.
Figure 5 shows the threshold exceedance series and the POT series. From Figure 5, no obvious trends
or serial correlations are found for the POT series, which means that the POT series can be regarded as
approximately independent and stationary from graphic diagnosis.
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Figure 4. Plots of flow time series against series at Lag 1 at the three stations in the Yingluoxia
watershed. The red lines in the plots represent thresholds above which events are classified as high
flow extremes (The corresponding thresholds are 80, 170, and 350 m3/s, respectively, for QL (a), ZMSK
(b), and YLX (c) stations).
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Figure 5. The threshold exceedance series (blue circles), the POT series (red solid dots), and the AM
series (black rectangle) for the three stations in the Yingluoxia watershed.
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4.2. AM Series and Stationarity and Independence Tests

The AM series can be directly derived from the historical flow records, which consists of the
maximum flow from each recorded year. The samples of the AM and POT series for the three stations
are shown in Figure 5. The statistics of these two series are listed in Table 2. It is apparent that the
numbers of high flow extremes in the POT series are not consistent with those in the AM series. For
example, 31 out of 66 extremes in the AM series are not included in the POT series for YLX station,
while lots of the second and even the third largest extremes from some years are included in addition
to the largest one. The means of the POT series are 10%–18% higher than those of the AM series, which
suggests that the POT series does take more extreme information into account in this study.

The results of stationarity and independence tests for the AM series are shown in Table 3.
The calculated k ptq values in the Pettitt test are 69, 119, and 139 for QL, ZMSK, and YLX stations,
respectively. These values are smaller than those of the critical values at the 0.05 significance level,
which means that the null hypothesis, with the absence of a change point, will be accepted. Since
no statistically significant change points are detected, we perform a monotonic trend analysis on
the entire record of the AM series directly. The absolute values of test Zc , in the Mann-Kendall
test are smaller than the value of the normal standard deviations, z1´α{2 (1.96 at α “ 0.05 ), which
means that no significant trends are detected for the AM series at the 0.05 significance level. From
the autocorrelation coefficients for Lag1 and their corresponding 95% CIs, the AM series for the three
stations are not highly autocorrelated and do not violate the assumptions of independence. The above
analysis suggests that the independence and stationarity assumptions are approximately satisfied for
the AM series, i.e., the subsequent model fitting is straightforward, without requiring consideration of
serial dependence or the parameter changes in probability models through time.

Table 3. Results of the stationarity and independence tests for the AM series in the
Yingluoxia watershed.

Station
Change Point Trend Independence Test

k ptq Critical Value (P = 0.05) Zc Q Lag 1 Critical Value(α = 0.05)

QL 69 171.7 ´1.10 ´0.05 ´0.08 0.33
ZMSK 119 263.5 ´0.45 ´0.39 ´0.05 0.28
YLX 139 423.6 ´0.23 ´0.25 ´0.11 0.24

4.3. Frequency Analysis for High Flow Extremes

4.3.1. Probability Modeling

We fit the AM series using the GEV model and fit the POT series using the GPD model. The results
of goodness-of-fit, together with the estimated optimal parameter values and standard errors (in the
brackets), are shown in Table 4. The values of the estimated statistic, Dmax , in the K-S test are 0.09, 0.08,
and 0.06 at QL, ZMSK, and YLX stations for the AM series, which is smaller than the critical values
of Dα

n (0.22, 0.20, and 0.16 at the 0.05 significance level). The values of the estimated statistic, A2 , in
the A-D test are 0.19, 0.33, and 0.26 at the three stations for the AM series, which is smaller than the
critical values of A2

α at the 0.05 significance level. As for the POT series, both the estimated statistic
Dmax in the K-S test and the estimated statistic A2 in the A-D test are smaller than the critical values
of Dα

n and A2
α as well. It means that the GEV model fits the AM series well and the GPD model fits

the POT series well.
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Table 4. Goodness-of-fit of probability modeling and the parameter estimations and standard
errors (given in the parentheses) for the GEV and GPD models for the three stations in the
Yingluoxia watershed.

Station
K-S A-D Parameter Estimation

Dmax Dα
n A2 A2

α µ σ ξ

AM-GEV

QL 0.09 0.22 0.19 2.50 84.76 (4.4943) 24.1494 (3.1982) ´0.0694 (0.1126)
ZMSK 0.08 0.20 0.33 2.50 183.48 (10.6038) 65.6735 (7.8552) ´0.3364 (0.1094)
YLX 0.06 0.16 0.26 2.50 316.48 (15.4693) 108.1400 (11.6639) 0.0436 (0.1116)

POT-GPD

QL 0.10 0.24 0.34 2.50 – 33.9589 (7.3896) ´0.2107 (0.1322)
ZMSK 0.08 0.20 0.42 2.50 – 86.9987 (16.6579) ´0.4716 (0.1392)
YLX 0.08 0.20 0.33 2.50 – 125.4130 (26.9464) ´0.0702 (0.1551)

Note: The significance level, α, is 0.05.

4.3.2. Return Level Estimation

Extremes are scarce, thus estimates are often required for levels of a process that are much greater
than have already been observed. Estimates of daily high flow extremes at a given return period are
essential for the local flooding protection; thus, different return levels of daily high flow extremes in
the Yingluoxia watershed are estimated herein.

The estimated return levels (solid lines) and the corresponding 95% CIs (dashed lines) from both
the AM and POT series are presented in Figure 6, together with the empirical return periods (red and
blue circles). The empirical return periods for the AM series are calculated using T “ 1

1´ i´0.4
k`0.2

in which i

indicates the order of the ascending high flow extremes data (i = 1, 2, . . . , k), and k is the high flow data
length [41]. The empirical return periods for the POT series are calculated using T “ 1

365ˆζuˆ
´

1´ i´0.4
k`0.2

¯ ,

in which ζu “
k
n , k is the exceedence data length, n is the total observations in day, and i is the order of

the ascending exceedance data (i = 1, 2, . . . , k). The GEV model provides a good match to the empirical
estimations for the AM series and the GPD model provides a good match to those for the POT series.
Table 5 lists the estimated return levels for the AM and POT series from both the GEV and GPD models,
together with the 95% CIs. These estimated return levels are expected to be helpful in providing useful
information for the design of local flooding defenses. At the 10-year return period, the GEV model
fitted values are 135 (8.45) m3/s, 287 (10.70) m3/s, and 572 (37.63) m3/s for QL, ZMSK, and YLX
stations, and the GPD model fitted values are 143 (9.18) m3/s, 295 (10.71) m3/s, and 591 (37.17) m3/s
for the three stations with standard errors given in the parentheses. At the 100-year return period,
the fitted values increase to 180 (21.67) m3/s, 337 (18.64) m3/s, and 867 (134.18) m3/s for the GEV
model, and 179 (15.82) m3/s, 333 (12.76) m3/s, and 807 (93.01) m3/s for the GPD model for the three
stations. Overall, the results for the estimated return levels from both the GEV and GPD models are
fairly comparable, with the largest difference being less than 10% for the 10-year, 20-year, 50-year, and
100-year return periods. However, the 95% CIs of the estimated return levels for the AM series based on
the GEV model are wider than those for the POT series based on the GPD model (Figure 6) especially
at the longer return periods, which means that greater uncertainties exist for the extrapolation from
the AM series and GEV model.

The POT series makes use of more information on extremes than the AM series, though discarding
all but the cluster maxima is still wasteful of data. For comparison, we attempt to use all threshold
exceedance points to estimate the return levels of high flow extremes with considering the extremal
index. In Fawcett and Walshaw [22], the authors proposed five extremal index estimators. Due to
our practical experiences, we select the approach mentioned in Coles [18] to estimate the extremal
index, i.e., the extremal index θ “ nc

nu
, in which nc indicates the number of clusters obtained above the
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threshold, and nu indicates the number of exceedances of the threshold. The m-observation return
level is xm “ u` σu

ξ r
`

ζuθq
ξ ´ 1

‰

(ξ ‰ 0), in which ζu “
nu
n [18], and the meanings of u , σµ , and ξ are

the same as those in Equation (8).Water 2016, 8, 215 11 of 15 
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Figure 6. Return level estimations from different probability distributions and empirical return periods
for high flow extremes for the Yingluoxia watershed.
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Table 5. Estimations and 95% CIs (in the brackets) of return levels from the AM and the POT series for
the Yingluoxia watershed, together with the differences of return level estimations from both series.

Station T = 10 T = 50 T = 100 T = 200

AM_GEV (m3/s)

QL 135 (118,152) 167 (135,200) 180 (137,222) 192 (138,245)
ZMSK 287 (266,308) 326 (296,356) 337 (300,374) 346 (303,389)
YLX 572 (498,646) 776 (589,964) 867 (604,1131) 956 (604,1308)

POT_GPD (m3/s)

QL 143 (125,162) 169 (144,194) 179 (148,209) 187 (150,224)
ZMSK 295 (274,316) 325 (303,346) 333 (308,357) 339 (311,367)
YLX 591 (519,664) 743 (609,877) 807 (625,989) 869 (626,1112)

Difference (%)

QL 5.59 1.18 ´0.56 ´2.67
ZMSK 2.71 ´0.31 ´1.20 ´2.06
YLX 3.21 ´4.44 ´7.43 ´10.00

Figure 7 shows the differences between the two schemes on the estimated return level. The
differences are calculated with the formula of relative error. From Figure 7, the differences are not great
between the POT series and all the threshold exceedances with considering the extremal index for the
estimated return levels. For YLX station, it is relatively stable and within 3%. For ZMSK station, it is
about 6% at less than 10-year return periods and decreases to lower than 5% with the return periods
increasing. For QL station, relatively larger differences are found, with 10%–12% differences for less
than 10-year return periods and 5%–10% differences for the longer return periods. These two schemes
give close results in return level estimations especially for YLX and ZMSK stations. We further analyze
the 95% CIs of the estimated return levels from the two schemes. Results are shown in Table 6. The 95%
CIs from the threshold exceedances are slightly narrower than those from the POT series. For example,
for YLX station, the standard errors of the estimated return levels from the threshold exceedances are
33.55, 64.43, 85.45, and 110.25 at the 10-year, 50-year, 100-year, and 200-year return periods, which are
lower than those from the POT series with 37.17, 68.28, 93.01, and 123.74, respectively. Due to more
data being involved in the analysis, using all excesses with considering the extremal index will tend to
give more accurate return level estimates than those from the POT series. This result is consistent with
the findings of Fawcett and Walshaw [22].

Water 2016, 8, 215 12 of 15 

 

year return periods, which are lower than those from the POT series with 37.17, 68.28, 93.01, and 
123.74, respectively. Due to more data being involved in the analysis, using all excesses with 
considering the extremal index will tend to give more accurate return level estimates than those from 
the POT series. This result is consistent with the findings of Fawcett and Walshaw [22]. 

 
Figure 7. Differences on the estimated return levels from the POT series and the threshold 
exceedances with considering the extremal index at the three stations in the Yingluoxia watershed. 

Table 5. Estimations and 95% CIs (in the brackets) of return levels from the AM and the POT series 
for the Yingluoxia watershed, together with the differences of return level estimations from both 
series. 

Station T = 10 T = 50 T = 100 T = 200
AM_GEV (m3/s) 

QL 135 (118,152) 167 (135,200) 180 (137,222) 192 (138,245) 
ZMSK 287 (266,308) 326 (296,356) 337 (300,374) 346 (303,389) 
YLX 572 (498,646) 776 (589,964) 867 (604,1131) 956 (604,1308) 

POT_GPD (m3/s) 
QL 143 (125,162) 169 (144,194) 179 (148,209) 187 (150,224) 

ZMSK 295 (274,316) 325 (303,346) 333 (308,357) 339 (311,367) 
YLX 591 (519,664) 743 (609,877) 807 (625,989) 869 (626,1112) 

Difference (%) 
QL 5.59 1.18 −0.56 −2.67 

ZMSK 2.71 −0.31 −1.20 −2.06 
YLX 3.21 −4.44 −7.43 −10.00 

Table 6. Estimations and 95% CIs (in the brackets) of return levels from the threshold exceedances 
with considering the extremal index for the Yingluoxia watershed. 

Station T = 10 T = 50 T = 100 T = 200
QL 126 (111,141) 151 (126,175) 162 (133,192) 173 (137,209) 

ZMSK 279 (262,297) 314 (294,333) 325 (302,347) 334 (306,361) 
YLX 581 (515,647) 725 (598, 851) 787 (619, 954) 847 (631,1063) 

Note that for the extremal index used here, there are other methods possible for estimating the 
extremal index. Return level estimations are sensitive to the choice of the estimator of the extremal 
index, and extremal index values are related to the strength of serial correlation in the threshold 
exceedance series. Fawcett and Walshaw [22] have attempted to discuss this issue and found many 
meaningful results. As this paper mainly discusses the AM and POT series and probability modeling 
using the GEV and GPD models, we will pursue further research into this area by considering other 

-0.05

0.00

0.05

0.10

0.15

1 10 100 1000

Di
ffe

re
nc

es
 (%

)

Return periods

YLX

ZMSK

QL

Figure 7. Differences on the estimated return levels from the POT series and the threshold exceedances
with considering the extremal index at the three stations in the Yingluoxia watershed.



Water 2016, 8, 215 13 of 15

Table 6. Estimations and 95% CIs (in the brackets) of return levels from the threshold exceedances with
considering the extremal index for the Yingluoxia watershed.

Station T = 10 T = 50 T = 100 T = 200

QL 126 (111,141) 151 (126,175) 162 (133,192) 173 (137,209)
ZMSK 279 (262,297) 314 (294,333) 325 (302,347) 334 (306,361)
YLX 581 (515,647) 725 (598, 851) 787 (619, 954) 847 (631,1063)

Note that for the extremal index used here, there are other methods possible for estimating the
extremal index. Return level estimations are sensitive to the choice of the estimator of the extremal
index, and extremal index values are related to the strength of serial correlation in the threshold
exceedance series. Fawcett and Walshaw [22] have attempted to discuss this issue and found many
meaningful results. As this paper mainly discusses the AM and POT series and probability modeling
using the GEV and GPD models, we will pursue further research into this area by considering other
estimation approaches for the extremal index, which would be helpful in understanding how the
extremal index estimators affect the estimations and uncertainties of the return levels.

5. Conclusions

Both the AM and POT series are commonly used to study extreme events. In this paper, we
construct these two series to indicate the hydrological extremes in the Yingluoxia watershed, and
compare the estimations and uncertainties of return levels for both series by using the GEV and GPD
models. Using all threshold excesses with considering the extremal index to estimate the return levels
is also investigated for comparison. Before the probability modeling, the stationarity and independence
assumptions for the AM and POT series are examined since ignoring these assumptions would result
in errors in the estimations of the model parameters and return levels based on model fitting. Results
show that, combined with a declustering scheme, the POT series are approximately independent, and
they are also broadly stationary based on the graphic diagnosis. The AM series can be regarded as
stationary and independent with the results of Mann-Kendall test, Pettitt test, and autocorrelation
coefficient test. The GEV model fits the AM series well, and the GPD model fits the POT series well
according the statistical K-S test and A-D test. The estimated return levels from the AM series, the
POT series, and all threshold exceedances with considering the extremal index are fairly comparable.
The largest difference between the former two series is less than 10% at the 10-year, 20-year, 50-year,
and 100-year return periods. The difference between the latter two series increases first and then
decreases as the return period increasing, and it is less than 10% for return periods over 10 years.
As for the uncertainties of the estimated return levels, the AM series show the largest uncertainties on
extrapolation, followed by the POT series. The threshold excesses with considering the extremal index
tend to show the smallest uncertainties of return level estimations with the narrowest 95% CIs, due to
more data involved in the analysis.
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