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Abstract: Accurate and efficient estimation of streamflow in a watershed’s tributaries is prerequisite
parameter for viable water resources management. This study couples process-driven and data-driven
methods of streamflow forecasting as a more efficient and cost-effective approach to water resources
planning and management. Two data-driven methods, Bayesian regression and adaptive neuro-fuzzy
inference system (ANFIS), were tested separately as a faster alternative to a calibrated and validated
Soil and Water Assessment Tool (SWAT) model to predict streamflow in the Saginaw River Watershed
of Michigan. For the data-driven modeling process, four structures were assumed and tested: general,
temporal, spatial, and spatiotemporal. Results showed that both Bayesian regression and ANFIS
can replicate global (watershed) and local (subbasin) results similar to a calibrated SWAT model.
At the global level, Bayesian regression and ANFIS model performance were satisfactory based on
Nash-Sutcliffe efficiencies of 0.99 and 0.97, respectively. At the subbasin level, Bayesian regression and
ANFIS models were satisfactory for 155 and 151 subbasins out of 155 subbasins, respectively. Overall,
the most accurate method was a spatiotemporal Bayesian regression model that outperformed other
models at global and local scales. However, all ANFIS models performed satisfactory at both scales.
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1. Introduction

For any given time and location along a river, streamflow is derived from a combination of surface
water, soil water, and groundwater, but ultimately originates from precipitation [1]. The rainfall-runoff
process is complex and includes many interconnected elements (e.g., evapotranspiration, infiltration,
subsurface flow, spatial and temporal rainfall variations, land-use, topography, and soil type) that
often cannot be accurately measured in a large study area [2–8].

Streamflow forecasting is a critical component for many engineering applications and
environmental management strategies, such as dam construction, reservoir design, hydro-power
generation, irrigation, water resources allocation, flood control, environmental protection, ecosystem
sustainability, and ecological integrity [9–12]. Short-term streamflow forecasting, such as hourly and
daily, is important for flood prediction and protection, while long-term forecasting on monthly and
annual scales is useful for water resources planning and management [13].

Streamflow forecasting techniques are divided into two categories: process-driven and
data-driven methods [13,14]. Process-driven methods describe the physical processes that govern
streamflow in watersheds based on an understanding of physical phenomena. Data-driven methods
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are black-boxes that forecast streamflow by mapping inputs (hydro-meteorological) to the output
(streamflow) mathematically, without considering the physical processes within a watershed [13].

Although process-driven, physically-based methods can capture and predict the impacts of
changes in landscape management practices on streamflow [15,16], they require intensive information
on hydrogeology, soils, topography, etc., which are often difficult to obtain and measure [17]. Utilization
of physically-based models are complex, time consuming, and require intensive calculations and
expert knowledge [18], making their operation by watershed managers and stakeholders difficult [19].
Meanwhile, stakeholder involvement is crucial in developing a successful watershed management
plan [20–22] and this cannot be achieved unless stakeholders and watershed managers are able to
effectively use scientific tools for decision making [23]. These drawbacks demand more cost-effective
techniques for streamflow calculation, especially for assessing the impacts of different management
scenarios on streamflow, which requires extensive model simulation.

In recent years, new data-driven methods, such as soft computing, have become effective
alternative techniques to physically-based models in water resources management. Soft computing
techniques are cost effective methods that can be utilized for solving complex problems by
approximation [24]. However, these methods fall short of capturing hydrological responses to
significant changes in physiographical (e.g., land-use/land-cover) and climatological (e.g., climate
change) characteristics of a watershed. Artificial neuro-fuzzy inference systems (ANFIS) and Bayesian
regression methods have received more attention in recent years in the water resources field due
to their ability to model sophisticated non-linear systems such as streamflow and contaminant
transport [25–33].

In this study we used a physically-based hydrological model, the Soil and Water Assessment
Tool (SWAT), to simulate streamflow in a large and diverse watershed. We trained and tested two
data-driven methods (ANFIS and Bayesian regression) to evaluate their capability in estimating
streamflow both at the watershed outlet and at each subbasin outlet, as compared to the SWAT
model. The application of data-driven methods will significantly reduce the computational time and
effort required for examining future management scenarios while being simple enough to be used
by stakeholders and watershed managers for decision making. They will save considerable time and
resources usually spent on data collection and streamflow estimation because data-driven methods
require fewer input parameters than physically-based models.

2. Materials and Methods

2.1. Study Area

The Saginaw River Watershed (hydrologic unit code-HUC 040802) located in Michigan’s Lower
Peninsula (Figure 1), was selected for this study. This is the largest watershed in Michigan and
consists of six eight-digit HUCs; the Tittabawassee (04080201), Pine (04080202), Shiawassee (04080203),
Flint (04080204), Cass (04080205), and Saginaw (04080206). The watershed drains about 15% of
Michigan’s land area into Lake Huron. The total watershed area is 22,260 km2, of which 45% is forest,
38% is agriculture and pasture, 11% water and wetlands, and the remaining is urban area. The average
watershed elevation is 242 m above mean sea level.

2.2. Modeling Procedures

A multi-step modeling process was used to simulate streamflow within the Saginaw River
watershed (Figure 2). The process began with setup and calibration of the physically-based SWAT
model. The model was run for 17 years to calculate annual average flow rate for 155 streams within the
study area. The ANFIS and Bayesian regression techniques used unique sets of watershed parameters
and SWAT model outputs to investigate streamflow predictions based on four model structures:
general, spatial, temporal, and spatiotemporal. The results of these models were evaluated against
streamflow data obtained from the calibrated SWAT model using five statistical criteria. These criteria
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were used to select the best data-driven method and model structure that can accurately predict
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2.3. Physically-Based Hydrological Model Setup

SWAT was used to simulate long-term daily streamflow in the Saginaw River watershed.
SWAT was developed by the United States Department of Agriculture–Agricultural Research Service
(USDA–ARS) to simulate flow and pollution transport [34]. SWAT is one of the most widely used
spatially-explicit watershed models in the world [35]. The model simulates flow, sediment, nutrient,
and pesticide transport, crop growth, and management practices, providing insight for decision makers
and watershed managers [36]. In SWAT, basic computational units are known as hydrologic response
units (HRUs), which are areas of homogeneous land-use, soil, and slope. Overland flow and pollutants
in HRUs are aggregated to the subbasin level and routed through the river network.

Many datasets are required for setting up the SWAT and data-driven models, including soils,
climate, land-use, and topography. Soil physical and chemical characteristics were obtained from
the State Soil Geographic Database [37] at a 1:250,000 resolution. Land-use information, including
crop-specific classifications, was obtained from the 2008 Cropland Data Layer (56 m resolution)
developed by the USDA National Agricultural Statistics Service [38]. Topographic data was acquired
in the form of a 90 m resolution digital elevation model (DEM) from the Better Assessment Science
Integrating Point and Nonpoint Sources (BASINS version 4.1, United States Environmental Protection
Agency: National Exposure Research Laboratory, Research Triangle Park, NC, USA) program [39].
Stream network data was obtained from the United States Geological Survey (USGS) National
Hydrography Dataset (NHD) [40]. Based on the NHD and DEM data, the watershed was delineated
into 155 subbasins. Climate data was obtained from the National Climatic Data Center (NCDC) with
19 years (1990–2008) of observed daily temperature and precipitation for 15 temperature stations
and 19 precipitation stations. Meteorological data, such as solar radiation, wind speed, and relative
humidity, were simulated using the SWAT built-in weather generator. The SWAT model included
locally relevant agricultural management operations and rotations from Love and Nejadhashemi [41].

Observed daily streamflow data for the period of 2002–2007 was obtained from USGS gauging
stations 04145000, 04149000, and 04157000 (Figure 1). The SWAT model was calibrated from 2002 to
2004 and validated from 2005 to 2007 on a daily time-step. Next, the calibrated SWAT model was run
for 19 years (1990–2008), using the first two years for model warm-up, with the remaining 17 years
representing the model simulation period. For the 155 subbasins, a total of 2635 annual streamflow
data points were obtained for the watershed.

2.4. Data-Driven Hydrological Models Setup

The study watershed only contained observed streamflow data at four of 155 subbasins. Therefore,
the calibrated SWAT model outputs were used to judge the predictive data-driven models’ capability
in estimating flow at local and global scales. SWAT can estimate streamflow beyond the four gauging
stations for all stream segments in the watershed. This information was used to develop two
data-driven methods, ANFIS and Bayesian regression. Thirteen predictor variables were obtained
from SWAT model outputs, including time period, geographical coordinates, precipitation data,
the total upstream drainage area, four different land-uses (urban, forest, agriculture, and water),
and four hydrologic soil groups (A, B, C, and D) to model daily average flow rate. The land-use and
soil group variables were calculated as percentage of the total upstream area.

To investigate the effect of different spatial and temporal watershed parameters on streamflow
predictions, general, spatial, temporal, and spatiotemporal model structures were considered. For the
general model structure hydro-meteorological and watershed characteristics were considered without
any spatial or temporal effects. For the spatial model structure, geographical coordinates were added
(without time effects) to the set of predictor variables of the general model. For the temporal model
structure, time period (without spatial effects) was added to the hydro-meteorological and watershed
characteristics. For the spatiotemporal model structure, geographic coordinates and time period were
added to the hydro-meteorological and watershed characteristics variables.
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2.5. ANFIS

ANFIS is a hybrid model of artificial neural networks (ANN) and Sugeno fuzzy logic inference
systems. This method uses the ANN learning ability for the fuzzy inference system to more
efficiently compute fuzzy rules and implement three fuzzy control steps (fuzzification, inference,
and defuzzification) [42]. The MATLAB (version 7.12.0, MathWorks, Natick, MA, USA) fuzzy logic
toolbox was used to perform ANFIS analysis. MATLAB’s “genfis2” function (which uses subtractive
clustering to produce partitions for the data) was used to create fuzzy membership functions (MFs).
The number of data subsets depends on the cluster radius value (a small radius results in more clusters
and rules and vice versa). Gaussian MFs were used for all input variables and linear parameters were
selected for the output MFs. To select the best model structure, ten-fold cross-validation was employed.
Here, 90% of the data was used to build the model (the training dataset) and checked on the remaining
10% (the testing dataset). In this way, ten models were generated for all of the ten-folds of data. The
average performance (smallest average root-mean-square error—RMSE) of the ten test sets was the
criteria for selecting the best structure.

After selecting the most appropriate model structure (general, spatial, temporal, and
spatiotemporal), the best model was selected from the ten generated models. Each model was tested
against all of the ten test sets, and the lowest average error for all test sets was the criteria for selecting
the best model [32].

Variable Selection for ANFIS

The ANFIS modeling process started with selecting best set of predictor variables for each model
structure. Afterward, the best model was used for flow prediction at global (watershed outlet) and
local (individual subbasin) scales.

Cobaner [43] and Sanikhani Kisi [44] concluded that using a large number of input variables in
fuzzy logic models significantly increases the noise in model prediction due to a substantial increase
in the number of rules. Due to this limitation, a set of seven input variables were used. All possible
variable combinations were explored for each model structure. Accordingly, predictor variables for the
ANFIS general (non-random) model structures included upstream drainage area, precipitation, three
types of land-use and two soil types. This technique leads to 20 possible variable combinations that
were used to select the best variable set describing flow rate in the watershed. For the spatial model
structure, total upstream area, precipitation, latitude, longitude, two types of land-use and one type
of soil type were used, which resulted in 24 possible variable combinations. For the temporal model
structure, upstream area, precipitation, time period (year), three types of land-use and one soil type
were used, resulting in 16 possible variable combinations. For the spatiotemporal model structure,
upstream total area, precipitation, latitude, longitude, time period, one type of land-use and one soil
type were used, which resulted in 16 possible variable combinations.

2.6. Bayesian Regression Method

The Bayesian regression models were developed in MATLAB (version 7.12.0) [45]. The four
model structures were also used for the Bayesian regression method. For each model structure, a set of
ten input variables (covariates) were used for the modeling process. The two variables of water from
land-use and type-D from soil group were excluded from the variables to remove singularity of the
design matrix (because the sum of the all land-uses and soil groups are equal to one) and because
an intercept in the Bayesian regression model is included. Precipitation, total upstream area, urban
land-use, forest land-use, agricultural land-use, type-A soil, type-B soil, and type-C soil variables were
used in addition to a neighborhood matrix and a year-specific random effect. The selected covariates
were standardized for the modeling process. The general model structure was created without any
temporal and spatial random effects. For the temporal model structure only temporal random effects
were included in the general model structure. For the spatial model structure only spatial random
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effects were included in the general model. Finally, for the spatiotemporal model structure both
temporal and spatial random effects were included in the general model.

2.6.1. Bayesian Regression Model Specification

For a data containing response Yst observed for s = 1, 2, ¨ ¨ ¨ , N geographic regions and
t = 1, 2, ¨ ¨ ¨ , T years. The following multiplicative spatiotemporal model is presented in Equation (1).

Yst “

p
ÿ

j“1

Xstjβj ` ust ` εst (1)

In Equation (1), j indexes the p-covariates, which includes the intercept. The regression coefficient
βj for the jth predictor Xstj measures its effect on the response variable. ust is the multiplicative
spatiotemporal random effect that captures the variability due to the spatial and temporal effects.
εst is the residual. We assume εst „ Np0, δ2q to measure the nugget effects and u the multiplicative
spatiotemporal random effect follows the distribution as following in Equation (2):

u „ Np0, τ2Apφq bDpγqq (2)

which assumes separable spatiotemporal dependence, i.e., the spatial correlation matrix A(φ) and the
temporal correlation matrix D(γ) are separately generated by two underlying Gaussian processes,
that are both assumed to be Markovian, such as conditional autoregressive (CAR) structure for the
spatial dependence, and autoregressive (AR) with order 1 for the temporal dependence. The b
operator indicates the Kronecker product of two matrices. The assumption is made for simplicity
and computational efficiency as both correlation matrices have closed inverse form for likelihood
calculation. The model in Equation 1 assumes a single NT ˆ 1 spatiotemporal random effect that
allows the interactions of the spatiotemporal dependences with a single τ2 to measure its variation.
The model can be again written in the canonical form of a mixed-effects model in Equation (3).

Y „ NpXβ` Zu, δ2INTq (3)

For a Gibbs sampler, the full conditional distributions of fixed-effects and random-effects are as
shown in Equations (4) and (5) [46].

πpβ|...q “ Npµβ, Σβq

#

Σβ “ δ
2pX1 Xq´1

µβ “ pX1 Xq´1X1 pY´Zuu´Zvvq
(4)

πpu|...q “ Npµu, Σuq

#

Σu “ pδ
´2 IN ` τ

´2 Apφq´1
bDpγq´1

q
´1

µu “ ΣuZ1 pY´ Xβq{δ2 (5)

The conditional distributions of variance components and spatiotemporal dependence are
presented in Equations (6)–(10).

πpδ2|...q “ igammapaδ ` NT{2, bδ ` ε1 ε{2q (6)

where ε “ Y´Xβ´ Zu (7)

πpτ2|...q “ igammapaτ ` NT{2, bτ ` u1 pApφq´1
bDpγq´1

qu{2q (8)

πpγ|...q9|Dpγq|´T{2exptγu1 pApφq´1
bWqu{p2τ2qu.Ipγ P pλ´1

N , λ´1
1 qq (9)

πpϕ|...q9|Apϕq|´N{2expt´u1 pApϕq´1
bDpγq´1

qu{p2τ2qu.Ipϕ P p´1, 1qq (10)
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2.6.2. Bayesian Regression Models Comparisons

The proposed model structure can be implemented with only spatial components, only temporal
components, or with both spatiotemporal components masked to evaluate the significance of each
component. To compare the Bayesian regression models, the deviance information criterion (DIC)
for the mixed-effects model is used. The DIC4 based on complete likelihood [47] is presented in
Equation (11).

DIC4 “ ´4Eθ,αrlog f pY,α|θq|Ys ` 2Eαrlog f pY,α|Eθrθ|Y,αsq|Ys
∆
“ ´4E1 ` 2E2

(11)

where Eθrθ|Y,αs can be evaluated by sampling θ for each posterior sample of the random effects
α and the obtained mean. Dpθq “ ´2E1 is the posterior expected value of the joint deviance, and
pD4 “ Dpθq ` 2E2 is the measure of model dimensionality. Therefore, a smaller pD4 indicates a simpler
model. A smaller DIC4 indicates better predictive power. For the multiplicative model (Equation (1))
the random effect α = u.

To assess the model fit given the L posterior samples of parameters pβplqj , uplqs , vplqt ql“1,2,...,L
,

the fitted value Ŷst can be calculated in Equation (12).

Ŷst “
1
L

L
ÿ

l“1

¨

˝

p
ÿ

j“1

Xstjβ
plq
j ` uplqs ` vplqt

˛

‚“

p
ÿ

j“1

Xstjβ̂j ` ûs ` v̂t (12)

where, β̂j, ûs and v̂t are posterior mean estimates.

2.7. Methods Evaluation Criteria

To compare performance of the Bayesian regression and ANFIS models, five different evaluation
criteria were used: coefficient of determination (R2), RMSE, ratio of the root mean square error to the
standard deviation of measured data (RSR), Nash-Sutcliffe efficiency coefficient (NSE), and percent
bias (PBIAS).

The coefficient of determination is the squared Pearson product moment correlation coefficient,
which shows the degree that two variables are related. It ranges between zero and one, where
1 indicates perfect correlation [48].

R2 “

»

–

ΣN
s“1ΣT

t“1pYst ´YqpŶst ´ Ŷq
b

ΣN
s“1ΣT

t“1pYst ´Yq2pŶst ´ Ŷq
2

fi

fl

2

(13)

where, Yst and Ŷst are observed and predicted values for s-th subbasin and t-th year, respectively, with
N representing the total number of subbasins and T representing study period. Y and Ŷ are averages
of observed and predicted values for s-th subbasin and t-th year, respectively. R2 > 0.5 represents
satisfactory model performance [15].

An RMSE of 0 is the best prediction of the observed values [48,49].

RMSE “

d

ΣN
s“1ΣT

t“1pYst ´ Ŷstq
2

NT
(14)
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RSR is the standardized RMSE using the observations’ standard deviation. RSR of zero indicates
perfect prediction, while RSR > 0.7 represents unsatisfactory model performance [49].

RSR “
RMSE
σ

“

b

ΣN
s“1ΣT

t“1pYst ´ Ŷstq
2

b

ΣN
s“1ΣT

t“1pYst ´Yq2
(15)

where, σ is the standard deviation of the observed values.
NSE is the relative magnitude of the residual variance compared to the measured data variance,

where NSE equal to 1 is the best prediction [50].

NSE “ 1´
ΣN

s“1ΣT
t“1pYst ´ Ŷstq

2

ΣN
s“1ΣT

t“1pYst ´Yq2
(16)

PBIAS measures the average tendency of the predicted data to be larger or smaller than their
corresponding observed values, where an optimal PBIAS is equal to zero [50].

PBIAS “
ΣN

s“1ΣT
t“1pYst ´ Ŷstq ˆ 100
ΣN

s“1ΣT
t“1Yst

(17)

3. Results and Discussion

3.1. SWAT Model

The SWAT model was calibrated for three years (2002–2004), and validated for the following three
years (2005–2007) based on daily stream flow data from three gauging stations. The model performed
satisfactorily (Table 1), according to criteria established by Moriasi et al. [50] for NSE, PBIAS, and RSR.

Table 1. Saginaw River Watershed calibration and validation results.

Station ID Constituent Statistic Calibration Validation Overall

04145000 Flow

R2 0.81 0.76 0.79
RMSE 8.21 9.58 8.92
NSE 0.63 0.55 0.59

PBIAS 5.38 3.51 4.30
RSR 0.61 0.67 0.64

04149000 Flow

R2 0.77 0.73 0.75
RMSE 17.42 17.38 17.40
NSE 0.57 0.53 0.55

PBIAS 26.62 ´0.96 11.28
RSR 0.66 0.68 0.67

04157000 Flow

R2 0.86 0.83 0.84
RMSE 75.62 76.55 74.69
NSE 0.69 0.66 0.67

PBIAS 28.85 16.62 22.07
RSR 0.56 0.58 0.57

3.2. ANFIS Method Performance

Considering the number of variables was constrained to seven in ANFIS, for each of the model
structures different variable combinations were arranged from the available 13 predictors to select
the best model structure (Table 2). Total upstream area, precipitation, and agricultural land-use were
the only variables that were selected by all model structures, which demonstrates their importance.
Meanwhile, D-soil, water land-use, and A-Soil were the least important.
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Table 2. The parameter estimations and model assessment for the adaptive neuro-fuzzy inference
system (ANFIS) method.

Parameter Unit Min Mean Max General Spatial Temporal Spatiotemporal

Time Year 1992 – 2008 – – * *
Latitude Degree 42.7 43.4 44.2 – * – *

Longitude Degree ´85.2 ´84.0 ´82.9 – * – *
Precipitation mm 507 812 1132 * * * *

Area km2 76.2 1367.7 14,934.7 * * * *
Agriculture % 0.0 35.8 100.0 * * * *

Urban % 0.0 2.4 100.0 – – * –
Forest % 0.0 51.8 100.0 * * * –
Water % 0.0 10.0 100.0 * – – –
A Soil % 0.0 26.7 100.0 * – – –
B Soil % 0.0 56.6 100.0 * – * *
C Soil % 0.0 15.5 100.0 – * – –
D Soil % 0.0 1.2 39.3 – – – –

Note: * Parameter was used for the model development.

The calibration and validation results for each model structure are shown in Table 3. The spatial
model structure is the best for flow prediction with NSE of 0.98 for calibration and 0.96 for validation.
After selecting spatial model structure, the model was used for global and local predictions.

Table 3. ANFIS best-set calibration and validation average results.

Method Type Calibration Validation

R2 RMSE RSR NSE PBIAS (%) R2 RMSE RSR NSE PBIAS (%)

General 0.96 4.226 0.192 0.96 0.003 0.95 4.321 0.220 0.95 ´0.375
Spatial 0.98 3.351 0.152 0.98 ´0.002 0.96 3.654 0.196 0.96 ´0.304

Temporal 0.93 8.149 0.263 0.93 ´0.198 0.87 9.963 0.367 0.86 ´0.656
Spatiotemporal 0.96 4.557 0.199 0.96 0.114 0.93 7.392 0.270 0.93 ´0.268

3.3. Bayesian Regression Method Performance

Spatiotemporal multiplicative random-effect models were considered for the Bayesian regression
method. The eight selected covariates (inputs) were standardized using the neighborhood matrix and
year-specific random effect. Depending on the model-specific assumptions for each model structure,
the flow rates were estimated for each model structure (general, spatial, temporal, and spatiotemporal).

For the full spatiotemporal model, the convergence was well-committed for the first
15,000 iterations, and the last 1000 samples for each chain were used as the posterior distribution.
We also fit the spatial version of the model in Equation (2) by fixing ϕ = 0, temporal version by fixing
γ = 0, and non-random effects model (general) by ruling out u, which reduced the models to ordinary
regressions. The parameter estimations and model assessment are summarized in Table 4. We report
the posterior mean estimates along with the lower and upper bounds of the 95% credible intervals
in brackets. For the regression coefficients and dependence parameters, a 95% credible interval that
does not span zero indicates statistical significance. Note the term “spatial” and “temporal” refer to
the correlation only, because u is a spatiotemporal random effect with a single variation parameter τ2

that measures its variation from spatial and temporal aspects. Therefore “temporal” does not mean no
spatial effect is considered, but means that no spatial correlation is considered.

The lowest DIC4 is the criterion for selecting the best prediction of mixed effect models (fixed and
random effects). The results show that the spatiotemporal model fits the data perfectly, considering
that both spatial and temporal correlations are highly significant, which further demonstrates the
necessity of modeling the spatiotemporal dependencies.

In Table 4 the lowest DIC4 is for the spatiotemporal model structure, indicating it was the best
model structure for predicting the flow rate. The Bayesian regression temporal model structure
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performed the second best, while the performances of the two other model structures (general and
spatial) were not promising due to their high DIC4 values.

Table 4. The parameter estimations and model assessment for the Bayesian regression technique.

Parameter General Spatial Temporal Spatiotemporal

Intercept 0.90 (0.87, 0.94) 0.94 (0.88, 0.99) 0.92 (0.85, 1.04) 0.96 (0.78, 1.28)
Area 0.94 (0.90, 0.98) 1.03 (0.98, 1.07) 0.96 (0.88, 1.03) 1.11 (1.03, 1.22)

Urban 0.09 (0.04, 0.15) 0.08 (0.02, 0.13) 0.04 (´0.09, 0.17) 0.02 (´0.11, 0.11)
Forest 0.23 (0.16, 0.30) 0.27 (0.20, 0.34) 0.25 (0.08, 0.39) 0.29 (0.18, 0.36)

Agriculture 0.03 (´0.05, 0.12) 0.08 (´0.00, 0.17) 0.02 (´0.18, 0.21) 0.17 (0.04, 0.29)
A-soil ´0.25 (´0.53, 0.02) ´0.39 (´0.71, 0.09) ´0.50 (´1.32, 0.22) ´0.89 (´1.83, ´0.23)
B-soil 0.26 (´0.03, 0.55) 0.13 (´0.20, 0.44) 0.05 (´0.81, 0.77) ´0.23 (´1.17, 0.42)
C-soil 0.26 (0.04, 0.47) 0.12 (´0.12, 0.36) 0.15 (´0.50, 0.66) ´0.21 (´0.84, 0.26)

Precipitation 0.24 (0.21, 0.28) 0.22 (0.17, 0.28) 0.21 (0.20, 0.22) 0.14 (0.12, 0.15)
Residual δ2 0.93 (0.88, 0.99) 0.58 (0.48, 0.67) 0.04 (0.03, 0.04) 0.01 (0.01, 0.01)

τ2 0.00 1.25 (0.85, 1.71) 0.38 (0.34, 0.42) 1.51 (1.36, 1.67)
Temporal ø 0.00 0.00 0.96 (0.95, 0.97) 0.97 (0.96, 0.97)

Spatial γ 0.00 0.85 (0.77, 0.91) 0.00 0.99 (0.98, 0.99)
Dpθq 7253.11 10,067.63 ´2735.59 ´6920.97
pD4 9.77 11.63 11.00 9.56
DIC4 7262.88 10,079.26 ´2724.59 ´9611.41

3.4. Global Application of ANFIS and Bayesian Regression Best Models at Watershed Scale

Tables 5 and 6 show all model structures’ global predictions for ANFIS and Bayesian regression,
respectively. All ANFIS model structures performed satisfactorily. The ANFIS spatial model structure
was the best predictor of flow with the highest R2 and NSE of 0.97 and lowest RMSE of 3.55, which
according to model performance criteria, is very good [50]. Both the Bayesian regression spatiotemporal
and temporal model structures performed better than the ANFIS spatial model structure with higher
R2 and NSE. The best prediction with Bayesian regression was for the spatiotemporal model structure
with R2 and NSE of 0.99, followed by the temporal model structure with R2 and NSE of 0.98, while the
results from the general and the spatial model structures were unsatisfactory (Table 6).

Table 5. ANFIS global estimations for each model structure using best estimation model.

Method Type R2 RMSE RSR NSE PBIAS

General 0.96 4.356 0.210 0.96 1.106
Spatial 0.97 3.550 0.172 0.97 1.574

Temporal 0.85 9.148 0.442 0.80 ´3.437
Spatiotemporal 0.91 6.647 0.321 0.90 ´1.464

Table 6. Bayesian regression global estimations for each model structure using best estimation model.

Method Type R2 RMSE RSR NSE PBIAS

General 0.66 170.820 8.254 ´67.15 ´248.367
Spatial 0.61 71.171 3.439 ´10.83 ´76.977

Temporal 0.98 2.696 0.130 0.98 0.306
Spatiotemporal 0.99 0.775 0.037 0.99 ´0.057

Figure 3 shows the performance of the best ANFIS model structure (spatial) versus the calibrated
SWAT model flow rate results at the watershed outlet. Figure 4 shows the predicted flow for the
Bayesian regression best model structure (spatiotemporal) versus the SWAT flow rate. The Bayesian
regression spatiotemporal model structure predicted the flow rate almost perfectly, with few deviations
from the line of best fit (the 45-degree line). Meanwhile, the ANFIS spatial model structure produced
acceptable results.
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3.5. Local Applications of ANFIS and Bayesian Regression Best Model Structures at the Subbasin Scale

To further test the performance of the model structures at the local scale, the ANFIS and
Bayesian regression models were tested to estimate flow for all subbasin reaches within the study area.
At the local scale, the data has two dimensions (spatial and temporal). For each subbasin there are only
17 data points, one for each simulation year. Table 7 shows the results of both methods’ best global
model structures at the subbasin level. The best performance occurred for the Bayesian regression
spatiotemporal and temporal model structures, which were satisfactory for all the 155 subbasins
according to Moriasi et al. [50] criteria. The ANFIS best model structure (spatial) was third best in
terms of the number of subbasins with satisfactory results (151 subbasins). From Table 7 we can
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conclude that the ANFIS general model structure has a relatively high number of subbasins with
satisfactory results among the rest of the model structures (149 subbasins with satisfactory results).

Table 7. Performances of all model structures for both ANFIS and Bayesian regression methods at local
scale (subbasin).

Model Structure Technique Subbasins with NSE ě 0.5

General model
ANFIS 149

Bayesian Regression 56

Spatial model ANFIS 151
Bayesian Regression 107

Temporal model ANFIS 117
Bayesian Regression 155

Spatiotemporal model ANFIS 138
Bayesian Regression 155

All ANFIS model structures were acceptable at the local scale, while the two best model structures
were Bayesian regression models. The performance of the Bayesian regression general and spatial
model structures were the worst in terms of the number of subbasins with satisfactory results.

4. Conclusions

In this study, two soft computing methods (Bayesian regression and ANFIS) were tested as
fast and cost-effective methods for estimating flow rate for the Saginaw River Watershed. All model
structures for the ANFIS method were able to produce satisfactory results at the global level, while only
two model structures for the Bayesian regression method produced satisfactory results at the global
level. The Bayesian regression spatiotemporal model structure was the best streamflow predictor at the
global level, while the ANFIS best model structure was spatial. At the subbasin and watershed levels
the best performing models were the Bayesian regression methods (spatiotemporal and temporal
model structures).

As ANFIS has a limitation on number of variables used, this limited the ability of the technique to
capture both temporal and spatial variability in the dataset. This was more apparent at the subbasin
level, which produced unsatisfactory results for many subbasins. Because fuzzy logic can produce
approximate solutions for problems, all models developed by the ANFIS method produced acceptable
results at the global and local scales regardless of model structure. Meanwhile, the Bayesian regression
method was able to capture variability better than the ANFIS technique only for two model structures
(spatiotemporal and temporal).

The results of this study confirmed that both Bayesian Regression and ANFIS methods can be
used as an alternative technique for estimating annual flow rate for a watershed at both the global
(watershed) and local (subbasin) levels. Meanwhile, it is important to note that the data-driven
methods are not reliable if the status of key factors (e.g., land-use/land-cover) in a catchment are
altered in the future. Under this circumstance, the process-driven methods are preferable and should
be used.

Acknowledgments: This work is supported by the USDA National Institute of Food and Agriculture,
Hatch Project MICL02212.

Author Contributions: Yaseen A. Hamaamin wrote the paper and performed the fuzzy logic analysis;
Amir Pouyan Nejadhashemi designed the project; Zhen Zhang developed the Bayesian Regression method;
Subhasis Giri setup and calibration of the SWAT model; Sean A. Woznicki performed statistical analysis.

Conflicts of Interest: There are no conflicts of interest in this work. The authors have not been paid for the
work. In addition, the institutions that we are employed by (Michigan State University, University of Chicago,
and University of Sulaimani) did not play any role in the design of this research or preparation of this article.
The authors do not have any financial relationships with any institution except the ones mentioned above.



Water 2016, 8, 287 13 of 15

References

1. Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C.
The natural flow regime. Bioscience 1997, 47, 769–784. [CrossRef]

2. Huo, Z.; Feng, S.; Kang, S.; Huang, G.; Wang, F.; Guo, P. Integrated neural networks for monthly river flow
estimation in arid inland basin of Northwest China. J. Hydrol. 2012, 420, 159–170. [CrossRef]

3. Ruggenthaler, R.; Schöberl, F.; Markart, G.; Klebinder, K.; Hammerle, A.; Leitinger, G. Quantification of
soil moisture effects on runoff formation at the hillslope scale. J. Irrig. Drain. Eng. 2015, 141, 1943–4774.
[CrossRef]

4. Leitinger, G.; Ruggenthaler, R.; Hammerle, A.; Lavorel, S.; Schirpke, U.; Clement, J.-C.; Lamarque, P.;
Obojes, N.; Tappeiner, U. Impact of droughts on water provision in managed alpine grasslands in two
climatically different regions of the Alps. Ecohydrology 2015, 8, 1600–1613. [CrossRef] [PubMed]

5. Della Chiesa, S.; Bertoldi, G.; Niedrist, G.; Obojes, N.; Endrizzi, S.; Albertson, J.D.; Wohlfahrt, G.; Hörtnagl, L.;
Tappeiner, U. Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps.
Ecohydrology 2014, 7, 1453–1437. [CrossRef]

6. Leitinger, G.; Tasser, E.; Newesely, C.; Obojes, N.; Tappeiner, U. Seasonal dynamics of surface runoff in
mountain grassland ecosystems differing in land use. J. Hydrol. 2010, 385, 95–104. [CrossRef]

7. Alaoui, A.; Spiess, P.; Beyeler, M.; Weingartner, R. Up-scaling surface runoff from plot to catchment scale.
Hydrol. Res. 2012, 43, 531–546. [CrossRef]

8. Alaoui, A.; Willimann, E.; Jasper, K.; Felder, G.; Herger, F.; Magnusson, J.; Weingartner, R. Modelling the
effects of land use and climate changes on hydrology in the Ursern Valley, Switzerland. Hydrol. Process. 2014,
28, 3602–3614. [CrossRef]

9. Al-Zu’bi, Y.; Sheta, A.; Al-Zu’bi, J. Nile River flow forecasting based Takagi-Sugeno fuzzy model. J. Appl. Sci.
2010, 10, 284–290.

10. Block, P.J.; Souza Filho, F.A.; Sun, L.; Kwon, H.H. A streamflow forecasting framework using multiple
climate and hydrological models. J. Am. Water Resour. Assoc. 2009, 45, 828–843. [CrossRef]

11. Einheuser, M.D.; Nejadhashemi, A.P.; Sowa, S.P.; Wang, L.; Hamaamin, Y.A.; Woznicki, S.A. Modeling the
effects of conservation practices on stream health. Sci. Total Environ. 2012, 435, 380–391. [CrossRef] [PubMed]

12. Loinaz, M.C.; Davidsen, H.K.; Butts, M.; Bauer-Gottwein, P. Integrated flow and temperature modeling at
the catchment scale. J. Hydrol. 2013, 496, 238–251. [CrossRef]

13. Wang, W. Stochasticity, Nonlinearity and Forecasting of Streamflow Processes; IOS Press: Amsterdam,
The Netherlands, 2006.

14. Goebel, K.; Saha, B.; Saxena, A. A comparison of three data-driven techniques for prognostics. In Failure
Prevention for System Availability, Proceedings of the 62th Meeting of the MFPT Society, Society for Machinery
Failure Prevention Technology, Virginia Beach, VA, USA, 6–8 May 2008; pp. 119–131.

15. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.;
Harmel, R.D.; van Griensven, A.; van Liew, M.V.; et al. SWAT model use, calibration, and validation.
Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

16. Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in
agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [CrossRef]

17. Dadaser-Celik, F.; Celik, M.; Dokuz, A.S. Associations between stream flow and climatic variables at
Kizilirmak River Basin in Turkey. Glob. NEST J. 2012, 14, 354–361.

18. Kisi, O. Modeling discharge-suspended sediment relationship using least square support vector machine.
J. Hydrol. 2012, 456–457, 110–120. [CrossRef]

19. Saleh, A.; Gallego, O.; Osei, E.; Lal, H.; Gross, C.; McKinney, S.; Cover, H. Nutrient tracking tool—A user
friendly tool for calculating nutrient reductions for water quality trading. J. Soil Water Conserv. 2011, 66,
400–410. [CrossRef]

20. Nejadhashemi, A.P.; Smith, C.M.; Hargrove, W.L. Adaptive Watershed Modeling and Economic Analysis
for Agricultural Watersheds. MF2847; Kansas State University Agricultural Experimentation Station and
Cooperative Extension Service: Manhattan, KS, USA, 2009; Available online: http://www.bookstore.ksre.
ksu.edu/pubs/MF2847.pdf (accessed on 11 April 2016).

http://dx.doi.org/10.2307/1313099
http://dx.doi.org/10.1016/j.jhydrol.2011.11.054
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000880
http://dx.doi.org/10.1002/eco.1607
http://www.ncbi.nlm.nih.gov/pubmed/26688705
http://dx.doi.org/10.1002/eco.1471
http://dx.doi.org/10.1016/j.jhydrol.2010.02.006
http://dx.doi.org/10.2166/nh.2012.057
http://dx.doi.org/10.1002/hyp.9895
http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x
http://dx.doi.org/10.1016/j.scitotenv.2012.07.033
http://www.ncbi.nlm.nih.gov/pubmed/22871465
http://dx.doi.org/10.1016/j.jhydrol.2013.04.039
http://dx.doi.org/10.13031/2013.42256
http://dx.doi.org/10.1016/j.jhydrol.2013.03.026
http://dx.doi.org/10.1016/j.jhydrol.2012.06.019
http://dx.doi.org/10.2489/jswc.66.6.400
http://www.bookstore.ksre.ksu.edu/pubs/MF2847.pdf
http://www.bookstore.ksre.ksu.edu/pubs/MF2847.pdf


Water 2016, 8, 287 14 of 15

21. Nejadhashemi, A.P.; Woznicki, S.A.; Douglas-Mankin, K.R. Comparison of four models (STEPL, PLOAD,
L-THIA, and SWAT) in simulating sediment, nitrogen, and phosphorus loads and pollutant source areas.
Trans. ASABE 2011, 54, 875–890. [CrossRef]

22. Bosch, D.; Pease, J.; Wolfe, M.L.; Zobel, C.; Osorio, J.; Cobb, T.D.; Evanylo, G. Community decision:
Stakeholder focused watershed planning. J. Environ. Manag. 2012, 112, 226–232. [CrossRef] [PubMed]

23. Maguire, L.A. Interplay of science and stakeholder values in Neuse River total maximum daily load process.
J. Water Res. Pl-ASCE 2003, 129, 261–270. [CrossRef]

24. Huang, Y.; Lan, Y.; Thomson, S.J.; Fang, A.; Hoffmann, W.C.; Lacey, R.E. Development of soft computing and
applications in agricultural and biological engineering. Comput. Electron. Agric. 2010, 71, 107–127. [CrossRef]

25. Kisi, O. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J.
2005, 50, 683–696. [CrossRef]

26. Kisi, O. Daily pan evaporation modeling using a neuro-fuzzy computing technique. J. Hydrol. 2006, 329,
636–646. [CrossRef]

27. El-Shafie, A.; Taha, M.R.; Noureldin, A. A neuro-fuzzy model for inflow forecasting of the Nile river at
Aswan high dam. Water Resour. Manag. 2007, 21, 533–556. [CrossRef]

28. Kisi, O. River flow forecasting and estimation using different artificial neural network techniques. Hydrol. Res.
2008, 39, 27–40. [CrossRef]

29. Guven, A. Linear genetic programming for time-series modeling of daily flow rate. J. Earth Syst. Sci. 2009,
118, 137–146. [CrossRef]

30. Kisi, O.; Haktanir, T.; Ardiclioglu, M.; Ozturk, O.; Yalcin, E.; Uludag, S. Adaptive neuro-fuzzy computing
technique for suspended sediment estimation. Adv. Eng. Softw. 2009, 40, 438–444. [CrossRef]

31. Guven, A.; Talu, N.E. Gene-expression programming for estimating suspended sediment in Middle
Euphrates Basin, Turkey. Clean Soil Air Water 2010, 38, 1159–1168. [CrossRef]

32. Hamaamin, Y.A.; Nejadhashemi, A.P.; Einheuser, M.D. Application of fuzzy logic techniques in estimating
the regional index flow for Michigan. Trans. ASABE 2013, 56, 103–115. [CrossRef]

33. Shenton, W.; Hart, B.T.; Chan, T.U. A Bayesian network approach to support environmental flow restoration
decisions in the Yarra River, Australia. Stoch. Environ. Res. Risk Assess. 2014, 28, 57–65. [CrossRef]

34. Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical
development, applications and future research directions. Trans. ASABE 2007, 50, 1211–1250. [CrossRef]

35. Giri, S.; Nejadhashemi, A.P.; Woznicki, S.A.; Zhang, Z. Analysis of best management practice effectiveness
and spatiotemporal variability based on different targeting strategies. Hydrol. Process. 2014, 28, 431–445.
[CrossRef]

36. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation;
Version 2005; Texas Water Resources Institute: Temple, TX, USA, 2005.

37. United States Geological Survey. Soils Data for the Conterminous United States Derived from the NRCS State Soil
Geographic (STATSGO) Data Base; United States Geological Survey: Reston, VA, USA, 2014. Available online:
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml (accessed on 11 April 2016).

38. National Agricultural Statistics Service. CropScape-Cropland Data Layer; National Agricultural Statistics
Service: Washington, DC, USA, 2008; Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed
on 11 April 2016).

39. United States Environmental Protection Agency. Better Assessment Science Integrating Point and Nonpoint
Sources. USEPA Office of Water; EPA-823-B-13-001; United States Environmental Protection Agency:
Washington, DC, USA, 2013.

40. National Hydrography Dataset. National Hydrography Datasets; Unites States Geological Survey: Reston, VA,
USA, 2014. Available online: http://nhd.usgs.gov/ (accessed on 11 April 2016).

41. Love, B.; Nejadhashemi, A.P. Environmental impact analysis of biofuel crops expansion in the Saginaw River
watershed. J. Biobased Mater. Biol. 2011, 5, 30–54. [CrossRef]

42. Thipparat, T. Application of adaptive neuro fuzzy inference system in supply chain management evaluation.
In Fuzzy Logic—Algorithms, Techniques and Implementations; Dadios, E.P., Ed.; InTech: Rijeka, Croatia, 2012;
pp. 115–126. Available online: http://www.intechopen.com/books/fuzzy-logic-algorithms-techniques-and-
implementations/application-of-adaptive-neuro-fuzzy-inference-system-in-supply-chain-management-
evaluation (accessed on 11 April 2016).

http://dx.doi.org/10.13031/2013.37113
http://dx.doi.org/10.1016/j.jenvman.2012.07.031
http://www.ncbi.nlm.nih.gov/pubmed/22940121
http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:4(261)
http://dx.doi.org/10.1016/j.compag.2010.01.001
http://dx.doi.org/10.1623/hysj.2005.50.4.683
http://dx.doi.org/10.1016/j.jhydrol.2006.03.015
http://dx.doi.org/10.1007/s11269-006-9027-1
http://dx.doi.org/10.2166/nh.2008.026
http://dx.doi.org/10.1007/s12040-009-0022-9
http://dx.doi.org/10.1016/j.advengsoft.2008.06.004
http://dx.doi.org/10.1002/clen.201000003
http://dx.doi.org/10.13031/2013.42594
http://dx.doi.org/10.1007/s00477-013-0698-x
http://dx.doi.org/10.13031/2013.23637
http://dx.doi.org/10.1002/hyp.9577
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://nassgeodata.gmu.edu/CropScape/
http://nhd.usgs.gov/
http://dx.doi.org/10.1166/jbmb.2011.1119
http://www.intechopen.com/books/fuzzy-logic-algorithms-techniques-and-implementations/application-of-adaptive-neuro-fuzzy-inference-system-in-supply-chain-management-evaluation
http://www.intechopen.com/books/fuzzy-logic-algorithms-techniques-and-implementations/application-of-adaptive-neuro-fuzzy-inference-system-in-supply-chain-management-evaluation
http://www.intechopen.com/books/fuzzy-logic-algorithms-techniques-and-implementations/application-of-adaptive-neuro-fuzzy-inference-system-in-supply-chain-management-evaluation


Water 2016, 8, 287 15 of 15

43. Cobaner, M. Evapotranspiration estimation by two different neuro-fuzzy inference systems. J. Hydrol. 2011,
398, 292–302. [CrossRef]

44. Sanikhani, H.; Kisi, O. River flow estimation and forecasting by using two different adaptive neuro-fuzzy
approaches. Water Resour. Manag. 2012, 26, 1715–1729. [CrossRef]

45. Zhang, Z. Bayesian Spatio-temporal model with separable CAR-AR covariance structure. 2016. Available
online: http://stt.msu.edu/~zhangz19/BST.html (accessed on 11 July 2016).

46. Ritter, C.; Tanner, M.A. Facilitating the Gibbs sampler: The Gibbs stopper and the griddy-Gibbs sampler.
J. Am. Stat. Assoc. 1992, 87, 861–868. [CrossRef]

47. Celeux, G.; Forbes, F.; Robert, C.P.; Titterington, D.M. Deviance information criteria for missing data models.
Bayesian Anal. 2006, 1, 651–673. [CrossRef]

48. Lyman, O.R.; Longnecker, M. An Introduction to Statistical Methods and Data Analysis, 6th ed.; BROOKS/COLE
Cengage Learning: Belmont, CA, USA, 2010.

49. Nayak, C.P.; Jain, S.K. Modelling runoff and sediment rate using a neuro-fuzzy technique. Proc. Inst. Civ.
Eng. Water Manag. 2011, 164, 201–209. [CrossRef]

50. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluations
guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50,
885–900. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2010.12.030
http://dx.doi.org/10.1007/s11269-012-9982-7
http://stt.msu.edu/~zhangz19/BST.html
http://dx.doi.org/10.1080/01621459.1992.10475289
http://dx.doi.org/10.1214/06-BA122
http://dx.doi.org/10.1680/wama.900083
http://dx.doi.org/10.13031/2013.23153
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Study Area 
	Modeling Procedures 
	Physically-Based Hydrological Model Setup 
	Data-Driven Hydrological Models Setup 
	ANFIS 
	Bayesian Regression Method 
	Bayesian Regression Model Specification 
	Bayesian Regression Models Comparisons 

	Methods Evaluation Criteria 

	Results and Discussion 
	SWAT Model 
	ANFIS Method Performance 
	Bayesian Regression Method Performance 
	Global Application of ANFIS and Bayesian Regression Best Models at Watershed Scale 
	Local Applications of ANFIS and Bayesian Regression Best Model Structures at the Subbasin Scale 

	Conclusions 

