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Abstract: The Long Term Hydrologic Impact Assessment (L-THIA) model was previously improved
by incorporating direct runoff lag time and baseflow. However, the improved model, called the
L-THIA asymptotic curve number (ACN) model cannot simulate pollutant loads from a watershed
or instream water quality. In this study, a module for calculating pollutant loads from fields and
through stream networks was developed, and the L-THIA ACN model was combined with the
QUAL2E model (The enhanced stream water quality model) to predict instream water quality at
a watershed scale. The new model (L-THIA ACN-WQ) was applied to two watersheds within the
Korean total maximum daily loads management system. To evaluate the model, simulated results
of total nitrogen (TN) and total phosphorus (TP) were compared with observed water quality data
collected at eight-day intervals. Between simulated and observed data for TN pollutant loads in
Dalcheon A watershed, the R? and Nash-Sutcliffe efficiency (NSE) were 0.81 and 0.79, respectively,
and those for TP were 0.79 and 0.78, respectively. In the Pyungchang A watershed, the R? and NSE
were 0.66 and 0.64, respectively, for TN and both statistics were 0.66 for TP, indicating that model
performed satisfactorily for both watersheds. Thus, the L-THIA ACN-WQ model can accurately
simulate streamflow, instream pollutant loads, and water quality.

Keywords: L-THIA ACN; pollutant loads; QUAL2E; simulation; TN; TP; water quality

1. Introduction

Estimation of pollutant loads in watersheds is very important for long-term watershed
management plans such as non-point source (NPS) pollution management or total maximum daily
loads (TMDLs) [1]. To estimate pollutant loads at a watershed, long-term monitoring of flow and water
quality is essential. However, due to limitations in monitoring flow and pollutants in terms of labor and
budget [2], various computer models have been developed and used worldwide [3-7]. Diverse input
data are needed to operate complex watershed-scale hydrology or water quality models such as SWAT
(Soil and Water Assessment Tool) [8], HSPF (Hydrologic Simulation Program—Fortran) [9], and SWMM
(Storm Water Management Model) [10,11]. For this reason, simpler computer models, such as PLOAD
(Pollutant Loading Application) [12], STEPL (Spreadsheet Tool for Estimating Pollutant Load [13,14],
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and L-THIA (Long Term Hydrologic Impact Assessment) [15-18], have been used at the screening level.
Among these models, L-THIA has been used in various studies and long-term watershed management
plans because only daily rainfall data, in conjunction with a land use or soil dataset, are needed for
daily direct runoff simulation and pollutant loads using the Natural Resources Conservation Services
curve number (NRCS-CN) method and event mean concentration (EMC) databases for representative
land uses [17,19-21]. The ArcView /ArcGIS/Web/Web GIS interface to the L-THIA model has been
developed and used for almost two decades [15,16,18,20,22,23]. The Low Impact Development (LID)
module was developed and integrated into L-THIA for environmentally friendly urban land use
planning [24].

However, the current L-THIA model has limitations in estimating direct runoff during low-flow
season because it does not compute direct runoff depending on the amount of rainfall [17,25,26].
In addition, the baseflow component for each hydrologic response unit (HRU) is not simulated [17].
When applying the L-THIA model to a watershed, lag time of the direct runoff component (to account
for time needed to reach streams), the baseflow component contribution from unconfined aquifers,
and flow routing through channel networks should all be considered. These limitations were addressed
in the watershed-scale L-THIA asymptotic curve number (ACN) model developed by Ryu et al. [27].

With these capabilities enhanced, the watershed-scale L-THIA ACN model could be used at
ungauged watersheds for streamflow estimation. However, it does not simulate pollutant loads from
HRUs, or evaluate the effects of watershed routing on water quality changes through stream networks.

Thus, the objectives of this study are to (1) develop a module for estimation of pollutant loads
from fields based on EMC databases for various land uses and amounts of rainfall; (2) to add the
QUALZ2E model (The enhanced stream water quality model) for stream water quality modeling to the
watershed-based L-THIA model; and (3) to evaluate the accuracy of the watershed-scale L-THIA ACN
model with water quality (watershed-scale L-THIA ACN-WQ model) by comparing estimated water
quality with observed water quality.

2. Materials and Methods

2.1. Development of the Water Quality Simulation Module of the Watershed-Scale L-THIA ACN Model

The watershed-scale L-THIA ACN model, developed by Ryu et al. [27], does not include a water
quality component. Therefore, a field pollutant load estimation module and a stream water quality
module were added to the L-THIA model (Figure 1).

In the L-THIA model, pollutant loads for eight representative land uses were computed by
multiplying EMC data collected in the USA by direct runoff volume [17,28].
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Figure 1. Flow diagram for development of watershed-scale L-THIA ACN-WQ (Long Term Hydrologic
Impact Assessment Asymptotic Curve Number-Water Quality) model.

2.1.1. Development of the Field Pollutant Load Estimation Module

To develop the field pollutant load estimation module, it is assumed that pollutant loads through
direct runoff and baseflow should be estimated from each HRU, and move to the stream of each
subbasin. For this, the EMC data for direct runoff and baseflow components for various land cover
types are needed. However, EMC data on infiltration from various land cover types are not available
in South Korea, as is the case in many other countries. Thus, pollutant load from the baseflow
component was estimated by multiplying the baseflow by adjusted EMC data. The adjusted EMC data
is calculated by multiplying the EMC concentration by a user-defined coefficient to explain adsorption
or degradation through soil and the loss of some portions to deep aquifers [29]. The EMC data were
derived from monitoring data collected at various locations; thus, regional characteristics of EMC
should be considered when these EMC data are applied. The EMC adjustment coefficients were used
in pollutant estimation from each HRU in this study (Equation (1)), which allows ease of model use,
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providing reasonable accuracy using a limited number of input parameters, similar to the original
L-THIA model [15-18].
EMCpr = EMC x Adj_EMCpgr

1
EMCBP = EMC x Adj_EMCBF ( )

where EMCpp is the pollutant concentration in direct runoff (mg/L), EMCpr is the pollutant
concentration in baseflow (mg/L), EMC is the initial pollutant concentration of both direct runoff
and baseflow (mg/L), Adj_EMCpg is the adjustment coefficient for EMC in the direct runoff,
and Adj_EMCgpr is the adjustment coefficient for EMC in the baseflow.

The pollutant loads through either direct runoff or baseflow from each HRU (Equation (2)) are
summed together for each subbasin (Equation (3)) and then these loads, later converted to concentration
of pollutants, are used as input data to the instream water quality simulation (Equation (4)):

EMCpr X QpRr,HRU

Lprru = 1000 2
L | EMCgrxQBF,HRU @)
BF hru = 1000

where Lpp y,, is the pollutant load of direct runoff (kg), Ly, is the pollutant load of baseflow (kg),
EMChpr is the pollutant concentration in direct runoff (mg/L), EMCjpy is the pollution concentration
in baseflow (mg/L), Qpr Hry is the amount of direct runoff (m3) discharged to the main channel,
and Qprpry the amount of baseflow (m?) into the main channel:

n
LDR,sub = Z LDR,hru

HRU
i 3)
LBF,sub = Z LBF,hru
HRU
C [ Lpr,sup>x1000
DRysub = QDR sub @)
Lgr o5 X 1000
CBF,sub - QBF sub

where Lpg 1 is the pollutant load of direct runoff in subbasin (kg), Lgr,p is the pollutant load of
baseflow in subbasin (kg), Cpg is the pollutant concentration of direct runoff in the subbasin (mg/L),
Cgr is the pollutant concentration of baseflow in the subbasin (mg/L), Qpg sy is the amount of direct
runoff discharged to the streams in the subbasin (m?), and QpErsup is the amount of baseflow into the
main channel in the subbasin (m?).

The EMC data from the “Project of the long-term monitoring for the nonpoint source (NPS)
pollution”, monitored by the Ministry of Environment (MOE) in South Korea, were used (Table 1)
because the EMC data for various land cover types and rainfall ranges are available in these datasets.
The NPS pollution loads have been measured over seven years (2008-2015) in a small subbasin for
thirteen representative land covers. The data compiled through this long-term monitoring project have
information on NPS pollution, such as the amount and ratio of NPS pollution in runoff, and EMC
data [30-33]. In recent years, the MOE of Korea has determined the EMC and unit loads for each
land cover using the 7-year data from the project. The data were validated through government
hearings [34].
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Table 1. Monitored event mean concentration (mg/L) of individual land cover for various rainfall magnitudes.

Land Cover BODs; (Biocheminal Oxygen Demand) TN (Total Nitrogen) TP (Total Phosphorous)
<10 mm 10-30 31-50 >50 mm <10 mm 10-30 31-50 >50 mm <10 mm 10-30 31-50 >50 mm

Residential area 6.48 6.66 4.66 3.08 5.44 5.71 3.17 4.06 0.373 0.289 0.210 0.282
Manufacturing area 24.96 22.36 10.72 4.97 3.11 3.49 7.09 2.94 0.342 0.423 0.338 0.358
Regional public facility area 32.21 49.52 22.70 14.52 7.14 8.62 6.08 2.47 0.823 0.757 0.425 0.287
Recreational facility area 18.53 10.76 10.21 6.38 6.28 3.69 4.89 1.67 0.845 0.352 0.460 0.269
Road 10.61 7.17 8.89 3.31 6.18 2.68 2.76 2.01 0.221 0.231 0.217 0.176
Commercial area 6.52 8.12 4.48 412 5.81 5.12 2.59 5.68 0.277 0.331 0.212 0.453
Upland 2.26 3.40 3.57 3.50 2.38 2.83 2.33 241 0.215 0.386 0.301 0.436
Orchard 0.00 0.68 5.11 11.37 0.00 1.93 6.75 6.89 0.000 0.692 1.358 2.233
Green house 4.77 7.13 6.34 5.78 1.88 3.04 5.18 3.12 0.585 1.155 2.948 2.595
Paddy 0.00 1.10 2.09 2.63 0.00 1.41 3.88 5.54 0.000 0.154 0.423 0.962
Pasture 1.18 1.16 1.22 1.64 1.33 2.26 248 2.81 0.043 0.059 0.046 0.061
Forest 3.80 5.01 3.46 3.23 1.69 2.69 2.30 3.33 0.193 0.325 0.232 0.372

Bare land 6.52 8.12 448 4.12 5.81 5.12 2.59 5.68 0.277 0.331 0.212 0.453
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2.1.2. Incorporation of Simplified QUAL2E Instream Water Quality Model

In this study, the simplified QUAL2E model [35], which has been widely used in one-dimensional
water quality simulation, was added into the channel routing module of the watershed-scale L-THIA
ACN model. The mechanism of instream water quality changes in the QUAL2E model is given in
Brown and Barnwell [35].

To simulate water quality through stream networks using the simplified QUAL2E, flow and
pollutant concentration parameters from each subbasin must be prepared. Pollutant concentrations
calculated in Section 2.1.1 were classified as total nitrogen (TN) and total phosphorus (TP), without
being further divided into specific categories such as nitrate nitrogen (NO3-N), nitrite nitrogen
(NO;-N), ammonia nitrogen (NH3-N), organic nitrogen (organic-N), organic phosphorus (organic-P),
and inorganic-phosphorus (inorganic-P). However, for simulation of instream water quality changes,
division into these categories is required.

Thus, pollutant concentrations of TN and TP in both direct runoff and baseflow were subdivided
by partitioning coefficient parameters, which must be prepared by model users based on water quality
data collected in the study watershed or nearby areas. After partitioning TN and TP, the six pollutant
concentrations (NO3-N, NO-N, NH3-N, organic-N, organic-P and inorganic-P) of the subbasin, and of
the direct runoff and baseflow, were used as input data for water quality simulation in streams, using
the method in Brown and Barnwell [23]. For the baseflow component, organic-N and organic-P
were excluded because these nutrients have greater adsorption characteristics to soil particles while
moving downwards from the surface. Only soluble pollutants can infiltrate into aquifers from the
land surface [29]. The QUAL2E model can only simulate carbonaceous biochemical oxygen demand
(CBOD), and not bottle BODs (five-day biochemical oxygen demand); therefore, bottle BODs5 of the
subbasin calculated by Equation (4) was converted to CBOD following Equation (5):

bottleBODs — 4.57(NH3)(1 — e™5*knb) — oy A(1 — e75%P)
1 _ g—5xkdb ®)

CBOD, =

where CBOD, is the ultimate CBOD concentration (mg/L), hereinafter referred as CBOD,
and bottleBODj5 is the bottle BODs concentration calculated by Section 2.1.1 (mg/L), NHj is the
ammonia concentration (mg/L), A is the algal biomass (mg/L), p is the respiration rate of algae (day 1),
knb is the nitrification rate coefficient in bottle BODs at 20 °C (day 1), and kdb is the deoxidation rate
coefficient in bottle BODj5 at 20 °C (dayfl).

Since initial dissolved oxygen (DO) and algae pollutant concentrations required in QUALZE are
not available in the EMC databases (Table 1), the initial concentration of DO was estimated using the
method proposed by APHA (Washington, DC, USA) [36]. Changes in DO were calculated using the
method in Brown and Barnwell [35]. The amount of algal biomass is closely related to chlorophyll a
and can be derived by using its relationship with the concentration of chlorophyll a [37]. Chlorophyll a
concentration was derived by using a simplified version of the exponential function proposed by
Cluis et al. [37] (Equation (5)):

Chl = 0, if Qprsup < 107°m>/s, or (TP and TN < 107°)

Chl = %1% if Oppap >10~%m3/s, and (TP and TN > 10-°) ©)
Chl = %1% it Opp s > 10-5m3/s, TP < 10~%and TN > 10~

where Chl is the chlorophyll a concentration in the direct runoff (1t/L), Qpr sup is direct runoff flow rate
into the main channel (m3/s), TN is the total Kjeldahl nitrogen load (kmol), TP is the total phosphorus
load (kmol).
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The initial concentration of DO was estimated using Equation (7) proposed by APHA (Washington,
DC, USA) [36]:

1.575701 x 10° | 6.642308 x 107 1.243800 x 1010 8.621949 x 101!

- 7
TempK TempK?2 * TempK3 TempK* @)

DO = exp | —139.34410 +

where DO is the saturation concentration of dissolved oxygen (mg/L), and TempK is water temperature
in Kelvin (273.15 + °C).
Water temperature was calculated using Equation (8) proposed by Stefan and Preud” homme [38]:

TempK = 273.15 + (5.0 + 0.75Tsverage) 8)

where TempK is water temperature during the day (°C) and Typerage is the average air temperature
during the day (°C).

The initial concentrations of chlorophyll 2 and DO in the subbasin were used for input data of the
instream water quality component of the watershed-scale L-THIA ACN-WQ model. The mechanism of
instream water quality changes in the QUAL2E model is shown in Figure 2. More detailed description
for each submodule of QUALZE is explained below in details.
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Figure 2. General structure of QUAL2E [35].

Weather data (e.g., solar radiation, duration of solar radiation and average air temperature) are
required to simulate instream water quality changes using QUAL2E. A change in algae biomass in
streams affects nutrient levels. The amount of algal biomass is simulated using solar radiation and
duration as outlined by Brown and Barnwell [35]. The watershed-scale L-THIA ACN-WQ model was
modified to use the weather data for instream water quality simulation.

In the watershed-scale L-THIA ACN-WQ model, the EMC data can be adjusted to consider local
EMC characteristics. The subdivisions of TN and TP were added to the model to simulate the NO3-N,
NO;-N, NH3-N, organic-P and inorganic-P in streams (Table 2).

Pollutant loads in the stream were simulated using the QUAL2E model and the parameters in
QUALZ2E were used in the watershed-scale L-THIA ACN-WQ model (Table 3). The default values
of QUAL2E parameters were set in the model, as shown in Table 3, with reference to studies of
Glavan et al. and Na [39,40].
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Table 2. Description of event mean concentration (EMC), nitrogen, and phosphorus parameters used
in instream water quality module.

Parameter Name Description Range Default Value
Adj_EMCpr N Constant value for adjustment of nitrogen in surface —0.9-0.9 1.0
Adj_EMCppn Constant value for adjustment of nitrogen in aquifer —0.9-0.9 1.0
Adj_EMCpg p Constant value for adjustment of phosphorus in surface —0.9-0.9 1.0
Adj_EMCgrp Constant value for adjustment of phosphorus in aquifer —0.9-0.9 1.0

TN _ratiol ! Ratio of organic-N in total nitrogen 0.0-0.9 0.05
TN_ratio2 ! Ratio of NO3-N in total nitrogen 0.0-0.9 0.8
TN_ratio3 ! Ratio of NH3-N in total nitrogen 0.0-0.9 0.1
TP_ratiol 2 Ratio of organic-P in total phosphorus 0.0-0.9 0.5

Notes: ! Ratio of NO,-N =1 — (Sum of TN_ratiol, TN_ratio2 and TN_ratio3); 2 Ratio of dissolved P =1 — TP._ratiol.

Table 3. Description of QUAL2E parameters used in instream water quality module.

Parameter Recommended

Name Description Range in QUAL2E Default Value
RS1 Local algal settling rate in the reach at 20 °C 0.15-1.82 0.3408
RS2 Benthic source rate for dissolved phosphorus in the reach at 20 °C 0.001-0.1 0.1
RS3 Benthic source rate for NHy-N in the reach at 20 °C 0.0-1.0 0.0
RS4 Rate coefficient for organic nitrogen settling in the reach at 20 °C 0.001-0.1 0.001
RS5 Organic phosphorus settling rate in the reach at 20 °C 0.001-0.1 0.08
RK1 Carbonaceous biolocgii;?fli szl)iigir: tc}igr::;li (aCth(O)E)()jdeoxygenation rate 0.02-3.4 03
RK2 Oxygen reaeration ria;et ;lr; ?ecsz)ﬁdaatnzcoe o\/élth Fickian diffusion 0.0-100.0 1.0
RK3 Rate of loss of CBOD due to settling in the reach at 20 °C —0.36-0.36 —0.36
RK4 Benthic oxygen demand rate in the reach at 20 °C 0.0-100.0 0.0
BC1 Rate constant for biological oxidation of NHy4 to NO, in the reach at 20 °C 0.1-1 0.1
BC2 Rate constant for biological oxidation of NO, to NOj in the reach at 20 °C 0.2-2 0.2
BC3 Rate constant for hydrolysis of organic N to NHy in the reach at 20 °C 0.2-0.4 0.03
BC4 Rate constant for m;?letrlj\ehrz:;%na(t)g grégémlc P to dissolved P 0.01-0.7 01
RTH Algal respiration rate at 20 °C 0.05-5.0 0.05

TFAC Fraction of photosynthetically active solar radiation 0.0-1.0 0

MMX Maximum specific algal growth rate at 20 °C 1.0-3.0 1.0

e QUAL2E algae? growth llimiting option gl: multiplicative, 12,3 1

2: limiting nutrient, 3: harmonic mean)

A0 Ratio of chlorophyll-a to algal biomass 10.0-100.0 10
Al Fraction of nitrogen algal biomass 0.07-0.09 0.071
A2 Fraction of phosphorus algal biomass 0.01-0.02 0.003
A3 Rate of oxygen production per unit of algal photosynthesis 14-2.3 1.4
A4 Rate of oxygen uptake per unit of algal respiration 1.6-2.3 1.6
A5 Rate of oxygen uptake per unit NH3-N oxidation 3.0-4.0 3.0
A6 Rate of oxygen uptake per unit NO,-N oxidation 1.0-1.14 1.0

Lam0 Non-algal portion of the light extinction coefficient 0-10 0

Lam1 Linear algal self-shading coefficient 0.006-0.065 0.006

Lam2 Nonlinear algal self-shading coefficient 0-1 0
KN Michaelis-Menten nitrogen half-saturation constant 0.01-0.3 0.01
KP Michaelis-Menten phosphorus half-saturation constant 0.001-0.05 0.001
KL Light half-saturation coefficient 0.223-1.135 0.223
Knb Nitrification rate coefficient in CBODs - 0.5
Kdb Deoxidation rate coefficient in CBODs5 - 0.5

PN Preference factor for ammonium nitrogen 0.0-1.0 0.0
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2.2. Applications of the Watershed-Scale L-THIA ACN-WQ Model

To evaluate the watershed-scale L-THIA ACN-WQ model, estimated streamflow and pollutant
loads were compared with observed data at two study watersheds (Dalcheon A and Pyungchang A in
South Korea where the TMDL was carried out; Figure 3).
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Figure 3. Two study watersheds used for evaluation of watershed-scale L-THIA ACN-WQ model.

Dalcheon A is located in the Han River basin in South Korea. The average slope of this watershed
(22.0%) is lower than that of Pyungchang A watershed (30.8%). Land cover types in Dalcheon A consist
of forest (71.9%), agricultural (18.6%), urban (2.5%), bare land (0.9%) and others (6.1%).

Pyungchang A is also located in the Han-River basin. The land cover types consist of forest
(80.5%), agricultural (12.8%), urban (1.7%), bare land (2.0%), and others (1.2%).

Information on the study watersheds including surface area, soil, climate, agriculture production
type and water quality information are shown in Table 4.

Table 4. Information of the study area.

Information of Study Area Dalcheon A Pyungchang A

Surface area (km?) 1200.33 1756.87

Average precipitation (2011-2014) (mm/year) 1315.6 1389.6
Average temperature (2011-2014) (degree) 11.7 12.8
A 11.8 11.7
L o B 16.0 15.9
Hydrologic soil group (%) C 6.6 5.8
D 35.6 36.6
Upland crop 425 326
. . o Green house 14.7 20.7
Agriculture production type (%) Ochard 216 276
Paddy 21.2 241
BOD 0.96 0.88
Average water quality (2011-2014) (mg/L) N 2.76 291

TP 0.02 0.03
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The watershed-scale L-THIA ACN-WQ model, which can estimate instream water quality, was
applied to these study watersheds for the period 2010-2014. The hydrology model parameters and
water quality-related parameters were calibrated using 8-day interval observed flow and water quality
data (the only flow and water quality data available for these TMDL watersheds).

In addition to the adjusted EMC, various QUAL2E parameters such as algal respiration rate, algal
settling rate, algal growth rate, nitrification rate of nitrite, and phosphorus settling rate were adjusted
for a better fit with measured TN and TP data, when calibrating instream water quality of TN and TP.

3. Results and Discussion

3.1. Estimation of Pollutant Load

For assessing the model performance, parameters of the model were manually calibrated by
comparing model simulations with observations for streamflow, TN, and TP. Pearson coefficient of
correlation (R?) and Nash-Sutcliffe simulation efficiency index (NSE) [41] were used as the objective
function, all of which are well known and generally used in evaluating the performance of models [39,42].

The calibrated CN values in Dalcheon A and Pyungchang A are 3% lower and 9% higher,
respectively, than the default CN values (Table 5). The calibrated value for field slope length at
Dalcheon A watershed is 1.5 times greater than that estimated from the relationship between average
slope and slope length suggested by Wischmeier and Smith [43].

Table 5. Calibration parameters for streamflow component of the L-THIA ACN-WQ model.

Watershed Adj CN' SLSUB? DRyg®  apr? aqfyy > Freons®  BFaensy”’ Mk1%  MK2°  Mkx 10

Dalcheon A 0.03 15 4 0.7 20.0 0.10 1 0.05 0.95 0.2
Pyungchang A 0.09 1.0 8 0.5 30.0 0.05 5 0.25 0.75 0.5

Notes: ! Adjusted coefficient for CN; 2 Adjustment for slope length; ® Direct runoff lag coefficient; 4 Baseflow
recession constant; 5 Threshold water level for baseflow contribution in the unconfined aquifer (mm); 6 Fraction
of water flowing into confined aquifer; 7 Delay time in aquifer recharge following water infiltration at surface
(day); 8 Weighting factor for influence of normal flow on storage time constant value; 9 Weighting factor for
influence of low flow on storage time constant value; 10 Weighting factor for Muskingum method.

Threshold water levels (aqfy,,) in Dalcheon A and Pyungchang A were 20 mm and 30 mm, respectively.

Calibrated parameters of the watershed-scale L-THIA ACN-WQ model indicate that EMC
adjustment coefficients affect instream water quality as well as pollutant loads from each subbasin
(Table 6). This indicates that the EMC should be adjusted to account for differences in agricultural
management (fertilizer/manure application rates, tillage, etc.) or urban impervious areas and
population density at each watershed.

As shown in the calibration result, EMCs can be different for direct runoff and baseflow, and they
should be separately calibrated.

In many other countries, including South Korea, it is difficult to predict the EMCs for baseflow by
individual land cover type.

Therefore, if the L-THIA ACN-WQ model is calibrated with the EMC for baseflow in areas with
various land cover types, the representative EMCs for baseflow by individual land cover type could
be estimated. Furthermore, the representative EMCs for baseflow could be used for estimating a
representative ratio of baseflow pollution loads to streamflow pollution loads that can contribute to
estimating pollutant loads for baseflow in ungauged watersheds.

The parameters of the partitioning coefficients of organic N, NO3-N, and NH3-N in TN and
organic-P in TP were defined based on the ratio of measured water quality data from outlets in the
study watersheds (Table 6). Organic-N, NO3-N, NH3-N, and organic P (thus inorganic P) ratio values
are similar in both watersheds, while NO,-N concentrations are different. Thus, these partitioning
values (organic-N, NO3-N, NH;3-N, and organic P) from observed data were used as model inputs
for both study watersheds, while these could be adjusted or calibrated based on local flow and water
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quality conditions. If no observed water quality data are available, these partitioning model parameters
could be calibrated to reflect local conditions indirectly. Parameters related to water quality in streams
(e.g., respiration rate of algae, growth rate of algae, settling rate for phosphorus, nitrification rate) were
calibrated manually to better reflect stream characteristics.

Table 6. Calibration parameters for the water quality component of the L-THIA ACN-WQ model.

Parameters Dalcheon A Pyungchang A
Adj_EMCpr N 0.80 0.70
Adj_EMCgpn 0.90 0.90
Adj_EMCpg p 0.60 0.40
Adj_EMCpgrp 0.40 0.35

TN_ratiol 0.03 0.03

TN_ratio2 0.95 0.95

TN_ratio3 0.01 0.01

TP_ratiol 0.40 0.40
RS1 1.00 1.00
RS2 0.001 0.001
RS3 0.001 0.01
RS4 0.10 0.001
RS5 0.10 0.1
RS6 2.50 2.50
RK1 0.50 0.50
RK2 50 50
RK3 0.36 0.36
RK4 2.00 2.00
RK5 2.00 2.00
RK6 1.71 1.71
BC1 0.10 0.55
BC2 0.20 2.00
BC3 0.02 04
BC4 0.01 0.01

TFAC 0.30 0.30
MMX 1 1
1G 3 3
A0 80 80
Al 0.09 0.09
A2 0.01 0.01
A3 1.60 1.60
A4 2 2
A5 3.50 3.50
A6 1.00 1.00
LamO 1 1
Laml 0.03 0.03
Lam?2 0.054 0.054
KN 0.75 0.02
KP 0.020 0.025
KL 0.025 0.75
Knb 0.50 0.03
Kdb 0.03 0.045
PN 0.45 0.50

3.2. Model Performance Compared to Observed Streamflow And Pollutant Loads

Estimated average streamflow using the watershed-scale L-THIA ACN-WQ model and observed
streamflow at Dalcheon A watershed were 27.68 m®/s and 26.29 m3/s, respectively. The R? and NSE
values were 0.79 and 0.78, respectively (Table 7, Figure 4). Estimated average and observed streamflow
at Pyungchang A watershed were 56.48 m3/s and 53.69 m3 /s, respectively (Table 7, Figure 5).
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Figure 4. Comparison between simulated streamflow (a) and observed streamflow (b) at Dalcheon A
watershed (2011-2014).
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Figure 5. Comparison between simulated streamflow (a) and observed streamflow (b) at Pyungchang
A watershed (2011-2014).

Table 7. Comparison between estimated and observed eight-day average streamflow in the period

between 2011 and 2014.

_ 3
Watershed Average Streamflow (2011-2014) (m>/s) R? NSE
Observation Estimation
Dalcheon A 26.29 27.68 0.79 0.78
Pyungchang A 53.69 56.48 0.76 0.76

Average estimated and observed TN pollutant loads in Dalcheon A were 5227.04 kg and 6077.44 kg,
respectively, (Table 8) and R? and NSE values were 0.74 and 0.72, respectively (Figure 6). Estimated and
observed pollutant loads in Pyungchang A were 10,282.49 kg and 13,457.67 kg, respectively (Table 8).
The R? and NSE values were 0.66 and 0.64, respectively (Figure 7).
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Figure 6. Comparison between simulated TN (a) and observed TN (b) at Dalcheon A watershed

(2011-2014).
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Figure 7. Comparison between simulated TN (a) and observed TN (b) at Pyungchang A watershed

(2011-2014).

Table 8. Comparison between estimated and observed eight-day average pollutant loads in the period

between 2011 and 2014.

Average Pollutant Load

Average Concentration

Watershed Pollutant Loads (2011-2014) (kg) R? NSE (2011-2014) (mg/L)
Observation Estimation Observation Estimation

Dalcheon A TN 6077.44 5227.04 081 0.9 2.76 2.70

alcheon TP 242.13 195.75 079 0.8 0.02 0.03

Pvunechane A TN 13457.67 1028249 066  0.64 2.91 2.35

yungchang TP 302.51 306.02 066 066 0.03 0.04
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Average estimated and observed TP pollutant loads in Dalcheon A were 195.75 kg and 242.13 kg,
respectively. R? and NSE values were 0.70 and 0.64. Average pollutant loads estimated and observed
in Pyungchang A were 306.02 kg and 302.51 kg. The R? and NSE values were both 0.66 (Table 8,

Figures 8 and 9).
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Figure 8. Comparison between simulated and observed TP at Dalcheon A watershed (2011-2014).
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Figure 9. Comparison between simulated and observed TP at Pyungchang A watershed (2011-2014).

The simulated and observed data for concentrations of TN and TP match reasonably well.
For Dalcheon A, estimated and observed TN concentration values were 2.70 mg/L and 2.76 mg/L,
respectively (Table 8). TP estimated and observed values were 0.03 mg/L and 0.02 mg/L, respectively.
For Pyungchang A watershed, average simulated and observed values were 2.35 and 2.91 mg/L of TN,
and 0.04 and 0.03 mg/L of TP, respectively.

These results show that the watershed-scale L-THIA ACN-WQ model can simulate not only
streamflow but also pollutant loads at a watershed with less input data required than for complex

watershed-scale models.
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4. Conclusions

In this study, the watershed-scale L-THIA ACN model, developed by Ryu et al. [27], was enhanced
by developing a field pollutant load estimation module and incorporating the instream QUAL2E
model, in order to simulate pollutant loads at a watershed scale. Comparison of the simulated results
of this L-THIA ACN-WQ model with observed values from two watersheds in South Korea reveal that
the model can simulate not only streamflow but also pollutant loads reasonably well [44,45].

Eight parameters used for calculating pollutant loads in each land cover and 33 parameters for
water quality changes in streams were added in the model. The model requires 51 parameters (ten for
streamflow, eight for pollutant loads from the watershed, and 33 for instream water quality—default
values for these 33 parameters, recommended by the US EPA, are available) in order to simulate
streamflow and water quality.

Based on the calibrated parameters, the default values of the 33 instream water quality
parameters could be used at ungagged watersheds in conjunction with ten (for streamflow) and
eight (for watershed pollutant loads) model parameters prepared according to the localized conditions
of the watershed in question. Further evaluations of the watershed-scale L-THIA ACN-WQ model
under different weather, land use, and soil conditions are needed.

This study attempted to improve the shortcomings of the existing L-THIA model, which could
simulate only pollutant loads for direct runoff. The model suggested in this study can estimate the
total instream pollutant loads and water quality considering baseflow as well as direct runoff.

Furthermore, existing watershed models such as SWAT or HSPF involve complex hydrologic
components and many parameters related to the watershed characteristics [46]. Consequently, users
need to spend lots of time and effort to calibrate various model parameters.

On the other hand, the L-THIA ACN-WQ model can successfully estimate the total streamflow
(direct runoff and baseflow) and instream pollutant loads with less parameters than those of SWAT
or HSPF. In addition, the operating time of models for long-term simulations is significantly reduced
when compared to the other catchment models.

In this regard, we believe that the L-THIA ACN-WQ model can be a useful tool for simulating
streamflow and water quality for sustainable watershed management plans.

Nevertheless, there are still limitations in the developed model in that sensitivity and uncertainty
analysis should be manually conducted. Moreover, the model has no function for simulating other
water qualities (e.g., suspended soil) excluding the BOD, TN, and TP.

Thus, in the near future, an auto-calibration tool associated with various optimal-algorithms will
be mounted on the model to conduct sensitivity and uncertainty analysis. Furthermore, new simple
modules to simulate various water qualities such as SS and TOC will be added to the model.
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