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Abstract: Stormwater quality modeling has arisen as a promising tool to develop mitigation strategies.
The aim of this paper is to assess the build-up and wash-off processes and investigate the capacity of
several water quality models to accurately simulate and predict the temporal variability of suspended
solids concentrations in runoff, based on a long-term data set. A Markov Chain Monte-Carlo
(MCMC) technique is applied to calibrate the models and analyze the parameter’s uncertainty.
The short-term predictive capacity of the models is assessed based on inter- and intra-event
approaches. Results suggest that the performance of the wash-off model is related to the dynamic
of pollutant transport where the best fit is recorded for first flush events. Assessment of SWMM
(Storm Water Management Model) exponential build-up model reveals that better performance is
obtained on short periods and that build-up models relying only on the antecedent dry weather
period as an explanatory variable, cannot predict satisfactorily the accumulated mass on the surface.
The predictive inter-event capacity of SWMM exponential model proves its inability to predict the
pollutograph while the intra-event approach based on data assimilation proves its efficiency for first
flush events only. This method is very interesting for management practices because of its simplicity
and easy implementation.

Keywords: urban stormwater; concentrations; suspended solids; modeling; build-up; wash-off;
data assimilation; MCMC; water quality

1. Introduction

Growing urbanization increases stormwater runoff on impervious surfaces and pollutant loads
leading to a tremendous ecological footprint [1]. Nonpoint source pollution discharged during rainfall
events into receiving water bodies carries a high load of contaminants, including microorganisms,
PAHs (Polycyclic aromatic hydrocarbon), metals and other anthropogenic contaminants, mainly
adsorbed onto suspended solids in runoff [2-4]. Pollutants accumulate on urban catchments during
dry weather periods and are mostly generated by anthropogenic activities but also by atmospheric
deposition and re-suspension of the surrounding soil [5-8]. These pollutants are washed off by storm
events where the particles are eroded and detached by rainfall drops and transported by runoff into
the drainage network [9,10]. Several dynamics of pollutant transport exist and attempt to explain the
variations in pollutant concentrations through the stages of runoff [11]. The fluctuations of the pressure
exerted thus on ecosystems must be quantified including the accurate knowledge of the underlying
processes of generation and transport of pollutants, in order to preserve the receiving environments
from deterioration as well as meeting the legislative requirements imposed by the European Water
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Framework Directive [12]. Mitigation strategies include continuous monitoring of experimental sites.
However, the high expenses involved in this approach bring to light the necessity to find a more
appropriate alternative that can be transposed on unmonitored catchments. Hence, mathematical
models have arisen as a promising tool to predict and simulate runoff quantity and quality since the
1970s [13,14].

Water quality models simulate pollutant loads based either on statistical regression equations or
on conceptual and physical ones, replicating the processes of build-up and wash-off. Regression models
rely on simple statistical methods that relate pollutant concentrations and loads to explanatory variables
such as rainfall, runoff and catchment characteristics [15,16]. Even though regression equations are of
interest for estimating total pollutant loads on the event and annual scale, they are not very reliable
when they are applied at a small time step [16] and can hardly be transferred from a catchment to
another since they are calibrated using a data set specific to one particular catchment. Process based
models consist mainly of replicating the deposition of pollutants on surfaces between two storm events
and their removal and transport by the rain [10,14,17]. Both conceptual and physical approaches have
been developed and tested in order to achieve the best simulation of the pollutograph at the outlet
of catchments.

Physical approaches developed for modeling the wash-off process usually consider the replication
of the erosion of accumulated sediments on the surface, driven by the rainfall impact and the
overland flow, as well as their deposition [18]. Shaw et al. [9] proposed in their study a saltation
mechanistic wash-off model that describes the detachment of pollutant loads by raindrop while
Massoudieh et al. [19] simulated pollutant concentrations using a wash-off model that includes the
detachment and reattachment processes. In a recent study, Hong et al. [20] developed a physical
model that considers both rainfall impact and overland flow as the driving mechanism of sediment
erosion and suggested that raindrop is the major actor in detaching sediments of the urban surface.
Physical approaches are very useful to have an in depth insight into the corresponding process,
however, the implementation of physically based models is not always possible especially if they
are destined for operational use because they require the availability of large data sets that answer
to the detailed description of the system. The large number of parameters also implicated in the
model structure require an extensive calibration, thus it is time consuming. These reasons among
others orient more toward the application of conceptual approaches. Conceptual build-up models
are usually formulated as a function of antecedent dry weather period and are represented either
by linear, power, exponential or the Michaelis-Menton equations [17,21-23]. As for wash-off, it is
mathematically modeled as an exponential decrease of initial available pollutant mass on the surface,
function of rainfall intensity, runoff volume or runoff rate [22]. Recent studies shows that these
models can successfully replicate pollutant loads [24-26] but not the temporal variability of pollutant
concentrations [13,19,27]. An in depth investigation based on a reliable and significant data set might
be the answer to better understand the issue of accurate concentration estimates: the still unconquered
holy grail of this field.

Therefore, the main purpose of this research is to evaluate the build-up and wash-off processes and
investigate the capacity of commonly used water quality models to accurately simulate total suspended
solids concentrations (TSS) and reproduce their temporal variability in runoff, based on a long-term,
continuous data set. First, a wash-off model is evaluated and its performance is discussed with respect
to different dynamics of pollutant transport to identify whether its applicability is specific to a certain
type of events. Then two build-up models are evaluated in order to test their ability of replicating the
accumulation of pollutants on urban surfaces in realistic conditions. Model calibration is performed
based on the “Markov Chain Monte Carlo” technique, which enables the assessment of uncertainty
associated with the model parameters. Finally, the short term predictive capacity of the models is
investigated first at the inter-event scale, to test the period length during which the characteristics of a
calibrated model remain valid, then at the intra-event scale where a new methodology is developed
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based on data assimilation, where the observations of the ongoing event are used for calibrating the
available pollutant mass for erosion.

2. Materials and Methods

2.1. Experimental Site and Monitoring Equipment

The studied catchment is a 2661 m? road surface with its adjacent sidewalks, pavements and
parking zones located in the residential French district “Le Perreux sur Marne”. The area carries high
traffic loads (~30,000 vehicles per day) and is drained by a separate stormwater system. The catchment
is characterized by an imperviousness equal to 70%, a runoff length of 167 m and an average slope of
2.6% (Figure 1).
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Figure 1. The studied catchment delimited in bold black line. In the image we see the location of the
sewer inlet station and the meteorological station insalled at 180 m from the sewer inlet and 15 m of the
extremity of the catchment (Photo taken from Google Map@2016).

From April 2014 to September 2015, monitoring systems were installed in the studied experimental
site to monitor and sample rainfall and road runoff. In this research, data collected from June 2014 to
April 2015 are exploited.

Precipitation data are collected from a meteorological station installed at 180 m from the road
sewer inlet and at 15 m from the catchment’s extremity; 10 mL tipping bucket rain gauge is used for
rainfall measurements, which corresponds to a resolution of 0.1 mm of precipitation height. The station
was not installed directly on the road catchment to avoid its deterioration by the pedestrians and the
surrounding activities and also to reduce the risk of technical problems that will induce significant
errors in the measurements.

The monitoring devices of flow and water quality parameters for road runoff are located in
the sewer inlet into the drainage system and recorded measurements at 1 min time step. For flow
measurement, a Nivus flow meter, based on cross correlation method and providing high accurate
ultrasonic flow measurements is used. As for quality aspects, turbidity (NTU), conductivity, pH and
temperature are monitored with a DS5 OTT multi-parameter probe. For reasons of power and storage
savings, the setting off probe was triggered by the flow meter. Once the flow is higher than 0.15 L/s
(which is considered as the limit of measurement of the flow meter) the quality measurements are
launched until the flow becomes lower than 0.13 L/s for more than 15 min. Systematic volume of
500 mL are also collected for further laboratory analysis of metals, PAHs, DOC (Dissolved organic
carbon), POC (Particulate organic carbon) and TSS for some rainfall events. For each event, the volume
is pumped into two bottles (one made of glass and one made of plastic) of 20 L capacity; 250 mL are
pumped into each one placed in a closed box on the sidewalk by a peristaltic pump (Watson-Marlow,
Falmouth, Cornwall, UK), for each 300 L passing through the system. This volume was determined
for covering 100% of most rainfall events, being thus representative of the total load during the
rainfall event.
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Linear relationship between turbidity and Total Suspended Solids is established in order to
convert turbidity measurements into TSS concentrations. The TSS-turbidity relationship is calculated
using measurements of turbidity obtained from nine samples. TSS concentrations are quantified by
filtration, using 0.45 um filters composed of glass fibers. Distinction between the metallic and the
organic content of sediments is not considered. Thus the linear regression function adjusted over nine
storm events, with a correlation factor R? = 0.98, is given by:

TSS = 0.9006 x T 1)
where TSS is the concentration of Total Suspended Solids in mg/L; and T is Turbidity in NTU.

2.2. Data Set

Overall, 246 rainfall events are recorded for the period between June 2014 and April 2015.
Rainfall events are defined as uninterrupted measurement periods, during which the maximum
time between bucket tips is 30 min. The precision of the rain gauge is 0.1 mm. The review of the
collected meteorological data indicates extensive variability of rainfall characteristics (Table 1).

Table 1. Statistics of the 286 recorded storm events.

Rainfall  Rainfall  Dumton ADWP LRS- LRI ensity sty
Characteristic ~ Depth (mm) (min) (DD HH:MM:SS) (mm/h) (mm/h) (mm/h) (mm/h)
Max 21.3 641.1 21 05:28:19 131 100.2 360 53.9
Min 0.2 0.8 00 00:30:14 0.2 0.2 0.2 0.4
Median 0.7 34.78 00 06:47:05 3.03 2.31 294 1.36
Mean 2.128 75.2 01 06:14:24 9.19 6.61 14.09 3.25

Most storm events are short, as 50% of the events did not last for more than 35 min. The total
rainfall depth varies from 0.2 to 21.3 mm, while maximum rainfall intensities varies between 0.2 mm/h
and 360 mm/h. It is noteworthy that the median value of the antecedent dry weather period is 6 h
indicating short time interval separating rainfall events; hence, the occurrence of successive storms.
Fifty-four storms did not generate runoff, and precipitations in this case fulfilled initial losses.

Runoff data on the corresponding period are recorded for 187 events and were missing for five
events due to technical problems, while turbidity measurements are recorded for 106 events on which
water quality characteristics (event mean concentrations and loads) are assessed.

2.3. Data Validation

2.3.1. Turbidity

A crucial point in urban stormwater modeling is the quality of the data set used, since it is
reflected in the quality of the results. Raw measurements obtained directly from site monitoring cannot
be used before undergoing a validation procedure in order to eliminate non reliable measurements and
interpolating when possible missing data points [28,29]. Automatic pre-validation is first developed to
highlight wrong and doubtful data by associating a mark that reflects the validity of each measurement
of turbidity, followed by a final manual validation. The technique is inspired by the work of Mourad
and Bertrand-Krajewski [29] and the software EVOHE [30] but modified to fit this study case since
turbidity measurements are obtained using one turbidimeter at the inlet of the drainage network.

The automatic pre-validation consists of several steps. First, initial marks are given to all turbidity
measurements based on the sensor measurement range as follows:

e if the measurement is between the minimum and the maximum values given by the turbidity
sensors, which are 0 and 3000, respectively;
e if the measurement is equal to the saturated value 3000;
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e if the measurement is negative or equal to zero or recorded during intervention on site for
maintenance operations.

Negative and zero values of turbidity are then interpolated and re-flagged 1 if they are recorded
intra-event for three consecutive minutes or less. Finally, the values that exceeded the 99.5th percentile
of global signal’s gradient are considered as abnormal and marked 4. These measurements indicate
sudden and irregular change in the signal that cannot be related to any physical process. All data that
have a valid flag (i.e., equal to 1) at the end of the process are kept for the analysis. Others are checked
for final validation manually by comparing rainfall, flow and turbidity graphs. If the saturated values
or the values due to a high gradient, marked initially as 2 and 4, are coincident with a high rainfall
intensity and high flow they are finally re-marked as 1 and taken as valid measurements. All data
whose flag are different than 1 at the end of the manual validation were reflagged 2.

The above procedure generates a validated data set and is efficient in detecting the wrong and
doubtful data that may induce errors in modeling results. In fact, these errors are noticed when
comparing the Nash-Sutcliffe coefficients when calibrating on several events before and after the
manual validation. False turbidity peaks that were kept after the automatic validation for the events of
14 and 15 November 2014, for example, clearly affected the calibration of the model. The Nash-Sutcliffe
efficiencies obtained then were 0.03 and 0.55 respectively and they were highly improved after the
removal of the mistaken turbidity values, Nash—Sutcliffe coefficients increased to 0.47 and 0.87, proving
the sensibility of the model toward false measurements.

2.3.2. Hydrological Modeling

Flow measurements are validated by calculating the global runoff coefficient as well as the
runoff coefficients for each event. Global runoff coefficient is equal to 0.73, calculated by taking into
account the initial losses that correspond to 0.5 mm. The initial losses are defined as mean rainfall
depths that never generated any runoff. Runoff coefficients for each event are variable and the initial
loss is calculated for each event apart. This variability is noticed when plotting the runoff depth
function of rainfall depth (Appendix A, Figure Al). Precipitations with the same rainfall depth will
result in different runoff depth, due to several factors including dry weather period, evaporation
and depression storage. The events resulting in runoff coefficients greater than one are modeled in
addition to the missing runoff data due to technical problems. A hydrological model consisting of a
non-linear reservoir is calibrated and validated over 102 events using rainfall data of the rain gauge
on site to substitute the lost records. The model replicates accurately the flow measurements with a
Nash-Sutcliffe efficiency of 0.85.

2.4. Intra-Event Dynamic of TSS Transport

In order to distinguish the different dynamics of TSS transport during a rainfall event,
dimensionless M (V) curves are plotted. Three typology of events (first flush, last flush and
uniformly distributed) delimited by three zones A, B and C (Figure 2) are defined based on
a simplified classification of the M (V) curves inspired by the method proposed earlier by
Bertrand-Krajewski et al. [11]. Simplifications are made since the definition of first flush given by
these authors is very restrictive and given in the perspective of designing treatment facilities, while in
our case a less restrictive definition is needed.
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Figure 2. Definition of the M(V) curve zones.

2.5. Water Quality Modeling

2.5.1. The Models

Numerous modeling approaches for pollutant generation and transport exist and are detailed
and compared in several reviews [1,31,32]. These reviews classify stormwater quality models based
on modeling approaches, process description, and spatial and temporal scales (Table 2). In this study,
we chose conceptual models to replicate the build-up and wash-off processes since they are easily
implemented and simply applicable thus more attractive for practical applications. In addition,
the diversity of the performance of these models emerging from past researches supports the
need for further investigation of these formulations. Thus, we benefit from the extensive data set
available on this site to test different models and contribute in the comprehension of build-up and
wash-off processes.

Table 2. General classification of stormwater quality models based on different criteria.

Criteria of

Classification Model Type Description
Deterministic Variables properties are well known and do not include any
Variable randomness. The same input will yield the same output.
description Stochastic Variables have a probability distribution and its uncertainty is built
into the model. The same input will yield different possible outputs.
Empirical Relations between inputs and outputs are established from
Process p observations only without any intervention of physical laws
description Conceptual Physical laws are applied in simple and simplified form
Physically based Logical structure based on physical laws governing the process
Global (lumped) Catchment is described as a whole entity
Spatial scale Semi distributed Catchment is divided into sub catchment
Distributed Catchment is divided into elementary unit using a grid
Temporal Event Individual events are simulated
scale Continuous Long period of time are simulated
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We investigated two pollutant build-up models: the exponential build-up model of SWMM
(Storm Water Management Model) and a power function. The exponential build-up model describes
an exponential growth of the build-up curve until it reaches asymptotically the upper limit, which
corresponds to the maximum pollutant load that can be accumulated on the surface. This limit
is reached at the equilibrium state between deposition and removal of pollutant particle [17].
The remaining pollutant load from the previous rainfall event is also taken into account. The amount
of build-up at the beginning of the rainfall event Mg (g/m?) is thus computed using the first order
exponential equation:

Mg(i) = Daccu/Dgo x [1 — e("PERO X ADWP ()] | pRES ,(~DERO x ADWP(i)) )

where MRgs is the remaining pollutant load mass from the previous rainfall event (g/ m?); ADWPy;, is
the antecedent dry weather period preceding the event i (day); Daccu is the pollutant accumulation
rate (g/ m?2/ day); and DgRo is the pollutant erosion rate (/day).

The other model used to describe the accumulation process is based on the power function [21].
The pollutant load Mg (g/m?) present on the surface prior to a storm event is computed as follows:

Mg = a.ADWP?; (3)

where a and b are build-up coefficients

This model assumes that the build-up process starts from zero and that the previous storm event
erodes off all the pollutant present on the surface. Even though recent studies showed that a rainfall
event washes away only a fraction of the pollutants available [10,33], this model gave the best results
in replicating pollutant loads collected from experimental data [21,34].

Pollutant wash-off is simulated using the modified exponential model of SWMM [22], which
considers the non-linear relation between the wash-off load and the runoff rate. This relation is taken
into account by introducing the wash-off exponent C2, which was initially set to be equal to one in the
original SWMM version suggesting a linear dependency of the washed off fraction on the runoff rate.
The eroded pollutant mass at time t during a storm event is calculated thus with the following equation:

Mgro (1) = MB(t>.C1.q(t)C2.dt (4)

Mg(t + dt) = Mg(t) — Mggo (t) ®)

where Mgro(t) is the eroded pollutant mass at t during the time step dt (g/ m?); Mg(t) is the available
pollutant mass for erosion at time t (g/m?); g(t) is the runoff rate (mm /h); dt is the time step; C1 is the
wash-off coefficient; and C2 is the wash-off exponent.

2.5.2. Calibration

Application of water quality models requires estimation of build-up and wash-off parameters, as
these models have very low performance if not calibrated [35].

The exponential build-up model integrates three parameters Dccu, Dpro and the initial pollutant
load present on the surface Mggs (t-0), whereas the power model integrates two parameters which
are the build-up coefficients 2 and b. The exponential wash-off model requires the adjustment of
two parameters C1 and C2. These parameters are adjusted using an automatic calibration technique
based on the Bayesian approach. This approach allows the assessment of parameters uncertainty by
estimating their posterior probability distribution P(6/Yps) given by Bayes’ theorem and expressed
as follow:

P(8/Ygbs) ¢ L(0/Yps)- P(0) (6)
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where 0 is a model parameter; Y, is the time series of observations; P(0) is the prior probability
distribution of the parameters; and L(0/Y o) is the likelihood function that describes the statistical
characteristics of residuals between the observations and the model outputs.

The posterior probability is calculated based on the Metropolis-Hastings algorithm [36] of the
Monte Carlo Markov Chain sampling technique.

The assumptions made in this study for the implementation of the Bayesian approach in the
calibrations of build-up and wash-off models are the same as those made in the previous work of
Kanso et al. [27].

At the end of calibration process we obtain not only the set of parameters for which we have the
maximum likelihood, and that corresponds to the optimal set of parameters, but also the posterior
probability distribution of the parameters that provides information on the uncertainty associated to
these parameters and the likelihood probability vs. the parameters that allows the computation of
model sensibility toward the parameters and the assessment of the uniqueness of the given optimum
parameter set. The model performance is also assessed using the Nash—Sutcliffe coefficient [37].

Calibration is performed considering the period starting from November 2014 to April 2015.
First, it is performed on single event scale to evaluate the wash-off process. The available mass at the
beginning of the rainfall event in this case is considered as a parameter and is calibrated along with
the wash-off coefficient and exponent. Overall, 42 events are included and the results are analyzed
distinguishing the three typology of events in order to investigate if the performance of the wash-off
model is related to the dynamic of pollutant transport by runoff. Then calibration is performed on
continuous periods consisting of three, six and nine successive events in order to evaluate the build-up
process and check to which extent the build-up model can accurately predict the available mass
between consecutive events. A total of 114 rainfall events are included. The configurations evaluated,
couple the modified exponential SWMM build-up model, then the power build-up function with the
SWMM wash-off model. A summary of the calibration procedure is presented in Table 3.

Table 3. Calibration methodology of wash-off and build-up models.

Calibration Wash-Off Assessment Build-Up Assessment

16 periods of 3 successive events each
Number of events 42 8 periods of 6 successive events each
4 periods of 9 successive events each

MB (1) — DACCU/DERO x [1 _ e(fDERO x ADWP (1))] + MRES' e(fDERO x ADWP(i))
Mg (i) = a.ADWPP;

Model Mggo (t) = Mp(t).C1.g(t)C%.dt

2.5.3. Prediction on Short Term

The prediction capacity of the models on short term is also investigated to determine whether
they can provide accurate predictions of the TSS concentrations over short periods of times. For that
matter two approaches are investigated: inter-event and intra-event.

In the inter-event approach, 114 events are divided into periods of four events each; calibration is
performed on the first two events and the models are validated on the third, and then on the third and
fourth events simultaneously.

In the intra-event approach, observations are used along with the median value of wash-off
parameters calibrated on first flush events to determine the available pollutant mass at the beginning
of the storm. Then this mass is eroded by the storm and the Nash—Sutcliffe coefficient between the
measured and the simulated TSS concentrations is calculated. The observations are included into the
numerical model by a simple data assimilation technique. The number of points taken into account
to calculate the available mass increase starting from two points up to considering the whole set of
measurements. This allows identifying if the model can predict the total storm variation only if the
first part of a storm is monitored. This method is applied on 38 events and a summary of the prediction
methodology is presented in the table below (Table 4).
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Table 4. Prediction approaches: inter and intra event.

Prediction Approaches Inter-Event Approach Intra-Event Approach
Number of events 11 periods of 4 events each 38
Build-up Mg (i) = Daccu/Diro x [1 — e—PERO x ADWP ()] 4 pforc o(~DERO x ADWP() R

Model Mg (i) = a. ADWPP

Wash-off Mggo (t) = Mp(t).CLq(t)“2.dt

Calculation of the available
mass prior to the storm
event using an a incremental
number of observations
Simulation of the
corresponding pollutograph

Calibration on the first two events of the period
Methodology Validation on the third event of the corresponding period
Validation on the third and the fourth events of the corresponding period

3. Results and Discussion

3.1. TSS Concentrations and Loads

Event mean concentration (EMC) is commonly used to evaluate the quality of runoff generated
during a wet event and is considered as a surrogate indicator of runoff pollution [38,39]. From the EMC
values summarized in Table 5, significant pollutant loads to receiving outlets are noticed. Median EMC
of TSS obtained for this site is relatively much higher (320.97 mg/L) than those reported earlier in
the literature. Gromaire [2] reported a median EMC of 97 mg/L calculated on six urban roads in
“Le Marais” catchment while Gnecco et al. [40] calculated a median EMC equal to 119 mg/L in the
experimental catchment of Villa Cambiosa in Italy.

The high EMC from the present study is explained mainly by the site’s characteristics
related to high traffic density (~30,000 vehicles per day), since much lower concentrations
(median EMC = 66 mg/L) yielded from road catchments that were less frequented [3].

Loads are expressed per unit of area and range from 0.0035 g/m? to 2.23 g/m?. The total annual
load is equal to 89.23 g/m?.

Table 5. Characteristics of TSS EMC and Loads for the monitored events.

Parameter Maximum Minimum Mean Median Standard Deviation
EMC (mg/L) 2174.37 35.39 452.09 320.97 432.42
Load (g/ m2) 2.23 0.0035 0.51 0.27 0.56

To better understand the variability of EMC and loads of TSS between various storms and seasons,
temporal variations are plotted (Figure 3) and seasonal average EMC and total loads are examined
(Table 6). A seasonal trend is observed for EMC where the highest values are those recorded during
the winter season. The average EMC calculated on winter (550 mg/L) is significantly higher than that
on summer (228 mg/L) although the latter’s events are heavier in terms of both precipitation depth
and intensity than the former’s. This highlights a dilution effect due to an increase in runoff volume
(driven by depth) stronger than the increase in eroded mass (driven by intensity). Indeed, negative
Pearson correlation calculated between the average seasonal EMC and the total rainfall depth collected
for each season (R = —0.6) support the occurrence of dilution. A similar pattern is not detected for loads
whose values are at wide ranges. The seasonal trend disappears in winter and seasonal differences are
not easily detected.
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Figure 3. (a) Temporal variation of EMC (mg/L) for TSS from June 2014 to April 2015; and (b) temporal
variation of load (g/m?) for TSS from June 2014 to April 2015.

Date (month/year)

Table 6. Seasonal values of average EMC (mg/L) and total yields(g/m?) and min-max values of
maximum rainfall intensity (mm/h) and rainfall depth (mm) and total rainfall depth of storm events
for each season.

Season Autumn Winter Spring Summer
Beginning date 6 October 2014 15:30 24 December 2014 15:30 01 April 2015 02:53 11 July 2014 02:16
End date 19 December 2014 13:53 2 March 2015 01:13 26 April 201512:56 27 August 2014 07:02
Number of events 42 29 5 30
Average EMC (mg/L) 270.35 550.82 326.43 228.37
Total load (g/m?) 18.75 18.83 2.75 13.62
Maximum intensity (mm/h) (min-max) 0.54-72 0.71-72 4.23-120 1.77-180
Rainfall depth (mm) (min-max) 0.2-14.2 0.3-7.8 0.3-6.8 0.4-21.3
Total rainfall depth (mm) 131.3 43.7 11.3 129.2

Correlation coefficients are calculated between EMC and loads of TSS and rainfall characteristics to
identify explanatory variables that may be used to predict EMC and loads. The rainfall characteristics
are: antecedent dry weather period (ADWP), storm duration (Duration), average intensity (Imean),
maximum intensity (Imax), maximum five-minute intensity (Imax 5) and precipitation amount (Hrain).
Pearson correlation coefficients obtained are presented in Table 7.

Table 7. Pearson correlation coefficients R between EMC and loads of TSS and rainfall characteristics.

Pearson Correlation Coefficient R

Rainfall Characteristic

TSS TSS Loads
ADWP —0.048 0.14
Duration —0.17 0.37
Imean —0.19 0.12
Imax —0.2 0.22
Imax 5 —0.18 0.28
Hrain —-0.26 0.52

No correlation is found between EMC and the antecedent dry weather period, which seems to
have no effect on runoff quality (R = —0.048). EMC is weakly negatively correlated with the rainfall
depth (R = —0.26) and the rainfall duration (R = —0.17) suggesting the occurrence of dilution during
long or heavy storm events.

As for loads, significant positive correlations are more common than for EMC. The strongest
correlations are with the precipitation depth (R = 0.52) and the storm duration (R = 0.37).
Positive correlations are also shown with maximum 5 min rainfall intensity and maximum intensity, but
the coefficients are small, equal to 0.28 and 0.22, respectively. TSS loads are also positively correlated
with the ADWP, however the correlation is weak as Pearson coefficient is low (R = 0.14).
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3.2. Dynamic of Transport of TSS

Cumulative mass of TSS plotted against the corresponding cumulative runoff volume is presented
in Figure 4. Overall, 17 events are classified as first flush while 22 events are uniformly distributed and
three events are last flush.

Clear relationships between M (V) curves and the characteristics of rainfall events are not obvious.
Rainfall depth and intensity have no direct influence on the distribution of M (V) curves, and neither
does the position of the intensity peak.
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Figure 4. M (V) of TSS for 42 events from November 2014 to April 2015. The bold lines represent the
upper (line with cross) and lower (line with circles) boundaries for the First Flush and Last Flush Zone.

3.3. Modeling

In this study we did not intend to replicate pollutant masses and our main concern was to replicate
the dynamic of concentrations because several studies have shown that pollutant masses are easily
predictable. A recent study by Sage et al. [25], who investigated the capacity of the commonly used
accumulation/wash-off models on a similar road catchment, clearly demonstrated that load estimates
are accurately replicated by the model with a Nash-Sutcliffe coefficient of 0.79. In addition, their
results also show that loads are accurately estimated even with simple EMC models (Nash = 0.77).
In fact, as the runoff volume is the main driver of event loads, respectable results are expected when
the runoff volume is accurately predicted, therefore achieving high performance for modeling loads is
easier than modeling pollutant concentrations and their dynamics which is much more complicated

3.3.1. Wash-Off Assessment

Figure 5 illustrates the variation of Nash-Sutcliffe coefficients obtained from calibrating on the
whole data set. The best performance of the model is obtained when calibrating on first flush events,
where Nash-Sutcliffe efficiency is higher than 0.45 for 14 out of 17 events. This result suggests that the
SWWM wash-off model is more suitable for describing the fluctuation of TSS concentrations for first
flush events.

For last flush and uniformly distributed events, agreement between measured and simulated TSS
concentrations is poor and the model performance is unsatisfactory.

Nash-Sutcliffe coefficients recorded when calibrating over uniformly distributed storms are lower
than 0.15 for half of the events. Better results are obtained for last flush events; nevertheless, they are
only assessed over three events and Nash—Sutcliffe coefficients are between 0.42 and 0.57.
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Figure 5. Variation of the Nash—Sutcliffe coefficients obtained when calibrating on first flush, uniformly
distributed and last flush events.

The pollutographs of three storm events are plotted in Figure 6. It is clearly shown that the
simulated data fit very well with the measured data for the first flush event. The dynamic in this case
is fully replicated by the model. However, for the other two events, the simulations cannot totally
cope with the fluctuations of the concentrations, thus reflecting a lower performance of the model for
uniformly distributed and last flush events.
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Figure 6. Cont.
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Figure 6. Calibration results for the rainfall events of: (a) 14 February 15 (First flush event);
(b) 27 December 14 (Uniformly distributed event); and (c) 13 January 15 (Last flush event).

The best replication of TSS concentrations noticed only for first flush events could be attributed
to a weakness in the model structure that is not adequate to replicate all types of events and require
thus a re-adaptation in order to be not limited to a specific type of events. The re-adaptation could
be the coupling of runoff rate with other variables, such as the rainfall intensity, which is proven to
be an important explanatory variable of the wash-off process [16], or adding other parameters to the
formulation that takes into account the impacts of factors such as the rainfall drop energy and the
shear stress.

Since the model performance is not satisfying for all events, the assessment of the variability
of optimal parameters as well as the correlations with rainfall characteristics and temperature are
performed only on 19 events having a Nash—Sutcliffe coefficient higher than 0.45.
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As we can see in Figure 7, showing the boxplots of the calibrated parameters, large variability is
observed mainly for the initial load and the wash-off coefficient C1. The calibration on some events
also tends to converge to optimum values that have no clear physical significance and that diverge
extremely from the mean. The empirical based formulation of SWMM wash-off model may be an
explanatory factor of this result. In fact, the variability of the initial available mass prior to a storm
event is also noticed on site where dust collection campaigns were carried over three distinct locations.
The experimental protocol for dust collection is detailed in Becher et al. [41]. Dust was collected from
the gutter, sidewalk and pavement. The highest mass was collected in the gutter with a mean value of
13.76 g/m? compared to 4.14 g/m? and 12.03 g/m? collected, respectively, on the pavement and on
the sidewalk. Comparison of the mean observed and simulated values of available load on the surface
shows that the simulations (3.53 g/m?) vary in the lower range of observations, which indicates the
tendency of the model to underestimate pollutant loads. Moreover, this is confirmed by a significant
negative Spearman correlation calculated between the initial load and C1 (R = —0.85, p-value < 0.0001).
This correlation [42], which is a Pearson correlation calculated between the ranks of the corresponding
variables and is not limited to a linear relation, shows that C1 and the initial load compensate each
other which may also explain the difficulties encountered during calibration.

Imitial load(g/m?) C1 C2
50
50 &2
3
40
49 25
30 30 2
20 - 20 = T
1 =
1 10
10 [ 0.5 1
0 5 0 - 0

1 1 1

Figure 7. Boxplots of optimal calibrated wash-off parameters. The central mark of each box is the
median, the edges represent the 25th and 75th percentiles, and the whiskers extend to the maximum
and minimum values that are not considered as outliers.

As for the wash-off exponent, the variability in C2 values suggests different patterns of erosion
since the wash-off exponent is regarded as an indicator of the shape of the pollutograph [4]. For one
event, C2 is calibrated to zero, suggesting linear variation between the washed pollutant mass and
the available one for erosion. While for other events, calibrated C2 values are lower than 1 indicating
a reduction in the flow rate and therefore slower rate of transport and decreasing of pollutant
concentrations from initial values. A recent study by Wijesisri et al. [43] shows that the wash-off
of particles less than 150 pm is associated with higher values of wash-off exponent and occurs faster
than the wash-off of particles larger than 150 um. Subsequently, the variation of C2 values maybe also
related to the difference in size distribution of the eroded particles.

Correlations for each parameter are summarized in Appendix A (Table Al) and significant
correlations are presented in bold.

For the initial available mass, positive linear correlations are only calculated with maximum and
average temperature (Rtmax = 0.509, p-value < 0.031; Rrmean = 0.49, p-value < 0.038). No correlation
exists with the antecedent dry weather period. This could be related to the fact that calibrated mass
included other sources of supply such as the residual mass from the previous storm. Past research has
shown that a storm event washes only a fraction of the available pollutants [10,33], therefore remaining
loads are added to the ones that build-up during dry period between two rainfalls to give the total
available mass for wash-off.
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As for wash-off coefficient C1 and wash-off exponent C2, significant linear correlations are
calculated with average intensity (Rimean = 0.78, p-value < 0.001) and maximum five-minute intensity
(Rimax = 0.84, p-value < 0.001). This finding is consistent with what we mentioned previously on rapid
erosion of pollutants related to higher values of wash-off exponent. Accordingly, it is known that
intense rainfalls generate drops with high kinetic energies; therefore, during intense storm events,
particles are easily detached, eroded and transported by the flow. Alternatively, rainfalls characterized
with low intensities generate a diluted runoff since the runoff transport capacity is weak.

Negative Spearman correlations are calculated between C1 and the rainfall depths
(Rrank Hrain = —0.59, p-value = 0.008) and durations (Ryank puration = —0-64, p-value = 0.004) respectively;
this is likely due to the formulation of the average rainfall intensity that includes the ratio of rainfall
depth to rainfall duration.

3.3.2. Build-Up Assessment

Calibration results obtained for the tested configurations are presented below.
e  Modified SWMM exponential build-up:

Calibrations over periods consisting of three, six and nine continuous events resulted in a wide
range of Nash-Sutcliffe coefficients and parameters. Figure 8 shows the boxplot for the Nash-Sutcliffe
coefficients obtained for the three periods of calibration.

0.8— -

0.7— —

0.6— -

Nash Suteliffe coefficient
b
I
|

03— N

0.2— —

01— -

1 | |
Periods of 3 continuous events (n=16) Periods of 6 continuous cvents (n=8) Periods of 9 continuous cvents (n=4)

Figure 8. Boxplots of Nash-Sutcliffe coefficients obtained when calibrating over periods of three, six
and nine continuous events. The central mark of each box is the median of the Nash coefficients, the
edges represent the 25th and 75th percentiles, and the whiskers.

When calibrating over three events, Nash values vary between 0.045 and 0.93. Half of the periods
have a Nash-Sutcliffe efficiency lower than 0.35, suggesting that the fit between the observations and
the simulations of TSS concentrations is relatively poor.

Results obtained when calibrating over periods of six events are not more encouraging where the
overall variation of Nash—Sutcliffe efficiency is between 0.058 and 0.55.

Calibration over periods of nine continuous events was not possible except for four periods due
to missing data. Agreement between the measured and the simulated TSS concentrations is roughly



Water 2016, 8, 312 16 of 24

reasonable for one period where the Nash-Sutcliffe coefficient is 0.58, while for the other periods it
ranges from 0.16 to 0.51.

The behavior of the build-up model is not very obvious because of the large variability of
the obtained Nash—Sutcliffe coefficients and the performance of the model is highly dependent on
the calibration period. The variability is also noticed in the optimal sets of calibrated parameters.
As seen in Figure 9, the initial available load at the surface has a wide range of variability from
zero up to 213.32 g/m?. This supports the high stochasticity influencing the accumulation process.
The build-up parameters also are at wider ranges than the wash-off coefficients. The accumulation
rate represented by the parameter Dcy varies between 0.0075 g/ m? and 27.47 g/ m?2, and shows
that pollutant accumulation on the surface can be significant for some events. Deo, the pollutant
removal rate during dry weather, is calibrated to zero for most of the events, which indicates that the
equilibrium load represented by Daccu/ Dero tends to infinity, supporting the hypothesis of the presence
of unlimited supply on the surface. As for wash-off coefficients, C1 has broader interval of variation
than C2 who appears to be the best determined parameter since it fluctuates in the interval between
0.6 and 0.8 for the majority of the events. The uncertainty on the estimated parameters seems to be
insignificant except for some events where the high dispersion of the calibrated parameter indicate
that the model is not sensitive to the best calibrated set of parameters and that no optimum truly
exist. This uncertainty will induce errors in the modeling outputs and justifies the low Nash-Sutcliffe
efficiencies obtained is some cases.
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Figure 9. Standard deviation of the posterior probability of build-up and wash-off parameters.

To evaluate the suitability of the model for simulating the TSS concentrations over long term,
we decided to calibrate the model over four successive incrementing length periods of three events
increment and then compare the obtained Nash-Sutcliffe efficiencies.

As indicated in Figure 10 the model capacity to estimate the accumulated load between storm
events has clearly declined after considering more than 3 events except for the first calibration period
that started on the 14 November. For example, Nash coefficient has decreased from 0.93, to 0.54 and
0.58, respectively, when the calibration period starting the 16 November is extended to include six and
nine consecutive events. The model performance is slightly different when comparing calibrations
over six and nine events, with better Nash—Sutcliffe efficiency calculated over the periods consisting
of six events except for the 16 November. This finding reveals the difficulties of calibrating the
build-up model and the inefficiency of the model as it is to reproduce the inter-event variability and
the complexity of the accumulation process over a long temporal scale.
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Figure 10. Nash coefficients calculated over four periods considering calibration over three, six and
nine continuous.

Further investigation consisted on comparing the results obtained under the assumption of
exponential build-up and the results obtained when the build-up model was omitted. Nash-Sutcliffe
efficiencies are calculated in each case and the results are summarized in Figure 11.
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Figure 11. Comparison of the Nash coefficients calculated when calibrating the build-up and wash-off
on periods of three successive events and the Nash coefficients calculated when calibrating the wash.

The comparison shows that the model performance has decreased when the build-up model is
introduced, suggesting that the initial TSS load predicted by the model is incorrect. Acceptable results
were only obtained for the calibration period starting on the 18 November where the Nash—Sutcliffe
coefficients calculated when calibrating the build-up (0.614 and 0.529) were slightly different from
the Nash-Sutcliffe coefficients calculated when calibrating only the wash-off (0.727 and 0.648).
However, for the rest of calibration periods, the ability to replicate TSS concentrations clearly decreased.
This result indicates that the model performance is not significantly affected by modeling the pollutant
build-up, which can be easily neglected without any consequences on the predictive capacity of
the model.
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e  Power build-up:

Calibration of the model is first performed over 16 periods of three consecutive events each.
Same as for the exponential model, the model performance and the calibrated parameters are very
distinct from one event to another as shown in Figure 12.
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Figure 12. Boxplots of Nash-Sutcliffe coefficients, power build-up parameters and wash-off parameters
obtained when calibrating over Periods of three continuous events.

Nash-Sutcliffe coefficients range between 0.058 and 0.8 and the values associated with build-up
parameters a and b are extremely variable. This is related mainly to the existing correlation between
these parameters (Rpearson = —0.56, p-value = 0.023), indicating that same results can be obtained
combining different sets of 2 and b. The calibration of the parameter b results in negative and low
values for most of the periods which proves that the model is completely dependent on the coefficient
a to better fit the observations and that is not using the antecedent dry weather period as a predictive
variable. Parameter a have the biggest weight in the calibration of the model and it compensates the
effect of all other component. These results indicate that the structure of the model should be reviewed.

Comparison between the performances of the exponential and the power equations reveals that
no specific model has the best performance for all periods (Figure 13). It seems that the exponential
model outperforms the power model when calibrated on periods before 30 January and after that date
the two models perform similarly in terms of simulating TSS concentrations.
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Figure 13. Comparison of the Nash—Sutcliffe coefficients calculated when calibrating the exponential
build-up and the power build-up.



Water 2016, 8, 312 19 of 24

The replication of the variability of the accumulation process under the assumption of dry
weather period as being the main explanatory variable does not seem very accurate. The test of both
SWMM and power models based on dry weather period and their unsatisfactory performance support
this assumption.

Different sources of supply independent of dry weather period and resulting from random
phenomenon such as leaf fall, and de-icing salt during fall and winter as well as animal wastes that
occur between events are not taken into consideration in the models in their current formulation,
which highly affect the stock of mass present of the surface and lead to a failure in its accurate estimate.

3.3.3. Short Term Predictive Capacity

To assess the short term predictive capacity of water quality model that couples the exponential
build-up and SWMM wash-off equations, two methodologies are tested and the obtained results are
presented in the sections below.

e Inter-Event:

The first approach consists of validating the model on the events immediately after the calibration
period, making the assumption that the parameters remain valid during a given time after calibration.
Only periods for which calibration was successful were considered. The results show that despite the
efficient calibration of the model, its prediction capacity is very poor (Table 8).

Table 8. Nash Coefficients obtained from calibration and validation over the modelling period.

Beginning of the Nash Coefficient from Calibration =~ Nash Coefficient from Validation

Modeling Period over the First Two Events over the Third Event
14 November 2014 0.527 —-0.5714
17 November 2014 0.787 —0.5981

7 December 2014 0.781 0.1643

13 January 2015 0.616 —0.5890

30 January 2015 0.629 —0.8874

The Nash-Sutcliffe coefficients reflect a very weak replication of the pollutograph and show
that high errors are included in the predicted TSS concentrations, which do not seem to fit at all the
observations and are very far from the ranges of variations of the measurements. The application of
such models to predict pollutants from storm water runoff is thus largely limited and suggest that
the characteristics of the calibrated parameters certainly cannot be kept or extended even to a limited
number of events following immediately calibration period, making the assumption that calibrated
parameters are not site specific rather event specific and that no unique set of parameters can replicate
accurately the pollutographs for all considered periods.

e Intra-Event:

This approach consists in calculating the available pollutant mass at the beginning of the storm
using the measurements recorded on the first time steps and the wash-off parameters calibrated from a
previous knowledge of the studied site. The method is assessed over 38 single events. Four events are
excluded because their calibration efficiency is very low. The 38 events consist of 17 first flush events,
18 with uniform distribution of pollutants and three last flush.

The calculated Nash-Sutcliffe Coefficients over the 38 events are presented in the Figures 14
and 15 below. The bar plots distinguish the results in function of the number of points considered for
the calculation of the available initial load for erosion.

Validation results are mostly satisfactory when applying this method over first flush events.
Three events are accurately predicted when using only the first two observations for calculating the
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available erodible load where Nash-Sutcliffe efficiencies were equal to 0.83, 0.57 and 0.46. Based on the
first 30 points of observations, the model adequately predicted six events. This is an interesting result
and could be helpful for the operational in the context of predicting the dynamic of the pollutants
during a rainfall event only by knowing the dynamic at the beginning of the storm.
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Figure 14. Bar plot of the Nash—Sutcliffe coefficients calculated for first flush events.
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Figure 15. Bar plot of the Nash—Sutcliffe coefficients calculated for uniformly distributed and last
flush events.

As for the uniformly distributed events and the last flush events, the prediction of the model is
not satisfying except for one uniform event where the pollutant concentrations are predicted with a
Nash-Sutcliffe efficiency equal to 0.43, calculated when five points of the observations were included
in the estimation of the available mass and it increased to 0.54 if the first 30 min of measurements
were considered.

The intra-event approach based on data assimilation seems to be promising and deserves
further investigation so it can be extended to give accurate prediction not only to first flush events.
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The interest of this approach is that it may help planners and engineers to make accurate loading
estimates based only on the first measurements and on the knowledge of the behavior of the
catchment. Monitoring devices can be thus implemented to record the first points of observations,
which can be transmitted automatically to a registration system and be integrated directly with
numerical simulations.

4. Conclusions and Perspectives

This study presents a framework on modeling and assessing the TSS concentration generated
during storm events on an urban road catchment. Qualitative characterization of the studied site as
well as calibration and prediction assessment of different water quality configurations are performed
on a long-term data base collected between June 2014 and April 2015. The results show that the
performance of SWMM wash-off model depends on the dynamic of transport of pollutant during
the event where the best fit between the observed and simulated TSS concentrations is recorded
for first flush events. Assessment of SWMM exponential build-up model reveals that the model
performs better on short periods suggesting the incapacity of the model to simulate the variation of
the available mass for erosion for long periods. High variability involved in modeling the production
of pollutants emerges from the large differences in the model’s performance over distinct calibration
periods. This behavior must be further investigated and stochastic approaches might hold the answers
to better understand the accumulation process [43—45]. As for the predictive capacity of the model
on the inter-event scale, the results clearly prove the inadequacy of the traditional build-up/wash-off
model to predict the pollutograph using calibrated parameters, which seem to be event specific rather
than site specific. The complexity of the accumulation and wash-off process, which is not very explicit
in the model structure, and the absence of factors that play an important role in the generation of
pollutants would have a significant fingerprint on the model outputs. On the intra-event scale, based
on data assimilation, the model predicts half of the first flush events but is not able to predict last flush
and the uniformly distributed events, which does not seem very surprising since these events were
not satisfactorily calibrated. This method is very interesting for management practices because of its
simplicity and its easy implementation; in addition, it also resolves the problem of missing data that
occurs sometimes due to technical problems, making it possible to estimate the yield of a storm event
even if not all points are recorded. Further investigation is indeed necessary to enhance this method
and develop further the integration of data assimilation in the water quality modeling.

The complexity of the build-up and the wash-off processes and their limited knowledge in
addition to the high variability in the modeling results highlighted in this study, rise the need for
further in deep investigation of the mechanisms governing the generation and the transport of pollutant
in urban catchments. For that matter, extensive site monitoring is recommended to better understand
and assess from a physical point of view the implicated factors in the accumulation and erosion
processes and the interactions within the system to have a precise and accurate estimation of the
pollutograph generated during wet weather.
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Appendix A

Table Al. Pearson and Spearman Correlations and their corresponding p-values.

Initial Available Mass
Parameters R Linear p-Value R Spearman p-Value
Hrain —0.052 0.836 0.101 0.689
Imax 0.086 0.734 —0.180 0.471
Imax 5 0.122 0.628 —0.015 0.954
Imean —0.056 0.824 0.032 0.901
Duration —0.106 0.675 0.120 0.632
ADWP —0.083 0.742 —0.358 0.144
Tmax 0.509 0.031 0.106 0.674
Tmin 0.436 0.07 0.202 0.420
Tmean 0.491 0.038 0.16 0.525
C1
Parameters R Linear p-Value R Spearman p-Value
Hrain —0.184 0.463 —0.597 0.008
Imax —0.034 0.890 —0.275 0.267
Imax 5 0.009 0.971 —0.257 0.302
Imean 0.779 <0.001 0.153 0.541
Duration —0.283 0.256 —0.645 0.004
ADWP 0.212 0.398 0.279 0.260
Tmax 0.192 0.445 —0.240 0.336
Tmin —0.051 0.838 —0.297 0.230
Tmean 0.097 0.701 —0.244 0.327
C2
Parameters R Linear p-Value R Spearman p-Value
Hrain 0.241 0.321 0.186 0.444
Imax 0.649 0.002 0.368 0.121
Imax 5 0.846 <0.001 0.340 0.154
Imean 0.382 0.106 0.431 0.066
Duration —0.114 0.642 —0.184 0.448
ADWP —0.035 0.886 0.098 0.688
Tmax 0.237 0.327 0.136 0.578
Tmin —0.055 0.823 —0.063 0.797
Tmean 0.067 0.785 0.053 0.827
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Figure A1. Variation of runoff depth in function of rainfall depth for 106 events.
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