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Abstract: Nitrate contamination in rivers has raised widespread concern in the world, particularly in
arid /semi-arid river basins lacking qualified water. Understanding the nitrate pollution levels and
sources is critical to control the nitrogen input and promote a more sustainable water management
in those basins. Water samples were collected from a typical semi-arid river basin, the Weihe River
watershed, China, in October 2014. Hydrochemical assessment and nitrogen isotopic measurement
were used to determine the level of nitrogen compounds and identify the sources of nitrate
contamination. Approximately 32.4% of the water samples exceeded the World Health Organization
(WHO) drinking water standard for NO3;~-N. Nitrate pollution in the main stream of the Weihe
River was obviously much more serious than in the tributaries. The §'°N-NO3~ of water samples
ranged from +8.3%o to +27.0%.. No significant effect of denitrification on the shift in nitrogen isotopic
values in surface water was observed by high dissolved oxygen (DO) values and linear relationship
diagram between NO3 ~-N and 5'°N-NOs3~, except in the Weihe River in Huayin County and Shitou
River. Analyses of hydrochemistry and isotopic compositions indicate that domestic sewage and
agricultural activities are the main sources of nitrate in the river.
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1. Introduction

Due to the need for more food and energy, the applications of fertilizers, lands and fossil fuels are
increasing, which will augment the nitrogen pollution in the environment [1,2]. Pollution of nitrate
nitrogen (NO3; ~-N) is a major problem in the Earth’s surface environments, especially in arid /semi-arid
regions [3-5]. River systems are vital to terrestrial transformation and transportation of nutrients [4].
Most of the surface water pollution is accompanied by excessive chloride, sulfate, nitrate and other
pollutants. Nitrate has been one of the dominant forms of increased N loading since the 1970s [6-8].
According to the Global Environment Monitoring System database, concentration of nitrate nitrogen
(NO37™-N) of the most rivers in populated regions is seven times higher than the healthy water quality
standards of 10 mg/L suggested by the World Health Organization [9]. Since the 1980s, nitrogen
fertilizer consumption in China has increased significantly [9]. High concentration of nitrate can result
in many environmental and ecological problems, such as blooms of toxic algae, eutrophication of
lakes and reservoirs and extinction of species in the river ecosystem [10,11]. In addition, long-term
exposure to high nitrate drinking water may increase human health risks [12,13], which may lead to
chronic poisoning linked to methemoglobinemia [14-16]. Even the existence of nitrite, another form of
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nitrogen, can cause cancer [1,17]. Therefore, the nitrogen pollution is a severe environmental problem
that should be of high concern.

Nitrogen in surface waters has a variety of sources [18], including atmosphere deposition, dust
in rainwater, industrial waste water, domestic sewage, urban garbage, nitrogen chemicals, fertilizers,
livestock waste, plant humus, etc. [19]. The traditional method for identifying nitrate pollution
sources in water bodies combines investigation of land use type of pollution area with analyses of
concentrations of nitrogen compounds in water. However, it is difficult to identify the actual sources
of nitrate pollution effectively using the traditional method, since the nitrogen compounds are affected
by physical, chemical and biological processes simultaneously [3]. Analysis of nitrogen isotopic
composition, i.e., 5'°N in nitrate, can address the problems caused by traditional methods and provide
a more direct, effective and accurate method to identify the sources of nitrate in water bodies [20,21].
The nitrogen isotope tracing technology has been widely used to identify the nitrate sources by
discriminating values of 51°N-NO;~ in different sources [22-24]. Nitrates from different nitrogen
sources have different nitrogen isotopic compositions, which can be used to identify the sources of
nitrate and trace the nitrogen cycling process. Previous studies have shown that the §°N-NO3~
sourced from chemical fertilizer is the same as §'°N in nitrogen in the atmosphere about 0.0%o to
+2.0%0. The 51°N-NOs3~ sourced from soil nitrification has the same nitrogen isotopic composition
as soil organic nitrogen, which ranges from +2.0% to +8.0%o and is invariant during oxidation and
nitrification processes. Organic nitrogen is converted to NH;* by oxidation and then generates NO3 ™~
with similar nitrogen isotope by nitrification. §">N-NO;~ in nitrogen from animal waste is generally
high, within the range of +8.0%o to +20.0%0 [25-27].

Since nitrate pollution has led to quality-induced water scarcity, it is essential to obtain a more
complete understanding of nitrate pollution in semi-arid regions, where both the demands and costs
for water and ecosystem restoration are high. The urbanization process in the Silk Road region results
in a more fragile physical environment, even renewable water resources cannot meet the growing
demands [28]. Water environment at the starting point of the Silk Road is a serious issue, which needs
to be protected urgently. The Weihe River has a great effect on the construction of the “Silk Road
Economic Belt”, which is the biggest tributary of the Yellow River, China. Meanwhile, it is crucial
for the development and management of water resources in the Yellow River [29,30]. Natural factors
and human activities lead to many environmental problems, e.g., the shortage of water resources,
aggravation of water pollution and degradation of vegetation over the past 50 years [29]. Due to
an annual sewage discharge yield of more than 9.0 x 10® tons, the Weihe River is one of the largest
contributors of sewage discharge flux into the Yellow River, leading to the main water pollution in the
Yellow River [30]. A wide range of human activities has changed the original chemical composition
of surface waters in the study area. A large amount of domestic sewage in cities along the Weihe
River (point source pollution) flows back into irrigations, which exacerbates water pollution, especially
the nitrogen pollution, and restricts economic development of the basin [31]. Furthermore, nitrate
non-point source pollution is also widespread in the Weihe River basin [32]. However, the potential
sources of nitrate in the semi-arid basins are not obvious and needs further study.

Accordingly, in this paper, hydrochemical assessment and stable isotopic measurement (5'°N) are
used to (1) identify nitrate pollution level in surface waters; (2) evaluate the spatial variation of nitrate
pollution; and (3) trace the main sources and transformations of nitrate. Understanding the nitrate
pollution levels and pollution sources is of great importance to control the nitrogen input and could
provide more sustainable water management methods for the semi-arid river basin area.

2. Materials and Methods

2.1. Study Area

The Weihe River, the largest tributary of the Yellow River, is located in a semi-arid area with a
temperate continental monsoon climate. It originates from the Niaoshu Mountain in Gansu province
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and flows across Shaanxi province with stream length of 818 km and drainage area of 1.35 x 10° km?
in the Yellow River basin. It runs into the Yellow River at Tongguan County. The mean elevation
of the Weihe River is 3485 m above sea level, between 104°00’ E~110°20’ E and 33°50’ N~37°18’ N.
Limestone is the dominant rock type in the study area. The southern tributaries originate from the
Tsinling Mountains and northern tributaries originate from the Loess Plateau (Figure 1). The Loess
Plateau in north of the Weihe River is covered by thick Eolian deposits. The Tsinling Mountains in the
south of the Weihe River provide an east-west trending land barrier. The average annual precipitation
in the river basin is 558-750 mm (increase from north to south). And approximately 60% of the total
annual precipitation occurs from May to September. The average annual temperature is 13.3 °C, while
the average annual evaporation varies from 800 mm to 1000 mm (increase from west to east) [29].
The drainage area and annual sediment load of the Weihe River account for 17.9% and 2.5% of the
total amount of the Yellow River basin.
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Figure 1. A schematic map showing the location of the study area and water sampling sites.

At present, the Weihe River is facing a predicament of water source shortage and poor water
quality [31]. The upstream and lower stream of the Weihe River are divided by the Linjiacun. Water
pollution in the region upstream from Linjiacun is less, while there are several middle- and large-sized
cities in the lower region where the total agricultural area has reached about 10,000 km? [31]. The
upstream is not affected by human activities intensively as population in this area is relatively low.
Below the Baoji gorge, there are many cities near the main stream including Baoji City, Xianyang City,
Xi’an City, and Weinan City, some of which are industrial cities. This portion of the Weihe River is
affected by human activities obviously. Furthermore, there are a large number of factories including
cotton factories, cement factories and paper mills in the surrounding regions of the Weihe River [33].

2.2. Water Sampling Sites and Measurements

Water samples were collected in the main stream and tributaries of the Weihe River in October 2014.
Natural and human factors were considered to deploy the sampling sites including hydrogeological
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conditions, the principle of water quality control, characterization and “Water Quality-Technical
Regulation on the Design of Sampling Programmes” (HJ 495-2009) [34]. The positions of the sampling
sites were identified by GPS (Trimble Juno 3B). The water sites of main stream, northern tributaries
and southern tributaries of the Weihe River were designated as S1-510, S11-523, 523-534, which are
shown in Figure 1.

In situ water quality parameters including pH, electrical conductivity (EC), dissolved oxygen
(DO) and oxidation-reduction potential (ORP) of the water samples were measured with a portable
multi-parameter water quality analyzer (HACH HQ40d). Water samples were filtered by 0.45 um
acetate cellulose filter membranes and were stored at 4 °C. Concentrations of SO42~, C1~, NO3~,
NO,~ and NH;* were analyzed by Auto Discrete Analyzers (Clever Chem200, Hamburg, Germany).
Concentrations of Ca?*, Mg?*, Na* and K* were determined using an inductively-coupled plasma
optical emission spectrometer (ICP-OES, Optima 5300DV, Shelton, CT, USA). The HCO3™ and CO32’
contents were analyzed by acid-base titration. All chemical results were implemented when the charge
balance error was within +0.5.

The water samples with nitrate contents that were higher than the maximum contaminant level
(MCL) of 45 mg/L were chosen for nitrogen isotopic analyses. The nitrate was separated by the anion
exchange resin method proposed by Silva et al. [35]. The values of §'°N-NO;~ were measured by
a Finnigan MAT 253 mass spectrometer with an online Flash Elemental Analyzer (Thermo Fisher
Scientific, Bremen, Germany). The values for 515N—NO3* are defined as:

Y (%0) = (Rsample/Rstandard - 1) x 1000 (1)

where Rgample and Rgtandard are the nitrogen isotopic ratios, i.e., 15N /14N ratio of water samples and
N in the air, respectively. The 15 analytical precision for §°N-NO;~ analysis was +0.3.

3. Results and Discussion

3.1. Hydrochemistry

The hydrochemistry information of water samples are illustrated in Figure 2. The EC values
ranged from 160.1 to 2081 uS/cm, with a mean value of 971.7 uS/cm. The lowest EC value was
observed at the site of Fenghe River (528). All water samples were relatively similar in pH, ranging from
7.2 to 8.6, with a mean value of 7.9, indicating a slight alkaline nature of water samples. The DO ranged
from 1.2 to 12.9 mg/L, with a mean value of 9.4 mg/L. The lowest DO content was observed at the site
of Shitou River (524), which might indicate the transformation of nitrogen through denitrification. The
values of DO of most samples were higher than 2.0 mg/L, except for the Weihe River in Huayin County
(59) and Shitou River (524), suggesting that denitrification was not a pivotal transformation process
of nitrogen in most area [11]. The ORP ranged from 25.4 to 138.5 mV, with a mean value of 79.9 mV.
The Ca?*, Na*, K*, Mg?*, C1~, SO42~, HCO; ™ ranged from 21.6 to 159.2 mg/L, 3.7 to 280.8 mg/L, 1.5
to 16.1 mg/L, 3.5 to 71.1 mg/L, 2.2 to 270.3 mg/L, 19.9 to 439.5 mg/L, 48.6 to 413.3 mg/L, respectively.
Concentrations of CO32~ were all below detection limit. The mean values of Ca%*, Na*, K*, Mg2+, Cl-,
5042’ and HCO3;™ were 64.1 mg/L, 84.0 mg/L, 6.3 mg/L, 259 mg/L, 88.9 mg/L, 152.9 mg/L, and
228.1 mg/L, respectively. Especially, the highest concentrations of Na*, Mg?*, CI~ and SO4>~ were
observed at the site of Qinghe River (S20) with low nitrate concentration, indicating the combined
effect of geological characteristics and human activities on the water quality [36]. Positive correlations
were observed between EC and SO42~ (r=0.648, p < 0.01), between EC and C1™ (r =0.717, p < 0.01),
between CI~ and SO4>~ (r = 0.916, p < 0.01). In addition, positive correlations were also detected
between Ca?" and NO;~ at the p < 0.01 level, between K* and NO3 ~, between C1~ and NO3 ~, and
between EC and NO3z ™ at p < 0.05 level. According to the observed correlation among EC, C1™ and
SO4%~, C1~ and SO42~ can be regarded as describers of the hydrochemistry of surface waters, which
shares a common origin that significantly contributed to the total content of dissolved salts [37].
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Figure 2. Analyses of chemical parameters in the study area.

3.2. Concentrations of NOy~-N, NO3~-N and NH;*-N

Concentrations of NO, ™-N, NO3; ~-N, NH;*-N ranged from BDL (below the detection limit) to
0.015mg/L, 1.3 to 35.7 mg/L, 0.008 to 8.0 mg/L, respectively (Table 1). The mean values of NO,-N,
NO3;7-N, NH4*-N were 0.009 mg/L, 8.6 mg/L, 0.3 mg/L, and the median values were 0.001 mg/L,
74 mg/L and 0.05 mg/L, respectively. Concentrations of NH4*-N were generally low (below the
MCL of 1.0 mg/L), except for Luowen River (534), which was possibly associated with the sewage
from paper mills near the river [33]. It also suggests that NH;*-N in the water sample at the site of
Luowen River (534) could not fully transform into NO3 ~-N, due to a large amount of organic nitrogen
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and ammonium derived from sewage [38]. Concentrations of NO,™-N in all water samples were
below the WHO recommended level of 0.2 mg/L. The concentration of NO3™-N exceeded the MCL
(10 mg/L) accounted for 32.4%, which was much higher than the over standard rate of NH;"-N (2.9%)
and NO, -N (0). Consequently, nitrate was a major water pollutant in the semi-arid river basin. It is
critical to understand the dynamics of NO3™-N through further analyses of spatial distribution and
sources of nitrate.

Table 1. Statistics of three different forms of nitrogen of all the water samples.

Mean Maximum  Minimum Median MCL1 Exceeded

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Rate (%)
NO,;~-N 0.009 0.015 BDL 2 0.01 0.2 0
NO3; -N 8.6 35.7 1.3 74 10 32.4
NH4*-N 0.3 8.0 0.008 0.05 1.0 29

Note: ! The maximum contaminant levels (MCL) drinking water standard suggested by the World Health
Organization (WHO); 2 BDL stands for below detection limit of 0.0018 mg/L of NO,~-N.

3.3. Spatial Distribution of Nitrate and Its Controlling Factors

Referring to the WHO drinking water standard and Chinese drinking water standards enacted
since 1986, four levels of nitrate concentration (level I of 0-10 mg/L for background level water, level
IT of 10-45 mg/L for water unpolluted but in a critical condition, level III of 45-90 mg/L for slight
polluted water and level IV of the concentration above 90 mg/L for severely polluted water) were
generated to evaluate nitrate pollution (Figure 3) [12]. About 8.8%, 58.8%, 29.4%, 3.0% of water samples
were within level I, level II, level IIl and level IV, respectively. According to the spatial distribution of
NO;3;™ across the semi-arid river basin (Figure 3), nitrate contents in the main stream were obviously
greater than those in the tributaries (Figure 3). In addition, nitrate contents of the rivers in mountain
areas were lower than in other areas (Figure 3). The mean values of nitrate in the main stream of the
Weihe River, northern tributaries and southern tributaries were 10.6 mg/L, 7.9 mg/L and 7.7 mg/L,
respectively. Results indicate that the main stream of the river is polluted most seriously, due to the
import of waters in tributaries. Approximately 70.0% of the water samples in the main stream were
within level III and level IV. Waters in northern tributaries and southern tributaries were less polluted.
About 1.7% of water samples were within level III and level IV, both in the northern tributaries and
southern tributaries. In addition, southern tributaries near the Tsinling Mountains were slightly less
polluted than northern tributaries. Furthermore, concentrations of nitrate in semi-arid regions are
influenced by frequent and severe droughts and infrequent but vital floods [39]. The nitrate contents in
the river increased gradually from the site of Weihe River in Fengxian County (52). Around the site of
Qianhe River (512), the main stream flows across the urban area, where the highest content of nitrate
and low NHy4* concentration existed. The rapid increase of nitrate content here suggests that there is a
combination of various pollution sources of nitrate, which is also affected by nitrification processes [38].
The nitrate concentration decreased within the Weihe River in Wugong County (54), due to the fact
that the lower nitrate concentration level in the inflow tributaries (Heihe River, Hengshui River and
Qishui River) dilutes the nitrate content in the main stream of the river. Nitrate content decreased
slightly from the site of the Weihe River in Xi’an City (S5) to Weinan City (S7). In the sample of the
Weihe River in Huaxian County (S8), nitrate content increased again. It was mainly sourced from
agricultural activities and industrial wastewater. Pesticide and chemical fertilizer containing nitrate
and ammonium nitrogen washed into streams by rainfall [40]. A high spatial variability of nitrate
content occurred in some stream waters on the basis of catchment characteristics [41]. Results also
indicate that nitrate contamination in the study area has distinct regional differences.
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Figure 3. Spatial distribution of nitrate in the rivers.

The above analyses suggest that nitrate pollution in the river basin might be mainly sourced from
the use of chemical fertilizer and pesticide in the agricultural areas, domestic sewage and industrial
wastewater discharge. Fertilizer is one of the main sources of nitrate pollution in the studied waters,
which has a great impact on the water quality in the study area [3,42]. Furthermore, about 5%-10% of
applied fertilizer can enter into groundwater [43]. The process of fertilizer application may lead to
the cropland being the main contributor to nitrate pollution in groundwater [44,45]. In addition, it is
common that polluted water including domestic sewage and industrial wastewater is discharged into
the river without any treatment in the study area, which also causes the increase of nitrate content in
the study area.

3.4. Sources and Transformations of Nitrate

As shown in Figure 4, the concentration of C1~ increased with the concentration of Na*. The slope
of the correlation was close to 0.81. C1~ can be derived from chemical fertilizers, sewage and animal
waste. The ClI~ concentration can provide significant information to identify the different input
sources [2]. Results suggest that nitrate in the surface water might be also contributed from these
sources of C1~. Correlation between SO,2~ with Ca>* was not strong. Basically, the concentration of
SO42~ increased with the concentration of Ca?*, which suggested that the input of exogenous substance
affected the concentration of SO42~. Ca2* might originate from the fertilizer (Ca(HyPO4),-HO) [46],
despite the dissolution of carbonate rocks may also contribute. The SO4%~ in the study area was
mainly from agricultural fertilizers. Therefore, one of the main sources of nitrate in the basin was
chemical fertilizers.

Generally, there are no apparent correlations between §'°N-NO;~ versus NO3 ™ in the basin
(Figure 5), which indicates no simple mixing or only one single biological process is responsible for the
shifting in the nitrogen isotopic composition of nitrate. In addition, the high DO values and the linear
relationship diagram between NO3;~-N and §!'°N-NO;~ suggest that denitrification had no significant
effect on the shift in nitrogen isotopic values in most surface waters in the basin, except in the water
samples at the site of Weihe River in Huayin County (S9) and Shitou River (S24). The §'°N-NO;~ of
water samples S9, 524 were high with low concentrations of nitrate (Figure 5) and DO, which means
denitrification might have occurred [38].
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In the study, 32.4% of water samples with nitrate contents that were higher than the MCL of
45 mg/L were chosen for nitrogen isotopic analyses. The nitrogen isotopic compositions of NO3 ™
ranged from +8.3%0 to +27.0%0, which were higher than those results in other rivers, such as in
Jinghe River (+3.5%0—+10.3%0) [47], Chanhe River (+1.3%0—+9.2%0) and Laohe River (+2.9%c—+7.4%o) [33].
The mean value of §'°N-NO;~ was +13.0%0 in the study area. The lowest value of §'"’N-NO3~
was +8.3%owith high concentration of NO3™~ in Qianhe River (S12) (Figure 5), which might be
influenced directly by sewage effluent [38]. Domestic sewage usually contains manure, which leads
to high value of §'°N-NO;~, because nitrogen fractionation has occurred in animal waste and the
31°N-NO;~ is high in the residual ammonium nitrogen by nitration reaction [48]. About 81.8% of
51°N-NO3 ™~ values fell between +8.0%0 and +20.0%o, while 18.2% of §'°N-NO3~ values were above
+20.0%o (Figure 6). Nitrogen isotope values of most samples were within +8%¢—+13%., which suggested
that the pollution was mainly sourced from animal waste. The findings were similar to the results
reported by Urresti et al. [49,50], which revealed the main origin of the dissolved NO3 ™ was related to
the use of ammonium fertilizers and manure. Meanwhile, Yue et al. [38] also found similar results that
domestic sewage and agricultural activities were the two main sources of nitrate in surface waters. The
values of §1°N-NOs3 ™ in the water samples at the site of Weihe River in Huayin County (S9) and Shitou
River (524) were up to +20%o and nitrate concentrations were low with DO below 2 mg/L (Figure 5),
which mean denitrification occurred [4,38]. Microbial denitrification can usually lead to significant
change in nitrogen isotope fractionation, which results in the enrichment of heavy nitrogen isotope,
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i.e., °N, in waters [38]. In addition, it is hard to accurately identify the two potential nitrogen sources
and the extent of the impact of the biological process, which needs additional studies, due to the
§15N-NO; ~ value in atmosphere precipitation being close to that in soil organic nitrogen mineralization
and biological processes in the basin is complicated [38,48]. Furthermore, the seasonal phenomena
(floods, droughts, high industrial productivity periods, etc.) favor different biogeochemical processes,
leading to dynamic variations in the inorganic nitrogen levels. Due to the large riverine input changing
with the variation in concentrations and discharge rates, nitrate concentrations were greatly affected
by riverine input over all seasons [51], which will be analyzed and assessed in further study.

animal waste
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Figure 6. Histograms of §!°N-NO3 ™ in surface waters of the Weihe River basin.

In view of pollution extent of nitrate caused by intensive agricultural activities and domestic
sewage in the semi-arid river basin, attempts should be made as follows: (1) ecological agricultural
policy should be carried out to control the non-point source pollution of nitrate, appropriate amount
of nitrogen fertilizers should be estimated; (2) the time and position of nitrogen fertilizers application
should be strictly controlled, e.g., reducing fertilization frequency and adopting fertigation technology;
(3) early winter cover crops should be used to improve the utilization ratio of nitrogen in crop rotation
system [3]; (4) direct discharge of domestic sewage should be cut down in some seriously polluted
regions, artificial rapid filtration can be used; and (5) chemical and biological processes should be used
to reduce nitrate content if necessary.

4. Conclusions

This study evaluated the sources and variation of nitrate in the Weihe River basin, China.
Approximately 32.4% of the water samples did not meet the WHO drinking water standard for
nitrate. Results indicate that nitrate contamination of the study area has an apparent spatial pattern.
Nitrate contents in the main stream were obviously greater than in the tributaries. In addition, nitrate
contents in southern tributaries were slightly lower than in the northern tributaries because southern
tributaries near the Tsinling Mountains were less polluted. Nitrate pollution in semi-arid regions was
influenced by frequent and severe droughts and infrequent but vital floods. The highest content of
nitrate in all surface water samples was observed in Qianhe River, which was related to the acceptance
of the domestic sewage. Considering that there are a wide range of agricultural areas along the coast
of the river and fertilizers containing nitrate and ammonium nitrogen are washed into streams by
rainfall, nitrate is also sourced from agricultural activities. The §'>’N-NO;~ of water samples ranged
from +8.3%0 to +27.0%0. §'°N-NO3~ in two samples was up to +20%o, indicating that denitrification
only occurred in the Weihe River in Huayin County and Shitou River. For the water samples with high
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nitrate concentrations (above 45 mg/L), domestic sewage is the main source of nitrate. The results of
hydrochemistry and isotopic compositions suggest that domestic sewage and agricultural activities
are the main sources of nitrate in the semi-arid basin. Additional studies are needed to accurately
identify the nitrogen sources and transformations including biological processes. Nitrate pollution
in the river basin shows the urgent needs for ecological agricultural policy and reduction of direct
sewage discharge in semi-arid river basins.
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