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Abstract: Water distribution networks consist of different components, such as reservoirs and
pipes, and exist to provide users (households, agriculture, industry) with high-quality water
at adequate pressure and flow. Water distribution network design optimization aims to find
optimal diameters for every pipe, chosen from a limited set of commercially available diameters.
This combinatorial optimization problem has received a lot of attention over the past forty years.
In this paper, the well-studied single-period problem is extended to a multi-period setting in which
time varying demand patterns occur. Moreover, an additional constraint—which sets a maximum
water velocity—is imposed. A metaheuristic technique called iterated local search is applied to tackle
this challenging optimization problem. A full-factorial experiment is conducted to validate the added
value of the algorithm components and to configure optimal parameter settings. The algorithm is
tested on a broad range of 150 different (freely available) test networks.

Keywords: water distribution network design; iterated local search; metaheuristic; mixed-integer
non-linear programming; pipe sizing

1. Introduction

1.1. Access to Drinking Water

A safe, adequate, and accessible supply of drinking water is one of the basic necessities of any
human being. According to a study from the World Health Organization (WHO), improving access
to safe potable water not only reduces the overall risk of disease, but can also be an effective part of
poverty reduction strategies [1].

The most efficient and effective way to transport drinking water is through a network of pipelines.
The first water distribution networks date back to the ancient Greeks, the first civilization to use
underground pipes for water supply [2]. In 2010, water distribution networks seem omnipresent,
but nonetheless, 11% of the world’s population does not have access to an improved drinking water
source (i.e., a drinking water source that is protected from outside contamination), and only 54% of the
world’s population has piped drinking water on premises [3].

A large majority of all water distribution networks are maintained by water distribution
companies. These operate in a dynamic, evolving setting as a result of three main evolutions: changes
in water usage: population growth in certain parts of the world, combined with increasing living
standards (houses equipped with sanitary installations, washing and dish washing machines, etc.)
leads to a rising water consumption. A trend in the opposite direction is the growing consciousness
of the scarcity of natural resources, which leads to a more rational use of water. Intermittent water
supply also poses a challenge, since this is not only inconvenient for end-users, but also affects water
quality and leads to a higher probability of pipe breaks and leakages. Development of dual systems:
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around 80% of the water supplied to residences is used for activities other than human consumption,
such as sanitary services and landscape irrigation. This urges source separation and dual systems that
convey water of different levels of quality according to their end use: high quality water is delivered in
smaller pipes for consumption, whereas the so-called “grey-water systems” transport recycled water
for lower quality needs. The use of high-quality drinking water as firewater will decrease, which
reduces the need for over-sized water distribution pipes [4]. Urban development and renewal: urban
growth, increased attention for livability, and sustainable cities are some of the key drivers for urban
(redevelopment), which also includes the (re)design of water distribution networks.

1.2. Decision Support Tools

The trends mentioned in the previous paragraph force water distribution companies to
rethink their network configuration by modifying or expanding their current distribution systems.
Construction or reorganization of these networks requires major investments. Hence, an efficient
layout, design, and planning of water distribution networks is of crucial importance. Decision support
systems are therefore potentially very useful in supporting water distribution companies in these
decision making processes. This paper aims to develop a decision support system that supports
network design decisions. These are decisions related to the optimal type of pipe connecting the
supply, demand, and junction nodes in the distribution network. Such decisions are made when pipes
need to be (re)placed or rehabilitated due to aging, changing demographic settings, network redesign,
or network expansion.

Traditionally, such design decisions are made based on expert experience. When networks
increase in size, however, it is doubtful that the applied rules of thumb will lead to optimal decisions.
Hence, the use of decision support systems (DSS) could result in significant savings. Decision making
in this area could benefit from the use of such a DSS in two ways. First, it may improve the efficiency
with which a user makes a decision, since alternative feasible solutions are generated faster than
using a manual process. Second, the effectiveness of the decision process may also be improved, as
for problems with a huge solution space, algorithms generally find better solutions than human
brainpower.

1.3. Water Distribution Network Design Optimization

As stated in the previous paragraph, the focus of this paper is finding optimal network designs.
Figure 1 illustrates the water distribution network design optimization problem. A toy network that
contains 60 demand nodes, 1 water supply reservoir and 83 water distribution pipes has to be designed.
In the network design phase, network topology is assumed given, as can be seen in Figure 1a. The aim
is to find the best suited diameter for every pipe in this network. Assume that there are 16 possible
pipe diameters, ranging from 20 mm up to 1000 mm. Since all possible diameters can be selected for
every pipe, 1683 possible configurations (or combinations of diameters) could be designed. Finding the
lowest-cost design (or the optimal diameter size for every pipe) while respecting hydraulic laws and
customer requirements is not straightforward—even for such a small network. The right side of the
figure illustrates the optimized network, where diameters are assigned to every pipe. Thicker lines
represent larger diameters in the figure.
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(a) (b)

Figure 1. Example of the water distribution network design optimization problem for a small network.
(a) Unoptimized network; (b) Optimized network. Thicker lines represent larger diameters.

1.4. State of the Art

Water distribution network design optimization has been an active research field for over four
decades. A large majority of papers in this area focus on the single-period, single-objective, gravity-fed
design optimization problem. Early work applies more traditional mathematical programming
methods, such as linear programming (LP), originally applied by Alperovits and Shamir [5] and extended
by Quindry et al. [6] and Kessler and Shamir [7]; or non-linear programming (NLP) in Shamir [8],
El-Bahrawy and Smith [9], Fujiwara and Khang [10], and Duan et al. [11].

In the last three decades, considerable attention has been given to the development of
(meta)heuristic algorithms to solve the water distribution network design optimization problem.
These techniques use a hydraulic solver (usually EPANET 2.0 [12]) to solve the hydraulic equations
externally, while the heuristic manipulates the selected pipe types. Local search metaheuristics
operate on a single solution and try to improve this solution in small steps. Loganathan [13]
and Cunha and Sousa [14] applied simulated annealing, and Cunha et al. [15] applied a tabu
search. Constructive metaheuristics iteratively construct solutions, rather than improving complete
solutions. Ant colony optimization, for example, is applied by Maeier et al. [16], and ant systems
by Zecchin et al. [17]. However, population-based metaheuristics are the most popular in this field.
These algorithms operate on a population of solutions and combine them into new solutions.
Among this class of metaheuristics are genetic algorithms in Dandy et al. [18], Gupta et al. [19],
and Bi et al. [20], scatter search in Lin et al. [21], and differential evolution in Vasan and Simonovic [22].
A more recent paper by Marchi et al. [23] does not develop a new method, but introduces a methodology
to compare various evolutionary algorithms for water distribution network design. The authors show
that algorithm performance depends on the problem characteristics and the number of function
evaluations. Moreover, the importance of correct calibration is stressed. A more detailed overview of
the state-of-the-art in this research area is given in De Corte and Sörensen [24].

Some research has already been dedicated to the extensions formulated in this paper.
Farmani et al. [25], for example, also perform a multi-period optimization, but formulate the design
problem as a multi-objective optimization problem. They define maximizing network reliability as
a second objective next to cost minimization, and apply a multi-objective evolutionary algorithm to
optimize the Anytown network. Gupta et al. [19] and Bragalli et al. [26] also apply a velocity constraint
on the water flowing through the distribution pipes. The first apply a genetic algorithm on six (small)
instances while the latter use mathematical programming on bigger, closer-to-reality instances.

1.5. Contributions

The contribution of this paper is twofold. A first contribution is that the well-studied single-period,
pressure-constrained model is extended, and therefore, closer to reality. This work adjusts this model
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in two ways. The single-period setting is extended to a multi-period set-up, in which every demand
node has a 24 h water demand pattern. Moreover, an additional constraint—which imposes a limit on
the maximal velocity of water through the pipes—is introduced. These additions are formulated in
Section 2.

A second contribution is related to algorithm composition, configuration, and testing.
The developed algorithm is developed so that only components that show a significant added
value are included in its final configuration. A clear and systematic test procedure is used to
determine these components. Moreover, the algorithm contains some parameters that need to
be configured. A full-factorial experiment is performed to determine the optimal level for each
parameter. This allows solid conclusions to be drawn regarding the effects of algorithm configuration
and parameter settings on solution quality and computing time. More details are given in Section 3.3.
In terms of algorithm testing, the algorithm is tested on a broad set of challenging HydroGen test
networks. HydroGen (De Corte and Sörensen [27]) is a tool to automatically generate water distribution
test networks of varying size and characteristics. By using an extensive set of test networks, we are able
to draw robust conclusions on the performance of the algorithm. Moreover, these HydroGen networks
are free to use and available online, which should foster easy comparison of results. The experimental
results are given in Section 4.

2. Model Formulation

A water supply system consists of a transmission and a distribution system. The focus in this
paper is on the distribution network. Moreover, the considered networks are all gravity-fed, which
means that the water is supplied by gravitational forces and no pumps are needed. Water quality
considerations are not taken into account. This is in line with previous research in this area, where
a majority of the work focuses on the well-defined single-period, single-objective, gravity-fed water
distribution network optimization problem. As stated above, This research extends this problem
in two ways: (1) by imposing an additional constraint (i.e., a maximal velocity of the water in the
distribution pipes); and (2) by applying time-varying diurnal demand patterns. This problem will
therefore be formulated as the single-objective, multi-period, gravity-fed water distribution network
design (WDND) optimization problem with pressure and velocity constraints.

2.1. Mathematical Formulation

To formulate the water distribution network design problem as a mathematical model, the water
distribution network is represented as a connected graph with a set of water demand or supply nodes
N = {n1, n2, . . .} and a set of water distribution pipes P = {p1, p2, . . .}. The set of closed loops in this
graph is denoted L = {l1, l2, . . .}. The objective of this WDND optimization problem is to minimize the
total investment cost (TIC) of the network design by selecting the optimal pipes from a set of available
pipe types. The cost of an individual pipe depends on the type t that is chosen for this pipe from
the list of commercially available types T = {t1, t2, . . .}. A pipe’s type determines both its diameter
and the material from which it is made, which in turn determine its hydraulic properties. If the cost
per meter of a pipe p of type t is represented by ICt, and the length of pipe p is represented as Lp,
the objective function of the multi-period, gravity-fed water distribution network design optimization
problem can be written as:

min TIC = ∑
p∈P

∑
t∈T

Lp ICt xp,t (1)

where xp,t is the binary decision variable that determines whether pipe p is of type t (xp,t = 1) or
not (xp,t = 0). Since the network layout is assumed to be given, Lp is known. The investment cost
ICt is also given for every commercially available pipe type. This objective function expresses the
minimization of the total network cost.
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The objective function is limited by physical mass and energy conservation laws, by minimum
head requirements in the demand nodes, and by maximal water velocities in the pipes, for every time
period τ ∈ T .

The mass conservation law must be satisfied for each node n ∈ N = {n1, n2, . . .} in every time
period τ ∈ T . This law states that the volume of water flowing into a node in the network per unit of
time must be equal to the volume of water flowing out of this node. Let Q(n1,n),τ represent the amount
of water flowing from node n1 to node n in time τ, and let WSn,τ be the external water supply and
WDn,τ the external water demand of node n in period τ (all expressed in m3/s); then, the following
should hold:

∑
n1∈N/n

Q(n1,n),τ − ∑
n2∈N/n

Q(n,n2),τ = WDn,τ −WSn,τ ∀n ∈ N ∀τ ∈ T (2)

Furthermore, for each closed loop l ∈ L = {l1, l2, . . .}, the energy conservation law must be satisfied
for every time period τ. This law states that the sum of pressure drops in a closed loop is zero.
Pressure drops (or head losses) in piping systems are mainly caused by wall shear in pipes. The energy
conservation law can be stated as:

∑
p∈l

∆Hp,τ = 0 ∀l ∈ L ∀τ ∈ T (3)

with ∆Hp,τ representing the head loss in pipe p in time τ. Head losses in the pipes of the network
are approximated using Hazen–Williams equations, with the parameters set to the values used by
EPANET 2.0, the hydraulic solver used in this paper:

∆Hp,τ =
10.6668 yp,τ Q1.852

p,τ Lp

∑
t∈T

(xp,t C1.852
t D4.871

t )
(4)

Consequently, Equation (3) can be rewritten as:

∑
p∈l

10.6668 yp,τ Q1.852
p,τ Lp

∑
t∈T

(xp,t C1.852
t D4.871

t )

 = 0 ∀l ∈ L ∀τ ∈ T (5)

In this equation, yp,τ is the sign of Qp,τ , which is the amount of water flowing through pipe p
(in m3/s) in time τ. This sign incorporates changes in the water flow direction relative to the defined
flow directions. Lp is the pipe length (in m), Ct is the Hazen–Williams roughness coefficient of pipe
type t (unit-less), and Dt is the diameter of pipe type t (in m). Parameters Dt and Ct are determined
by the type of pipe and are assumed given for each available type. Note that yp,τ and Qp,τ represent
alternative formulations of Q(n1,n2),τ if pipe p connects n1 and n2.

Minimum pressure head requirements exist for every (demand) node n ∈ N at every time period
τ ∈ T . Let Hn,τ be the pressure head in node n (in m) at time τ, and Hmin

n,τ the minimum pressure head
in node n (in m) for time τ. This constraint can be represented as:

Hmin
n,τ ≤ Hn,τ ∀n ∈ N ∀τ ∈ T (6)

A maximal water velocity limit is present for every pipe p ∈ P. The velocity of the water flowing
through pipe p in time period τ, vp,τ cannot exceed the imposed maximal velocity vmax

p,τ :

vp,τ ≤ vmax
p,τ ∀p ∈ P ∀τ ∈ T (7)
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with:

vp,τ =
1.27 Qp,τ

∑
t∈T

(xp,t D2
t )

∀τ ∈ T (8)

Qp,τ is the amount of water flowing through pipe p in time τ, xp,t the binary decision variable,
and Dt the diameter of pipe type t, which is given for each available pipe type.

Moreover, every pipe p should get exactly one type t assigned:

∑
t∈T

xp,t = 1 ∀p ∈ P (9)

From this mathematical formulation, it is clear that the WDND optimization problem is
a mixed-integer, non-linear optimization problem, which puts this problem out of reach of exact
linear or mixed-integer programming solvers like CPLEX or Gurobi. Moreover, this problem is
a combinatorial optimization problem, since its decision variables (i.e., the type of each pipe) are
discrete. The problem has also been proven to be NP-hard (nondeterministic polynomial time hard) by
Yates [28].

2.2. Coping with the Extensions

2.2.1. Extension to Multi-Period Setting

The multi-period extension adds an extra layer of complexity to the WDND optimization problem,
which is evident by the fact that all the flow-related variables receive an extra index for time period
τ. An easy and intuitive solution to cope with this added complexity is to reduce the dynamic,
multi-period setting to a static, single-period setting. Two different approaches to do so—maxPeriod
and maxDemand—are compared below, and it is shown that such reductions are not possible.

maxPeriod

A first simplification strategy is to run a single-period model for the time period in which the
total network demand is at its highest. This approach to reducing the multi-period problem to
a single-period setting fails. The reason is that some areas will generally have a low water demand
during the calculated maximal period, which will lead to small diameters for this area when optimizing
the network using the single-period model. When this optimized network design is simulated in
the multi-period setting, pressure constraints will be violated in these areas. When water demand
increases in this area in other time periods, the small diameters will lead to high pressure drops,
and consequently, a violation of the minimal pressure head constraint. This is illustrated in Figure 2.
In (a), the network is optimized with the multi-period algorithm described in Section 3. During the
multi-period simulation, no pressure deficits occur. In (b), the network is optimized according to the
maxPeriod strategy. This will lead to a lower cost network, but during the multi-period simulation,
some nodes will experience a pressure deficit. These nodes are visualized by the larger (red colored)
demand nodes in (b).

maxDemand

An alternative approach would be to reduce the dynamic model to a single-period model in
which water demand is maximal. For every node, the highest demand that is encountered during the
multi-period timeframe is set as the actual demand in the static model. This approach will only be
successful when there is only one demand pattern, which is far from realistic. Unavoidably, as soon as
there is variation in the demand patterns, the designs based on this single-period setting will lead to
over-sized (and therefore, more expensive) designs. As can be seen in Figure 2c, the design—based
on the static maxDemand model—does not lead to any pressure violation in the dynamic setting.
The design, however, is considerably more expensive than the design found by the multi-period model.
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(a) (b)

(c) (d)

Figure 2. Network optimized with (a) multi-period simulation (total investment cost,
TIC = 1.232 × 106 EUR); (b) single-period optimization using maxPeriod (TIC = 0.967 × 106 EUR);
(c) single-period optimization using maxDemand (TIC = 1.270 × 106 EUR); Network (d) shows that
changing a single pipe causes velocity violations in other (non-neighboring) pipes.

2.2.2. Constraint on Velocity in Pipes

The water velocity in a pipe is a function of (among other factors) the diameter of the pipe.
Consequently, altering the diameter of a pipe leads to a change of the water velocity in the pipe. Hence,
when a pipe diameter is altered, a velocity check has to be performed. (Un)fortunately, decreasing
a single pipe’s diameter affects the entire network flow, and therefore, the velocity needs to be checked
in every pipe of the network, not just the one whose diameter was changed. This is visible in Figure 2d.
If the indicated (blue) pipe is decreased in diameter, velocity violations will occur in the pipes colored
in red.

3. An Iterated Local Search Algorithm

In this section, the WDND optimization problem is tackled with a metaheuristic technique, called
iterated local search. Iterated local search (ILS) is a straightforward, easy to implement, and easy
to adjust heuristic optimization algorithm. These characteristics make it especially suitable as the
underlying optimization engine in a decision support system, since decision makers are understandably
less reluctant to use more transparent decision support tools. Despite its simplicity, ILS is broadly
applied in different research fields and as the basis of many state-of-the-art algorithms for problems
such as travelling salesperson problems, scheduling problems, graph partitioning problems, etc. [29].

ILS is a local search metaheuristic: it operates on a single solution and tries to improve this solution
in small steps during the local search. Figure 3, for example, shows different candidate solutions or
network configurations that could be created during the local search. These solutions are networks for
which diameters are assigned to every pipe. These solutions can also be represented by a vector, where
every element of the vector corresponds to the diameter that is selected for that pipe, as can be seen in
Table 1. This table gives vector representations of the candidate solutions in Figure 3. Every solution
corresponds to a total investment cost (TIC)—calculated via the objective function, Equation (1), and
using the input data from Figure 4—and is either hydraulically feasible (satisfying all constraints
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mentioned in Section 2) or infeasible (violating one or more of the constraints). Candidate solution 2,
for example, violates the minimum pressure constraint in node 7, and candidate solution 4 violates the
maximum velocity constraint in pipes 2 and 4. Therefore, both solutions are labelled infeasible. ILS is
an iterated local search, implying that it alternates the local search phase with a perturbation phase.
During the local search phase, small improvements (or changes in diameters that lead to lower cost,
feasible solutions) are made to the current solution (which is a potential network design) until a local
optimum is reached, meaning that there is no more improvement possible. Next, a perturbation is
performed. This perturbation temporarily makes the solution worse by randomly changing some pipe
diameters, with the aim of leading to better solutions in the consecutive local search phase. A more
detailed algorithm description is given in Section 3.2.

ILS can therefore be understood as a combination of intensification or exploitation by the use of
the local search, and diversification or exploration by the perturbation.

Table 1. Different solutions or network designs in vector representation.

Candidate Pipe ID 1 2 3 4 5 6 7 8 Feasibility

Solution Length (in m) 31 20 35 37 24 50 12 65 TIC

candidate diameter (in mm) 150 150 80 80 100 60 60 80 feasible
solution 1 cost (in EUR) 1550 1000 1225 1295 912 1100 264 2275 9621 EUR

candidate diameter (in mm) 150 150 80 60 100 60 60 80 infeasible
solution 2 cost (in EUR) 1550 1000 1225 814 912 1100 264 2275 9140 EUR

candidate diameter (in mm) 150 150 60 80 100 60 60 80 feasible
solution 3 cost (in EUR) 1550 1000 770 1295 912 1100 264 2275 9166 EUR

candidate diameter (in mm) 150 100 80 80 100 60 60 80 infeasible
solution 4 cost (in EUR) 1550 760 770 1295 912 1100 264 2275 8926 EUR
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Figure 3. Different solutions or network designs in network representation. (a) Candidate solution 1;
(b) Candidate solution 2; (c) Candidate solution 3; (d) Candidate solution 4.
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Pipe ID Length in m

1 31
2 20
3 35
4 37
5 24
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Diameter Roughness Cost
in mm unitless in EUR per m

60 130 22
80 130 35
100 130 38
150 130 50
200 130 61

Figure 4. Problem instance: unoptimized network topology (left); pipe lengths (center); and available
pipe types with their corresponding costs (right).
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3.1. Implementation

To enable a straightforward comparison with existing methods, all hydraulic equations are solved
by EPANET 2.0, which is the hydraulic solver applied in most existing works. The ILS algorithm is
implemented in C++. The interaction between the ILS algorithm and the EPANET simulation engine
is established by the use of an extended EPANET toolkit, developed by M. López-Ibáñez [30,31].
As visualized in Figure 5, two different input files are needed. The first gives specifications on the
available pipe types (diameter, cost, roughness coefficient) and specifies minimal head requirements
for the demand nodes and maximal water velocity constraints for the pipes. The second file describes
the network in EPANET input format, and contains the network topology and the characteristics of
pipes and nodes. These two files serve as input for the ILS algorithm and the hydraulic solver.

EPANET input file
network topology
Lp , WDn,τ , WSn,τ

input file
ICt , Ct , Dt
Hmin

n,τ , vmax
p

ILS (C++)
generation of candidate solutions
evaluation of objective function
evaluation of pressure constraint
evaluation of velocity constraint

EPANET 2.0
multi-period hydraulic simulation of
candidate solution

output
x∗p,t , TIC
running time

graphml
optimal network Time consuming!

∀p : xp,t

∀n : Hn,τ

∀p : vp,τ

Figure 5. Interaction between iterated local search (ILS) and EPANET 2.0.

Every time a candidate solution is generated by the algorithm, this information (which basically
is a candidate network design) is sent to EPANET 2.0 and hydraulically simulated for every time
period. This simulation yields hydraulic results, which are used by the algorithm to evaluate the
problem constraints.

The final output will be an optimized network (x∗p,t) with a corresponding cost TIC. This network
is also outputted in GraphMl format, to enable easy visualization, since this benefits the process of
solution delivery.

3.2. Detailed Algorithm Description

The developed ILS algorithm consists of six steps, which are explained in more detail below.
Figure 6 depicts the corresponding flow chart.

Sort

In a preliminary step, the set of pipes is sorted. This sorting of the pipes determines the order in
which the local search adjusts the pipe diameters and how the algorithm moves through the solution
space. Two different sorts are tested. The first, lengthSort, is similar to the sorting that was applied
in the single-period algorithm and sorts the set of pipes according to decreasing length. The second,
costSort, sorts the pipes according to decreasing cost savings that could be made by decreasing
the diameter of that pipe by one size. When the pipes are sorted according to this decreasing cost
difference, re-sorting of the pipe list is necessary during the local search.
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sort pipes

generate s-init

iter = 0
s-current = s-init

local search on s-currentupdate s-best

evaluate:
s-current < s-best?

s-current = s-bests-best = s-current

iter++

iter = maxIt?exit
s-best

perturb: change pRate
of pipes in s-current

yes no

yes

no

Figure 6. Flowchart of the iterated local search algorithm. s-best: initial global best solution; s-current:
current solution; s-init: initial feasible solution.

Initial Solution

In a next step, an initial feasible solution, s-init, is constructed. A solution is considered feasible if
all hydraulic constraints are strictly satisfied. Two different mechanisms are tested. The first, highCost,
starts with a solution where all diameters are set at the largest available diameter. If this combination
of diameters generates a solution that is feasible in all time periods, all pipe diameters are decreased
by one size. This procedure is repeated until an infeasible solution is encountered: diameters are
increased again and this results in an initial solution in which all pipes have the lowest diameter that
is possible without violating the imposed constraints. The second mechanism, lowCost, is expected to
be slower, but generates initial solutions with a lower cost than those generated by method highCost.
First, all pipes are set to the smallest possible diameter. This solution is almost always infeasible (if it
is feasible, it is optimal). Therefore, a second step consists of increasing the pipe diameters by going
through the set of pipes and trying to increase each pipe’s diameter by one size at a time and checking
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the hydraulic feasibility of this potential solution for every time period. Increasing the pipe diameter
lowers (ceteris paribus) the head loss in that pipe, which could result in higher pressure heads at the
nearby demand nodes. If this increase in diameter actually lowers the hydraulic deficit and does not
violate the velocity constraint, it is applied. When there is no more deficit or velocity violation for
the first time period, the procedure is repeated for the next time period. This procedure ends when
a solution that is feasible in every time period is attained. This solution is set as the initial global best
solution s-best. In the most extreme scenario, this solution will be one where all diameters are set to
their maximal values.

Local Search

Next, a loop is performed until a stopping criterion is reached. The local search procedure is
able to quickly improve the quality of the initially generated solutions by iteratively performing
small changes—called moves—on the current solution. The move type that is applied in this local
search (decrease) reduces the diameter of one pipe with one size at a time. Therefore, neighboring
solutions have configurations in which all pipes but one have the same diameter as the current solution.
Table 1 and Figure 3 visualize different (neighboring) solutions. Candidate solution 1 is visualized in
Figure 1 and numerically visualized in Table 1. This solution can also be represented as a vector of
pipe diameters: {150, 150, 80, 80, 100, 60, 60, 80}. Hydraulic simulation shows that candidate solution 1
is hydraulically feasible. A decrease move is applied on pipe 3 of candidate solution 1, implying that the
diameter of that pipe will be decreased from 80 to 60 mm. This new candidate solution 2 is a neighbour of
candidate solution 1; its vector representation is: {150, 150, 80, 80, 100, 60, 60, 80}. Simulation in EPANET
2.0 shows that candidate solution 2 does not violate any of the constraints. Therefore, this move leads to
a feasible solution of lower total investment cost (the TIC decreased from 9621 e to 9140 e, as can be
derived from Table 1). If we start from candidate solution 1 again and apply the decrease move on pipe 4,
this diameter will decrease from 80 mm to 60 mm, leading to candidate solution 3. Hydraulic simulation
of candidate solution 3 shows that this solution is infeasible, since it would violate the minimal pressure
constraint in demand node 7, visualized in Figure 3. Another move could be the decrease of pipe 2 to
a diameter of 100 mm. Hydraulic simulation shows that this leads to a violation of the maximal velocity
constraint in pipes 2 and 4; candidate solution 4 is therefore also labeled as infeasible.

Deciding which pipe will be decreased in diameter depends on the applied pipe selection method.
Two alternative pipe selection methods are tested. The first method, noGrasp, goes through the list of
pipes successively. The other method, grasp, uses a greedy randomized adaptive search procedure to
select which pipe should be changed in that current move. The larger the grasp size, the more random
the pipe selection. When, for example, for a network of 200 pipes, the grasp size is set at 20%, a pipe
will be uniformly randomly selected out of the first 40 pipes in the list. Note that a grasp size of 0% is
equal to the noGrasp selection procedure. A first improving strategy is applied, meaning that as soon as
a better (lower value for the objective function) feasible solution is encountered, s-current is replaced
by this solution. A simple memory structure (memory) is introduced to speed up the algorithm. This list
keeps track of all pipes that were changed unsuccessfully (i.e., violating the hydraulic constraints). It is
prohibited to change these pipes’ diameters again during the current search. The memory list is erased
after every local search.

In the multi-period setting, the hydraulic simulation is even more time consuming than in the
single-period setting, since a simulation has to be performed for every time period. Therefore, results
are evaluated after every time period for the velocity and the pressure constraints. As soon as infeasible
situations are encountered, the simulation is stopped in order to avoid (superfluous) simulations for
the next time periods.

Evaluation and Acceptance

After every local search, the current solution, s-current, which is the local optimum of that
local search (or the lowest cost feasible solution that can be reached by applying the decrease move),
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is evaluated. If the global best solution, s-best, is of lower cost, the current solution is replaced by
s-best. If the current solution is of lower cost than the global best solution, s-best, this global best
solution is replaced by the current solution.

Perturbation

When a local optimum is reached, a perturbation move is used to jump out of this local optimum.
The perturbation move is performed on the current solution, s-current, which is at that moment
equal to the global best solution, s-best. The perturbation takes a certain percentage—the so-called
perturbation rate—of randomly selected pipes, and increases the diameters of these pipes by one
size. For every change in diameter, a hydraulic check is performed. When such a change violates
the pressure and/or velocity constraints, it is reversed. This perturbed solution is therefore always
hydraulically feasible and is the starting solution for the next local search. The optimal perturbation
rate balances between two extremes: if too many pipes are changed, the procedure reduces to a random
(feasible) restart—which is not necessarily bad. If too few pipes are changed, the algorithm is unable
to escape from local optima.

Termination Criterion

The algorithm is stopped after a certain maximal number of iterations. The lowest cost solution
encountered by the algorithm is s-best.

As stated above, it is important to validate whether all of the aforementioned mechanisms have
an added value (meaning that they either lead to lower cost solutions, or else a decrease in algorithm
running time). Some parameters can also take up different values or levels. Therefore, a full-factorial
experiment is conducted to determine the best parameter settings. This experiment will lead to the
optimal algorithm configuration, in terms of reaching low cost solutions and in terms of minimizing
algorithm running time.

3.3. Optimal Algorithm Configuration

Two linear mixed-effects models are fitted to detect which factors or algorithm parameters
significantly influence the algorithm’s performance in terms of achieving low cost solutions and
in terms of running time. Table 2 displays the analyzed factors and their corresponding levels.
This analysis is performed on a set of 75 different test networks of different size (expressed by the
number of pipes) and characteristics (reflected by the meshedness coefficient). Since the perturbation
contains a random component, the algorithm will find different solutions when it is executed multiple
times on the same problem instance. Therefore, the algorithm is executed five times on each test
instance and for each factor combination. The average cost or time over these five runs is taken as
the response variable. As a consequence, both data sets will contain 36,000 data points (75 instances
× 480 parameter combinations). The first model quantifies the relationship between the achieved
solution cost and the different parameters, the second model explains how much of the variance in the
running time is explained by the analyzed parameters.

Table 2. Parameters and their tested values.

Parameter Levels Value

# Iterations 4 100, 200, 300, 400
# Pipes 5 100, 200, 300, 400, 500
Meshedness 3 0.10, 0.15, 0.20
Initial solution 2 highCost, lowCost
Pipe sort 2 lengthSort, costSort
Grasp size 3 0%, 10%, 20%
Memory list 2 memory, noMemory
Perturbation rate 5 1%, 10%, 20%, 30%, 40%
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3.3.1. Model on the Relative Cost

The relative cost model with main effects has a coefficient of determination (R-squared adjusted)
equal to 0.79, meaning that about 79% of the variation in the response variable (in this case, the relative
cost) is explained by the independent variables. Adding interaction effects does not have a large effect
on the adjusted R-squared— it is only increased to 0.81.

3.3.2. Model on the Running Time

For the estimation of the model on the running time, it seems reasonable to include the network
size as a factor, since it can be expected that the size of the network will influence the running time.
Therefore, the number of pipes was added as a factor in the model on the running time. The meshedness
coefficient of the network is also included as a factor, to check whether the meshedness influences
the algorithm running times—for example, if a higher amount of loops results in longer hydraulic
simulations. The running time model with main effects only has a coefficient of determination (adjusted
R-squared) of 0.77. It is clear that adding interaction effects significantly increases the explanatory
power: with main and interaction effects included, the factors are able to explain 97% of the variance
in the algorithm running time.

Figures 7 and 8 plot the values of the coefficients estimated for each factor in the main effects
model on the cost and the running time, respectively. Figures 9 and 10 plot the values of the coefficients
estimated for the factor interactions. The lower parts of these figures show the mean plots and
confidence intervals for the means for all parameters. These mean plots visualize the exact effect of
each of the significant parameters.
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Figure 7. Values of the coefficients and mean plots for the regression model on the relative cost:
main effects.
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Figure 8. Values of the coefficients and mean plots for the regression model on the running time:
main effects.
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Figure 10. Values of the coefficients and mean plots for the regression model on the running time:
main and interaction effects.

3.3.3. Influence of the Different Factors

Initial Solution

The spread of the coefficients depicted in Figure 7 for the model on the relative cost is rather small
for this factor. The mean plot in Figure 7b visualizes that the highCost strategy generates slightly
better results in terms of solution quality. The numerical results also showed that, for most of the test
instances, the lowCost procedure is not able to construct a feasible “low-cost” solution, and therefore
all diameters are set at their maximal value. This implies that most initial solutions generated via the
lowCost strategy will have a higher cost than those generated under highCost.

The manner in which the initial solution is constructed does not influence the algorithm running
time, as can be derived from the very small spread of the coefficients in Figure 8. Constructing an initial
solution according to the lowCost procedure takes some extra seconds compared to highCost, but
these are negligible compared to the total algorithm running time.
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Pipe Sort

Pre-testing showed that sorting the pipes according to decreasing length or according to decreasing
cost difference generates much better results in terms of solution quality than randomly sorting the
set of pipes. Therefore, this random sorting was not included in the full-factorial experiment, and
only sorting according to decreasing length (lengthSort) or according to decreasing cost difference
(costSort) were compared. The very low spread of the coefficients in Figures 7 and 8 shows that there
is not much difference between these two ways of sorting. This is logical, since both sorts are related:
longer pipes—which will appear at the top of the lengthSort list—are more likely to induce higher
cost differences, since this cost is a linear function of the pipe length. These longer pipes therefore also
appear higher on the list sorted based on decreasing cost differences (costSort).

Despite the fact that sorting according to decreasing cost (costSort) requires a re-sorting of the
list after every local search, there is no significant difference in running time of the two types of sorting,
as is visible in Figure 8.

Local Search

The coefficients show that adding a memory structure influences both the solution quality and the
algorithm running time. From the mean plots in Figures 7e and 8c, it is clear that adding a memory
structure to the local search is very beneficial: running times are decreased by 40% without significantly
losing solution quality. This is also visualized in Figure 11: the number of calls to EPANET (which is
the time-consuming part of the algorithm) is twice as high for the algorithm without memory, whereas
the evolution of solution cost is not very different for the algorithm with or without memory structure.
Figure 9b shows that the memory structure interacts with the perturbation rate: the algorithm with
memory structure is more sensitive to variations in the perturbation rate.

Figure 7d displays that a grasp size of 10% leads to the lowest cost solutions. Figure 8 shows that
the grasp size does not influence the algorithm running time, nor is there a difference in running time
between the algorithm with grasp selection procedure and the algorithm without grasp.
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Figure 11. Effect of memory structure.

Perturbation

From the spread of the coefficients in Figures 7 and 8, it is clear that the perturbation rate influences
both the solution quality and the algorithm running time. From the mean plot in Figure 7f, it is clear
that a perturbation rate of 10% achieves the best results in terms of solution quality. This is explained
by the fact that perturbations that are too small are not able to escape the local optima, and on the other
hand, perturbation rates that are too high lead to a significant loss of information about the (potentially
good) regions of the solution space. As can be seen in Figure 9c, when pipes are sorted according
to decreasing length (lengthSort), the algorithm is more sensitive to (higher) perturbation rates.
When pipes are (re)sorted according to decreasing cost difference, pipes that were perturbed—and
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thus increased in diameter—will appear relatively higher on the list: this increased diameter implies
a higher cost difference that can be realized by decreasing this diameter again. Therefore, especially
for higher perturbation rates, a large part of the perturbed pipes will be decreased first, which undoes
part of the larger perturbation and moves the current solution back to good areas of the solution space.
When pipes are sorted according to decreasing length, the local search moves differently through the
solution space and it is less capable of fully exploiting the good areas when larger perturbation rates
are used.

Figure 8d visualizes how the running time increases linearly as the perturbation rate increases.
There are two reasons for this. Firstly, every change in diameter creates a new solution that has to
be simulated hydraulically, since only feasible solutions are allowed as a result of the perturbation.
As a consequence, changing more pipes—due to a higher perturbation rate—will take more time.
Therefore, the perturbation phase itself will take longer for higher perturbation rates. This is clearly
demonstrated in Figure 12a–c. These figures plot 26 iterations of the ILS algorithm executed on a toy
network. At the end of every local search phase, a perturbation is performed. It is clear that the
horizontal distance between the consecutive local searches is bigger for the perturbation rate of 40%,
which implies that the related perturbations are more time consuming. A second reason for the longer
running time is that a higher perturbation rate results in solutions that have more “potential” for
improvement, which is depicted by the larger vertical distance between two consecutive local search
phases. In Figure 12c, it is clear that the perturbation rate of 40% implies more moves that are executed
per iteration, or more “new” current solutions that are generated per iteration.
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Figure 12. Effect of different perturbation rates.

Termination Criterion

The solution quality is strongly influenced by the maximal number of iterations. It is logical that
the solution cost decreases as the number of iterations is increased. The mean plot of Figure 7a shows
that the related slope flattens out when the number of iterations increases, which means that most of
the improvement is made in the beginning. This is also clearly visible in Figure 13, where the logarithm
of the solution cost is plotted as a function of the number of iterations. Even for the bigger networks,
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the algorithm stabilizes after a relatively small number of iterations, and most of the improvement in
solution quality is made at the very beginning. The improvement that is made after a higher number
of iterations is negligible compared to the improvement made in the beginning.

The running time increases linearly as a function of the maximal number of iterations, which is
to be expected: every iteration follows the same procedure, and will therefore take an approximately
equal amount of time. From Figure 10a, it is clear that the number of iterations interacts with the
perturbation rate. Lower perturbation rates imply shorter running times. Therefore, the slope of the
observations with low perturbation rates will be less steep than the slope of the observations with
high perturbation rates. A similar conclusion can be drawn for the interaction between the maximal
number of iterations and the network size (Figure 10b).
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Figure 13. Long run of 1000 iterations for three networks.

Network Size and Structure

It is clear that the number of pipes strongly influences the algorithm running time: larger networks
will have longer running times. On the contrary, the meshedness of the network does not significantly
influence the algorithm running time. This implies that more looped networks do not necessarily
involve longer hydraulic simulation times.

4. Experimental Results

As mentioned above, other authors also tackled similar extensions. Farmani et al. [25] also use
time varying demand patterns, but formulate the problem as a multi-objective optimization problem
(in contrast to this single-objective formulation). Gupta et al. [19] and Bragalli et al. [26] also impose
velocity constraints, but in a single-period setting. Therefore, comparison of results has no use. Since, to
the authors’ knowledge, no multi-period, single-objective, pressure- and velocity-constrained test
instances are available, it is impossible to compare our results to other findings.

Multiple authors (e.g., Maier et al. [32]) have stated that algorithms for WDND optimization
should be tested on more, larger, and more challenging instances. Therefore, the ILS algorithm is
run on a diverse set of HydroGen [27] test instances, available via [33]. These networks have varying
size and characteristics, which enables more robust conclusions regarding the performance of the ILS
algorithms to be drawn.

Since none of the previously developed algorithms for the WDND optimization problem are
freely available, the results of our algorithm could not be compared to those of other algorithms.
Moreover, a re-implementation of these algorithms comes with its own issues, especially the fact that
the performance of the re-implemented algorithms might suffer from poor algorithm configuration
and calibration. As stressed by Marchi et al. [23], a good calibration of all algorithms is essential in
comparative analysis. All test networks, however, are freely available online, and we invite other
researchers to test their algorithms on the networks, using their own calibration.

The input files are available via [33]. Information on the instances is given in Table 3.
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Table 3. Information on the HydroGen instances.

Network Meshedness Pipes Demand Water Network Meshedness Pipes Demand Water
Coefficient Nodes Reservoirs Coefficient Nodes Reservoirs

HG-MP-1 0.20 100 73 1 HG-MP-16 0.20 606 431 4
HG-MP-2 0.15 100 78 1 HG-MP-17 0.15 607 465 4
HG-MP-3 0.10 99 83 1 HG-MP-18 0.10 608 503 5
HG-MP-4 0.20 198 143 1 HG-MP-19 0.20 708 503 5
HG-MP-5 0.15 200 155 1 HG-MP-20 0.15 703 538 5
HG-MP-6 0.10 198 166 1 HG-MP-21 0.10 707 586 5
HG-MP-7 0.20 299 215 2 HG-MP-22 0.20 805 572 6
HG-MP-8 0.15 300 232 2 HG-MP-23 0.15 804 615 6
HG-MP-9 0.10 295 247 2 HG-MP-24 0.10 808 669 6

HG-MP-10 0.20 397 285 2 HG-MP-25 0.20 906 644 6
HG-MP-11 0.15 399 308 2 HG-MP-26 0.15 905 692 7
HG-MP-12 0.10 395 330 3 HG-MP-27 0.10 908 752 7
HG-MP-13 0.20 498 357 2 HG-MP-28 0.20 1,008 716 7
HG-MP-14 0.15 499 385 3 HG-MP-29 0.15 1,007 770 7
HG-MP-15 0.10 495 413 3 HG-MP-30 0.10 1,009 835 8

A set of 16 different pipe types is used. The set of available pipe types and their corresponding
costs can be found in Table 4.

Table 4. Available pipe types and their corresponding costs.

Number Diameter Roughness Cost Number Diameter Roughness Cost
(in mm) (unitless) (in EUR per m) (in mm) (unitless) (in EUR per m)

1 20 130 9 200 130 116
2 30 130 20 10 250 130 150
3 40 130 25 11 300 130 201
4 50 130 30 12 350 130 246
5 60 130 35 13 400 130 290
6 80 130 38 14 500 130 351
7 100 130 50 15 600 130 528
8 150 130 61 16 1,000 130 628

A minimal pressure head of 20 m is required in every demand node at every time period, and
a maximal velocity of 2 m · s−1 is set for the water flow through every pipe in the network, at every
time period. Demand nodes are divided in five categories (domestic, industrial, energy, public services,
and commercial demand nodes), each with a corresponding base load and demand pattern. The base
loads can be found in the EPANET input files of the instances. Demand patterns are visualized in
Figure 14.
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Figure 14. One-day hourly demand patterns of the predefined user categories.

The algorithm was configured with the initial solution constructed according to highCost, since
this leads to lower cost solutions without negatively influencing the running time. Pipes were sorted
according to decreasing length (lengthSort), since this yields slightly better results for a perturbation
rate of 10%. The grasp size was set at 10%, again, because this leads to lower cost solutions without
worsening the running time. The memory structure in the local search is activated to reduce running
times, and the perturbation rate is set at 10% since this leads to good solutions in relatively short
running times. The algorithm was executed 10 times per instance for a fixed number of calls to
EPANET. The lowest cost solution found after a fixed number of function evaluations is recorded, and
minimum, mean, and maximum costs over the 10 runs are calculated and reported. These results,
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together with the mean number of iterations and the standard deviations, can be found in the tables in
Appendix A.

From these tables, it is clear that that more iterations are performed on the smaller instances
for an equal amount of calls to EPANET. This is to be expected: larger instances imply larger
neighborhoods, and therefore, more calls to EPANET (or function evaluations) are required per
iteration. For instance, in HG-MP-30-1, only five iterations were finished after 100,000 function
evaluations; whereas for HG-MP-1-1, 160 iterations were finished on average.

The minimum, mean, and maximum cost are monotonically decreasing, which is to be expected
because the reported results are related to the lowest cost solutions found so far. For some instances,
it might seem that these costs do not decrease any further as the number of function calls increases.
When looking at the non-rounded results, however, it is clear that the solutions are still improving, but
this improvement is very small and therefore non-noticeable from the rounded results.

Another thing to notice is that the percentage decrease of the minimal, mean, and maximal cost is
smaller for smaller instances. This is due to the fact that for these smaller instances, more iterations
were performed, the algorithm has converged more, and only small additional improvements will be made.

From these tables, it is also clear that it would be interesting to develop a multi-start version of
the ILS algorithm. When looking at a small instance (e.g., HG-MP-2-5) it is clear that the minimum
and the mean cost found after 100,000 function evaluations are considerably lower than the maximum
cost found after 1,500,000 function evaluations. This implies that running the algorithm 15 times
for 100,000 function evaluations will almost certainly lead to a lower cost solution than running the
algorithm once for 1,500,000 iterations. For bigger instances (e.g., HG-MP-26-5), this conclusion cannot
be drawn, at least not for the considered number of evaluations. If the bigger instances were run for
a higher number of function evaluations, similar behavior could occur and the (potential) benefit of
a multi-start algorithm could appear.

The last column reports the standard deviation of the mean, and gives information on how widely
the values are dispersed from this mean. Standard deviations are higher for bigger instances, due to
the differences in order of magnitude of the total network cost. Apart from some exceptions (i.e., all
smaller instances that already converged), the standard deviation decreases as the number of function
evaluations increases. This implies that the ten different runs converge as the algorithm runs longer.

5. Conclusions

The main contribution of this paper is an ILS algorithm that solves the multi-period,
velocity-constrained WDND optimization problem quickly and effectively.

The problem is formulated in line with previous research in this area, and aims at finding the
optimal pipe configuration out of a set of discrete pipe types, while satisfying hydraulic constraints and
customer requirements. This formulation is extended in two ways: (1) an additional constraint—which
imposes a maximal water velocity in the distribution pipes—is added, and (2) the problem is extended
to a multi-period setting. A simple and easy-to-understand iterated local search algorithm is developed
to tackle this mixed-integer, non-linear optimization problem. The developed approach combines
a local search step with a perturbation step in order to create a balance between solution space
exploitation and exploration, respectively. Only components that show an added value are included in
the algorithm. A full-factorial experiment is conducted to test the added value of each of the algorithms’
components and to decide on optimal parameter settings. Furthermore, the algorithm is run on a broad
set of realistic instances. These are available online and can be used as new benchmark instances and
will foster further research in this area.

Other challenges and opportunities for further research remain. An interesting extension of
this work would be to extend the gravity-fed formulation to networks that are fed by pumps.
Another possible extension is to convert the single-objective formulation to a multi-objective one,
where other objectives, such as water quality and network reliability, are also taken into consideration
when optimizing network design.
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Appendix A. Results of ILS on HydroGen Instances

Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-1-1 100,000 160 0.381 0.387 0.395 0.004
HG-MP-1-1 300,000 574 0.380 0.385 0.391 0.003
HG-MP-1-1 500,000 988 0.380 0.385 0.391 0.003
HG-MP-1-1 1,000,000 2026 0.380 0.385 0.391 0.003
HG-MP-1-1 1,500,000 3065 0.380 0.385 0.391 0.003

HG-MP-1-2 100,000 155 0.348 0.361 0.414 0.019
HG-MP-1-2 300,000 548 0.347 0.359 0.413 0.020
HG-MP-1-2 500,000 938 0.347 0.359 0.413 0.020
HG-MP-1-2 1,000,000 1904 0.347 0.359 0.413 0.020
HG-MP-1-2 1,500,000 2871 0.346 0.359 0.413 0.020

HG-MP-1-3 100,000 125 0.337 0.343 0.350 0.003
HG-MP-1-3 300,000 482 0.335 0.339 0.342 0.002
HG-MP-1-3 500,000 845 0.334 0.337 0.340 0.002
HG-MP-1-3 1,000,000 1769 0.334 0.336 0.339 0.002
HG-MP-1-3 1,500,000 2695 0.334 0.336 0.339 0.002

HG-MP-1-4 100,000 161 0.340 0.355 0.382 0.011
HG-MP-1-4 300,000 568 0.338 0.353 0.372 0.011
HG-MP-1-4 500,000 974 0.338 0.352 0.366 0.009
HG-MP-1-4 1,000,000 1997 0.338 0.352 0.365 0.009
HG-MP-1-4 1,500,000 3017 0.338 0.351 0.365 0.009

HG-MP-1-5 100,000 160 0.303 0.312 0.318 0.004
HG-MP-1-5 300,000 547 0.298 0.310 0.318 0.006
HG-MP-1-5 500,000 935 0.298 0.310 0.318 0.006
HG-MP-1-5 1,000,000 1902 0.298 0.309 0.318 0.005
HG-MP-1-5 1,500,000 2871 0.298 0.309 0.318 0.005

HG-MP-2-1 100,000 149 0.319 0.395 0.441 0.036
HG-MP-2-1 300,000 530 0.318 0.392 0.437 0.036
HG-MP-2-1 500,000 917 0.318 0.388 0.431 0.034
HG-MP-2-1 1,000,000 1881 0.318 0.387 0.431 0.034
HG-MP-2-1 1,500,000 2849 0.318 0.387 0.431 0.034

HG-MP-2-2 100,000 147 0.289 0.297 0.308 0.006
HG-MP-2-2 300,000 521 0.289 0.294 0.305 0.005
HG-MP-2-2 500,000 895 0.289 0.294 0.305 0.005
HG-MP-2-2 1,000,000 1835 0.289 0.294 0.302 0.004
HG-MP-2-2 1,500,000 2776 0.289 0.294 0.302 0.004

HG-MP-2-3 100,000 150 0.248 0.286 0.313 0.022
HG-MP-2-3 300,000 542 0.245 0.275 0.313 0.025
HG-MP-2-3 500,000 943 0.245 0.274 0.313 0.025
HG-MP-2-3 1,000,000 1953 0.245 0.274 0.313 0.025
HG-MP-2-3 1,500,000 2959 0.245 0.269 0.313 0.023

HG-MP-2-4 100,000 150 0.370 0.398 0.441 0.024
HG-MP-2-4 300,000 544 0.369 0.390 0.437 0.023
HG-MP-2-4 500,000 939 0.362 0.387 0.435 0.023
HG-MP-2-4 1,000,000 1930 0.362 0.386 0.435 0.023
HG-MP-2-4 1,500,000 2923 0.362 0.386 0.435 0.023

HG-MP-2-5 100,000 139 0.349 0.387 0.444 0.043
HG-MP-2-5 300,000 476 0.306 0.381 0.444 0.048
HG-MP-2-5 500,000 814 0.306 0.381 0.444 0.048
HG-MP-2-5 1,000,000 1655 0.306 0.379 0.440 0.048
HG-MP-2-5 1,500,000 2497 0.305 0.374 0.438 0.052
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-3-1 100,000 147 0.449 0.455 0.465 0.005
HG-MP-3-1 300,000 513 0.446 0.451 0.459 0.004
HG-MP-3-1 500,000 878 0.445 0.451 0.459 0.004
HG-MP-3-1 1,000,000 1793 0.445 0.451 0.459 0.004
HG-MP-3-1 1,500,000 2709 0.445 0.451 0.459 0.004

HG-MP-3-2 100,000 141 0.321 0.367 0.431 0.049
HG-MP-3-2 300,000 500 0.318 0.356 0.431 0.048
HG-MP-3-2 500,000 866 0.318 0.355 0.431 0.048
HG-MP-3-2 1,000,000 1785 0.318 0.355 0.431 0.048
HG-MP-3-2 1,500,000 2707 0.318 0.354 0.431 0.048

HG-MP-3-3 100,000 148 0.399 0.419 0.438 0.013
HG-MP-3-3 300,000 536 0.398 0.417 0.437 0.013
HG-MP-3-3 500,000 927 0.398 0.417 0.437 0.013
HG-MP-3-3 1,000,000 1901 0.398 0.416 0.437 0.012
HG-MP-3-3 1,500,000 2876 0.398 0.416 0.437 0.012

HG-MP-3-4 100,000 135 0.343 0.351 0.357 0.004
HG-MP-3-4 300,000 460 0.343 0.350 0.355 0.003
HG-MP-3-4 500,000 786 0.343 0.349 0.355 0.004
HG-MP-3-4 1,000,000 1605 0.343 0.349 0.353 0.003
HG-MP-3-4 1,500,000 2427 0.343 0.349 0.353 0.003

HG-MP-3-5 100,000 143 0.454 0.504 0.555 0.034
HG-MP-3-5 300,000 521 0.442 0.484 0.555 0.041
HG-MP-3-5 500,000 904 0.442 0.472 0.555 0.035
HG-MP-3-5 1,000,000 1865 0.442 0.471 0.555 0.035
HG-MP-3-5 1,500,000 2828 0.442 0.468 0.555 0.033

HG-MP-4-1 100,000 47 0.810 0.855 0.903 0.029
HG-MP-4-1 300,000 249 0.758 0.788 0.845 0.025
HG-MP-4-1 500,000 461 0.755 0.781 0.842 0.027
HG-MP-4-1 1,000,000 996 0.750 0.777 0.841 0.027
HG-MP-4-1 1,500,000 1533 0.750 0.775 0.824 0.023

HG-MP-4-2 100,000 46 0.813 0.866 0.956 0.037
HG-MP-4-2 300,000 229 0.773 0.814 0.854 0.024
HG-MP-4-2 500,000 420 0.770 0.810 0.849 0.024
HG-MP-4-2 1,000,000 901 0.761 0.809 0.849 0.026
HG-MP-4-2 1,500,000 1383 0.761 0.807 0.843 0.025

HG-MP-4-3 100,000 45 0.709 0.736 0.776 0.023
HG-MP-4-3 300,000 238 0.652 0.697 0.742 0.024
HG-MP-4-3 500,000 443 0.642 0.690 0.732 0.026
HG-MP-4-3 1,000,000 957 0.641 0.686 0.730 0.025
HG-MP-4-3 1,500,000 1473 0.640 0.683 0.729 0.023

HG-MP-4-4 100,000 47 0.781 0.824 0.887 0.033
HG-MP-4-4 300,000 250 0.729 0.762 0.801 0.024
HG-MP-4-4 500,000 463 0.725 0.759 0.796 0.024
HG-MP-4-4 1,000,000 998 0.722 0.755 0.795 0.022
HG-MP-4-4 1,500,000 1534 0.722 0.754 0.795 0.023

HG-MP-4-5 100,000 47 0.649 0.677 0.707 0.018
HG-MP-4-5 300,000 250 0.603 0.639 0.679 0.023
HG-MP-4-5 500,000 456 0.599 0.631 0.678 0.025
HG-MP-4-5 1,000,000 975 0.598 0.629 0.674 0.025
HG-MP-4-5 1,500,000 1494 0.598 0.626 0.665 0.023
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-5-1 100,000 44 0.867 0.944 1.002 0.039
HG-MP-5-1 300,000 212 0.860 0.910 0.936 0.028
HG-MP-5-1 500,000 384 0.859 0.903 0.935 0.027
HG-MP-5-1 1,000,000 814 0.856 0.899 0.934 0.027
HG-MP-5-1 1,500,000 1244 0.854 0.898 0.934 0.027

HG-MP-5-2 100,000 45 0.669 0.738 0.828 0.050
HG-MP-5-2 300,000 234 0.640 0.677 0.768 0.034
HG-MP-5-2 500,000 432 0.631 0.671 0.768 0.037
HG-MP-5-2 1,000,000 933 0.631 0.665 0.765 0.037
HG-MP-5-2 1,500,000 1432 0.631 0.665 0.765 0.037

HG-MP-5-3 100,000 43 0.876 0.935 0.994 0.032
HG-MP-5-3 300,000 218 0.826 0.882 0.917 0.030
HG-MP-5-3 500,000 399 0.825 0.872 0.905 0.030
HG-MP-5-3 1,000,000 854 0.817 0.861 0.905 0.029
HG-MP-5-3 1,500,000 1311 0.817 0.859 0.904 0.030

HG-MP-5-4 100,000 47 0.693 0.731 0.785 0.028
HG-MP-5-4 300,000 239 0.664 0.685 0.713 0.014
HG-MP-5-4 500,000 439 0.664 0.680 0.712 0.014
HG-MP-5-4 1,000,000 939 0.664 0.678 0.701 0.011
HG-MP-5-4 1,500,000 1440 0.664 0.678 0.700 0.011

HG-MP-5-5 100,000 46 0.705 0.765 0.842 0.044
HG-MP-5-5 300,000 227 0.678 0.721 0.767 0.031
HG-MP-5-5 500,000 418 0.675 0.720 0.767 0.031
HG-MP-5-5 1,000,000 897 0.675 0.718 0.767 0.032
HG-MP-5-5 1,500,000 1375 0.675 0.717 0.767 0.032

HG-MP-6-1 100,000 44 0.633 0.668 0.712 0.025
HG-MP-6-1 300,000 225 0.624 0.641 0.661 0.014
HG-MP-6-1 500,000 413 0.619 0.636 0.659 0.013
HG-MP-6-1 1,000,000 887 0.618 0.633 0.658 0.012
HG-MP-6-1 1,500,000 1362 0.618 0.632 0.658 0.012

HG-MP-6-2 100,000 47 0.836 0.870 0.896 0.023
HG-MP-6-2 300,000 232 0.809 0.835 0.859 0.018
HG-MP-6-2 500,000 420 0.791 0.828 0.857 0.020
HG-MP-6-2 1,000,000 894 0.773 0.815 0.854 0.023
HG-MP-6-2 1,500,000 1370 0.771 0.814 0.853 0.023

HG-MP-6-3 100,000 47 0.963 0.987 1.043 0.022
HG-MP-6-3 300,000 229 0.905 0.936 0.995 0.026
HG-MP-6-3 500,000 420 0.898 0.923 0.960 0.019
HG-MP-6-3 1,000,000 906 0.894 0.917 0.956 0.018
HG-MP-6-3 1,500,000 1393 0.892 0.915 0.954 0.018

HG-MP-6-4 100,000 46 0.754 0.782 0.855 0.027
HG-MP-6-4 300,000 234 0.719 0.731 0.794 0.021
HG-MP-6-4 500,000 433 0.711 0.722 0.773 0.017
HG-MP-6-4 1,000,000 935 0.705 0.713 0.719 0.004
HG-MP-6-4 1,500,000 1442 0.699 0.711 0.718 0.005

HG-MP-6-5 100,000 47 0.797 0.830 0.904 0.033
HG-MP-6-5 300,000 223 0.775 0.792 0.812 0.014
HG-MP-6-5 500,000 402 0.772 0.789 0.812 0.014
HG-MP-6-5 1,000,000 853 0.772 0.787 0.811 0.014
HG-MP-6-5 1,500,000 1307 0.772 0.784 0.809 0.011
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-7-1 100,000 21 1.189 1.377 1.557 0.126
HG-MP-7-1 300,000 148 0.903 1.080 1.296 0.116
HG-MP-7-1 500,000 291 0.901 1.060 1.291 0.120
HG-MP-7-1 1,000,000 651 0.894 1.033 1.201 0.105
HG-MP-7-1 1,500,000 1011 0.893 1.022 1.200 0.106

HG-MP-7-2 100,000 22 1.032 1.077 1.115 0.028
HG-MP-7-2 300,000 141 0.882 0.964 1.046 0.043
HG-MP-7-2 500,000 271 0.874 0.952 1.027 0.042
HG-MP-7-2 1,000,000 604 0.872 0.943 1.015 0.042
HG-MP-7-2 1,500,000 940 0.858 0.938 1.010 0.045

HG-MP-7-3 100,000 26 0.938 0.996 1.082 0.040
HG-MP-7-3 300,000 141 0.774 0.825 0.890 0.037
HG-MP-7-3 500,000 274 0.765 0.813 0.878 0.031
HG-MP-7-3 1,000,000 611 0.762 0.807 0.875 0.032
HG-MP-7-3 1,500,000 947 0.762 0.807 0.873 0.031

HG-MP-7-4 100,000 23 1.074 1.167 1.276 0.060
HG-MP-7-4 300,000 158 0.947 0.981 1.026 0.020
HG-MP-7-4 500,000 305 0.943 0.975 1.023 0.020
HG-MP-7-4 1,000,000 675 0.927 0.964 1.014 0.022
HG-MP-7-4 1,500,000 1045 0.924 0.962 1.014 0.023

HG-MP-7-5 100,000 24 0.774 0.863 0.976 0.053
HG-MP-7-5 300,000 148 0.656 0.730 0.927 0.074
HG-MP-7-5 500,000 287 0.654 0.714 0.904 0.072
HG-MP-7-5 1,000,000 649 0.654 0.709 0.896 0.070
HG-MP-7-5 1,500,000 1016 0.653 0.696 0.779 0.042

HG-MP-8-1 100,000 22 0.995 1.075 1.191 0.057
HG-MP-8-1 300,000 137 0.823 0.906 0.999 0.063
HG-MP-8-1 500,000 264 0.812 0.892 0.988 0.059
HG-MP-8-1 1,000,000 587 0.810 0.879 0.979 0.054
HG-MP-8-1 1,500,000 914 0.807 0.875 0.975 0.053

HG-MP-8-2 100,000 21 0.942 1.063 1.135 0.057
HG-MP-8-2 300,000 126 0.883 0.953 1.024 0.045
HG-MP-8-2 500,000 237 0.848 0.937 1.009 0.052
HG-MP-8-2 1,000,000 521 0.834 0.919 0.969 0.047
HG-MP-8-2 1,500,000 806 0.833 0.912 0.958 0.043

HG-MP-8-3 100,000 23 0.903 1.013 1.127 0.068
HG-MP-8-3 300,000 144 0.825 0.888 0.970 0.053
HG-MP-8-3 500,000 275 0.820 0.882 0.953 0.051
HG-MP-8-3 1,000,000 606 0.819 0.867 0.947 0.046
HG-MP-8-3 1,500,000 943 0.818 0.866 0.946 0.046

HG-MP-8-4 100,000 22 1.150 1.264 1.344 0.062
HG-MP-8-4 300,000 141 0.891 1.019 1.180 0.081
HG-MP-8-4 500,000 277 0.879 0.986 1.159 0.076
HG-MP-8-4 1,000,000 621 0.868 0.974 1.128 0.073
HG-MP-8-4 1,500,000 966 0.866 0.972 1.123 0.073

HG-MP-8-5 100,000 24 1.226 1.360 1.441 0.061
HG-MP-8-5 300,000 143 0.966 1.121 1.232 0.073
HG-MP-8-5 500,000 276 0.948 1.091 1.185 0.064
HG-MP-8-5 1,000,000 619 0.938 1.072 1.160 0.074
HG-MP-8-5 1,500,000 962 0.934 1.055 1.140 0.070
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-9-1 100,000 21 0.938 1.015 1.107 0.052
HG-MP-9-1 300,000 140 0.867 0.896 0.921 0.019
HG-MP-9-1 500,000 269 0.865 0.887 0.912 0.017
HG-MP-9-1 1,000,000 597 0.854 0.879 0.894 0.015
HG-MP-9-1 1,500,000 926 0.854 0.876 0.891 0.013

HG-MP-9-2 100,000 26 1.083 1.141 1.221 0.035
HG-MP-9-2 300,000 142 0.856 0.911 1.031 0.049
HG-MP-9-2 500,000 272 0.841 0.889 1.009 0.047
HG-MP-9-2 1,000,000 601 0.837 0.879 1.004 0.047
HG-MP-9-2 1,500,000 930 0.837 0.877 1.000 0.046

HG-MP-9-3 100,000 25 0.997 1.021 1.073 0.023
HG-MP-9-3 300,000 143 0.878 0.915 0.971 0.026
HG-MP-9-3 500,000 274 0.856 0.894 0.967 0.029
HG-MP-9-3 1,000,000 607 0.846 0.887 0.960 0.031
HG-MP-9-3 1,500,000 940 0.841 0.885 0.957 0.031

HG-MP-9-4 100,000 24 0.812 0.867 0.933 0.042
HG-MP-9-4 300,000 134 0.735 0.763 0.786 0.019
HG-MP-9-4 500,000 254 0.730 0.752 0.778 0.017
HG-MP-9-4 1,000,000 561 0.727 0.748 0.774 0.017
HG-MP-9-4 1,500,000 871 0.725 0.746 0.771 0.017

HG-MP-9-5 100,000 25 0.979 1.009 1.106 0.034
HG-MP-9-5 300,000 136 0.909 0.941 0.984 0.018
HG-MP-9-5 500,000 252 0.907 0.935 0.965 0.015
HG-MP-9-5 1,000,000 548 0.905 0.919 0.934 0.008
HG-MP-9-5 1,500,000 847 0.899 0.914 0.932 0.009

HG-MP-10-1 100,000 16 1.181 1.260 1.337 0.052
HG-MP-10-1 300,000 99 0.801 0.837 0.893 0.030
HG-MP-10-1 500,000 208 0.779 0.809 0.856 0.023
HG-MP-10-1 1,000,000 493 0.773 0.800 0.850 0.026
HG-MP-10-1 1,500,000 780 0.772 0.798 0.847 0.025

HG-MP-10-2 100,000 17 1.053 1.090 1.173 0.032
HG-MP-10-2 300,000 100 0.851 0.893 0.937 0.026
HG-MP-10-2 500,000 207 0.842 0.881 0.917 0.024
HG-MP-10-2 1,000,000 487 0.830 0.873 0.905 0.025
HG-MP-10-2 1,500,000 773 0.830 0.871 0.902 0.024

HG-MP-10-3 100,000 18 1.083 1.138 1.223 0.042
HG-MP-10-3 300,000 105 0.840 0.889 1.014 0.052
HG-MP-10-3 500,000 223 0.801 0.862 0.978 0.050
HG-MP-10-3 1,000,000 527 0.795 0.851 0.949 0.043
HG-MP-10-3 1,500,000 838 0.793 0.848 0.939 0.041

HG-MP-10-4 100,000 16 0.928 0.985 1.072 0.039
HG-MP-10-4 300,000 90 0.741 0.802 0.861 0.043
HG-MP-10-4 500,000 181 0.729 0.779 0.838 0.036
HG-MP-10-4 1,000,000 428 0.725 0.770 0.837 0.034
HG-MP-10-4 1,500,000 679 0.724 0.768 0.835 0.034

HG-MP-10-5 100,000 18 1.124 1.236 1.372 0.067
HG-MP-10-5 300,000 96 0.862 0.935 1.008 0.041
HG-MP-10-5 500,000 206 0.859 0.899 0.957 0.031
HG-MP-10-5 1,000,000 496 0.835 0.887 0.942 0.032
HG-MP-10-5 1,500,000 792 0.834 0.883 0.926 0.029
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HG-MP-11-1 100,000 14 1.171 1.249 1.416 0.081
HG-MP-11-1 300,000 100 0.941 0.990 1.084 0.043
HG-MP-11-1 500,000 198 0.934 0.973 1.069 0.043
HG-MP-11-1 1,000,000 452 0.916 0.960 1.049 0.040
HG-MP-11-1 1,500,000 711 0.914 0.958 1.045 0.039

HG-MP-11-2 100,000 13 1.147 1.241 1.431 0.075
HG-MP-11-2 300,000 96 0.995 1.063 1.147 0.044
HG-MP-11-2 500,000 190 0.976 1.035 1.125 0.045
HG-MP-11-2 1,000,000 437 0.955 1.014 1.088 0.044
HG-MP-11-2 1,500,000 688 0.944 1.005 1.083 0.045

HG-MP-11-3 100,000 14 1.257 1.324 1.404 0.040
HG-MP-11-3 300,000 89 0.913 0.991 1.043 0.040
HG-MP-11-3 500,000 174 0.893 0.953 1.005 0.033
HG-MP-11-3 1,000,000 395 0.874 0.939 0.999 0.033
HG-MP-11-3 1,500,000 620 0.872 0.935 0.997 0.034

HG-MP-11-4 100,000 16 1.038 1.149 1.273 0.081
HG-MP-11-4 300,000 103 0.887 0.919 0.966 0.022
HG-MP-11-4 500,000 205 0.875 0.903 0.941 0.018
HG-MP-11-4 1,000,000 465 0.858 0.890 0.929 0.022
HG-MP-11-4 1,500,000 725 0.856 0.885 0.922 0.018

HG-MP-11-5 100,000 15 1.045 1.155 1.263 0.074
HG-MP-11-5 300,000 103 0.958 1.018 1.124 0.043
HG-MP-11-5 500,000 198 0.949 1.010 1.114 0.043
HG-MP-11-5 1,000,000 440 0.949 1.005 1.104 0.041
HG-MP-11-5 1,500,000 685 0.949 1.003 1.099 0.040

HG-MP-12-1 100,000 15 1.414 1.467 1.559 0.046
HG-MP-12-1 300,000 101 1.112 1.178 1.335 0.070
HG-MP-12-1 500,000 199 1.109 1.152 1.261 0.050
HG-MP-12-1 1,000,000 450 1.091 1.139 1.249 0.048
HG-MP-12-1 1,500,000 702 1.078 1.135 1.243 0.049

HG-MP-12-2 100,000 15 1.342 1.425 1.529 0.054
HG-MP-12-2 300,000 92 1.142 1.191 1.257 0.029
HG-MP-12-2 500,000 182 1.127 1.170 1.234 0.029
HG-MP-12-2 1,000,000 414 1.112 1.146 1.204 0.029
HG-MP-12-2 1,500,000 650 1.088 1.138 1.201 0.032

HG-MP-12-3 100,000 17 1.195 1.247 1.299 0.035
HG-MP-12-3 300,000 95 1.071 1.126 1.169 0.035
HG-MP-12-3 500,000 186 1.057 1.100 1.146 0.032
HG-MP-12-3 1,000,000 421 1.033 1.081 1.137 0.034
HG-MP-12-3 1,500,000 661 1.026 1.071 1.133 0.035

HG-MP-12-4 100,000 13 1.178 1.282 1.336 0.045
HG-MP-12-4 300,000 89 1.037 1.085 1.136 0.036
HG-MP-12-4 500,000 172 1.023 1.056 1.098 0.024
HG-MP-12-4 1,000,000 388 1.006 1.035 1.076 0.024
HG-MP-12-4 1,500,000 611 1.002 1.031 1.071 0.024

HG-MP-12-5 100,000 14 1.114 1.249 1.380 0.067
HG-MP-12-5 300,000 108 0.989 1.015 1.043 0.018
HG-MP-12-5 500,000 213 0.972 1.006 1.039 0.020
HG-MP-12-5 1,000,000 478 0.966 0.995 1.019 0.017
HG-MP-12-5 1,500,000 745 0.920 0.988 1.018 0.027
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HG-MP-13-1 100,000 11 1.987 2.235 2.583 0.169
HG-MP-13-1 300,000 61 1.371 1.457 1.537 0.059
HG-MP-13-1 500,000 129 1.263 1.349 1.440 0.053
HG-MP-13-1 1,000,000 323 1.223 1.285 1.400 0.053
HG-MP-13-1 1,500,000 531 1.207 1.264 1.360 0.045

HG-MP-13-2 100,000 11 1.918 2.066 2.247 0.096
HG-MP-13-2 300,000 66 1.371 1.457 1.610 0.070
HG-MP-13-2 500,000 139 1.304 1.372 1.490 0.048
HG-MP-13-2 1,000,000 339 1.284 1.317 1.358 0.024
HG-MP-13-2 1,500,000 547 1.268 1.301 1.349 0.026

HG-MP-13-3 100,000 10 1.656 1.753 1.817 0.054
HG-MP-13-3 300,000 64 1.173 1.244 1.343 0.048
HG-MP-13-3 500,000 134 1.165 1.212 1.291 0.036
HG-MP-13-3 1,000,000 324 1.131 1.184 1.242 0.028
HG-MP-13-3 1,500,000 515 1.127 1.178 1.232 0.027

HG-MP-13-4 100,000 11 2.010 2.158 2.411 0.133
HG-MP-13-4 300,000 66 1.277 1.338 1.377 0.031
HG-MP-13-4 500,000 142 1.256 1.285 1.318 0.021
HG-MP-13-4 1,000,000 344 1.210 1.251 1.272 0.019
HG-MP-13-4 1,500,000 551 1.205 1.235 1.269 0.019

HG-MP-13-5 100,000 10 1.787 1.897 2.034 0.083
HG-MP-13-5 300,000 67 1.266 1.363 1.498 0.082
HG-MP-13-5 500,000 139 1.191 1.262 1.367 0.047
HG-MP-13-5 1,000,000 338 1.153 1.195 1.275 0.037
HG-MP-13-5 1,500,000 543 1.145 1.183 1.264 0.037

HG-MP-14-1 100,000 9 1.559 1.623 1.727 0.059
HG-MP-14-1 300,000 70 1.041 1.140 1.272 0.075
HG-MP-14-1 500,000 150 1.026 1.102 1.257 0.072
HG-MP-14-1 1,000,000 359 1.020 1.068 1.161 0.051
HG-MP-14-1 1,500,000 573 1.013 1.048 1.117 0.038

HG-MP-14-2 100,000 11 1.916 1.987 2.069 0.055
HG-MP-14-2 300,000 65 1.442 1.585 1.754 0.107
HG-MP-14-2 500,000 132 1.376 1.482 1.678 0.115
HG-MP-14-2 1,000,000 306 1.283 1.359 1.455 0.051
HG-MP-14-2 1,500,000 489 1.272 1.332 1.430 0.042

HG-MP-14-3 100,000 10 1.590 1.649 1.744 0.045
HG-MP-14-3 300,000 68 1.138 1.209 1.313 0.052
HG-MP-14-3 500,000 143 1.127 1.173 1.277 0.040
HG-MP-14-3 1,000,000 339 1.105 1.151 1.269 0.043
HG-MP-14-3 1,500,000 538 1.101 1.143 1.242 0.037

HG-MP-14-4 100,000 10 1.557 1.667 1.812 0.064
HG-MP-14-4 300,000 71 1.131 1.208 1.256 0.038
HG-MP-14-4 500,000 153 1.121 1.174 1.231 0.037
HG-MP-14-4 1,000,000 364 1.096 1.155 1.224 0.045
HG-MP-14-4 1,500,000 580 1.076 1.144 1.223 0.051

HG-MP-14-5 100,000 11 1.267 1.398 1.679 0.118
HG-MP-14-5 300,000 74 0.927 1.002 1.101 0.052
HG-MP-14-5 500,000 156 0.898 0.961 1.043 0.039
HG-MP-14-5 1,000,000 373 0.891 0.949 1.028 0.037
HG-MP-14-5 1,500,000 591 0.889 0.943 1.022 0.035
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HG-MP-15-1 100,000 11 1.358 1.427 1.479 0.044
HG-MP-15-1 300,000 74 1.159 1.212 1.287 0.037
HG-MP-15-1 500,000 145 1.128 1.181 1.236 0.033
HG-MP-15-1 1,000,000 334 1.085 1.153 1.188 0.030
HG-MP-15-1 1,500,000 528 1.069 1.142 1.179 0.033

HG-MP-15-2 100,000 10 1.814 2.138 2.325 0.152
HG-MP-15-2 300,000 58 1.113 1.277 1.647 0.169
HG-MP-15-2 500,000 121 1.064 1.131 1.362 0.083
HG-MP-15-2 1,000,000 289 1.046 1.095 1.308 0.072
HG-MP-15-2 1,500,000 463 1.039 1.086 1.283 0.068

HG-MP-15-3 100,000 11 1.662 1.816 2.219 0.182
HG-MP-15-3 300,000 71 1.280 1.346 1.414 0.044
HG-MP-15-3 500,000 150 1.222 1.294 1.386 0.049
HG-MP-15-3 1,000,000 357 1.210 1.272 1.348 0.044
HG-MP-15-3 1,500,000 568 1.206 1.264 1.319 0.039

HG-MP-15-4 100,000 11 1.368 1.447 1.620 0.072
HG-MP-15-4 300,000 77 1.039 1.102 1.151 0.032
HG-MP-15-4 500,000 158 1.020 1.069 1.130 0.028
HG-MP-15-4 1,000,000 367 1.018 1.053 1.117 0.025
HG-MP-15-4 1,500,000 577 1.018 1.049 1.117 0.026

HG-MP-15-5 100,000 12 1.720 1.835 1.965 0.083
HG-MP-15-5 300,000 78 1.448 1.479 1.546 0.030
HG-MP-15-5 500,000 158 1.370 1.424 1.468 0.030
HG-MP-15-5 1,000,000 363 1.315 1.394 1.446 0.036
HG-MP-15-5 1,500,000 574 1.281 1.378 1.420 0.040

HG-MP-16-1 100,000 9 2.600 2.700 2.881 0.077
HG-MP-16-1 300,000 51 1.685 1.867 2.156 0.127
HG-MP-16-1 500,000 111 1.487 1.677 1.984 0.170
HG-MP-16-1 1,000,000 275 1.456 1.611 1.889 0.148
HG-MP-16-1 1,500,000 441 1.451 1.585 1.864 0.141

HG-MP-16-2 100,000 9 2.394 2.503 2.609 0.060
HG-MP-16-2 300,000 50 1.729 1.806 1.893 0.052
HG-MP-16-2 500,000 108 1.612 1.687 1.770 0.049
HG-MP-16-2 1,000,000 267 1.557 1.633 1.697 0.045
HG-MP-16-2 1,500,000 431 1.551 1.620 1.676 0.041

HG-MP-16-3 100,000 8 2.362 2.446 2.560 0.066
HG-MP-16-3 300,000 53 1.548 1.665 1.809 0.086
HG-MP-16-3 500,000 119 1.464 1.558 1.638 0.051
HG-MP-16-3 1,000,000 295 1.453 1.518 1.565 0.032
HG-MP-16-3 1,500,000 477 1.440 1.498 1.538 0.030

HG-MP-16-4 100,000 9 2.272 2.379 2.592 0.105
HG-MP-16-4 300,000 52 1.367 1.546 1.726 0.114
HG-MP-16-4 500,000 112 1.309 1.485 1.673 0.109
HG-MP-16-4 1,000,000 273 1.278 1.420 1.596 0.101
HG-MP-16-4 1,500,000 437 1.273 1.409 1.591 0.104

HG-MP-16-5 100,000 9 2.968 3.128 3.268 0.096
HG-MP-16-5 300,000 51 1.928 2.077 2.232 0.085
HG-MP-16-5 500,000 112 1.815 1.893 1.977 0.051
HG-MP-16-5 1,000,000 276 1.641 1.818 1.952 0.088
HG-MP-16-5 1,500,000 444 1.626 1.804 1.929 0.086
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HG-MP-17-1 100,000 9 2.557 2.829 3.053 0.133
HG-MP-17-1 300,000 54 1.749 1.899 2.048 0.094
HG-MP-17-1 500,000 117 1.571 1.796 1.951 0.099
HG-MP-17-1 1,000,000 288 1.402 1.720 1.893 0.139
HG-MP-17-1 1,500,000 463 1.400 1.704 1.870 0.137

HG-MP-17-2 100,000 8 2.727 2.873 3.186 0.141
HG-MP-17-2 300,000 49 1.846 1.918 2.024 0.050
HG-MP-17-2 500,000 106 1.686 1.784 1.851 0.049
HG-MP-17-2 1,000,000 260 1.619 1.728 1.818 0.056
HG-MP-17-2 1,500,000 418 1.611 1.715 1.798 0.054

HG-MP-17-3 100,000 9 2.318 2.605 2.927 0.160
HG-MP-17-3 300,000 46 1.592 1.761 1.894 0.090
HG-MP-17-3 500,000 99 1.530 1.632 1.695 0.054
HG-MP-17-3 1,000,000 243 1.481 1.566 1.652 0.052
HG-MP-17-3 1,500,000 391 1.444 1.533 1.638 0.057

HG-MP-17-4 100,000 8 2.761 2.939 3.147 0.104
HG-MP-17-4 300,000 51 1.641 1.830 1.905 0.080
HG-MP-17-4 500,000 115 1.614 1.771 1.851 0.071
HG-MP-17-4 1,000,000 286 1.611 1.734 1.820 0.064
HG-MP-17-4 1,500,000 461 1.606 1.725 1.814 0.065

HG-MP-17-5 100,000 8 3.594 3.744 3.968 0.127
HG-MP-17-5 300,000 49 1.951 2.142 2.411 0.126
HG-MP-17-5 500,000 117 1.817 1.983 2.176 0.112
HG-MP-17-5 1,000,000 299 1.759 1.908 2.062 0.099
HG-MP-17-5 1,500,000 483 1.749 1.890 2.053 0.088

HG-MP-18-1 100,000 9 2.378 2.513 2.744 0.131
HG-MP-18-1 300,000 54 1.416 1.637 1.800 0.138
HG-MP-18-1 500,000 115 1.311 1.529 1.703 0.127
HG-MP-18-1 1,000,000 273 1.288 1.505 1.661 0.120
HG-MP-18-1 1,500,000 433 1.284 1.498 1.655 0.119

HG-MP-18-2 100,000 7 2.304 2.513 2.643 0.102
HG-MP-18-2 300,000 46 1.322 1.444 1.566 0.069
HG-MP-18-2 500,000 105 1.205 1.284 1.369 0.047
HG-MP-18-2 1,000,000 264 1.173 1.238 1.312 0.044
HG-MP-18-2 1,500,000 431 1.167 1.229 1.301 0.043

HG-MP-18-3 100,000 8 2.955 3.084 3.182 0.069
HG-MP-18-3 300,000 48 1.958 2.054 2.225 0.089
HG-MP-18-3 500,000 108 1.848 1.934 2.098 0.064
HG-MP-18-3 1,000,000 267 1.780 1.865 2.014 0.060
HG-MP-18-3 1,500,000 429 1.760 1.845 2.000 0.060

HG-MP-18-4 100,000 8 3.027 3.234 3.487 0.152
HG-MP-18-4 300,000 48 1.827 1.969 2.261 0.111
HG-MP-18-4 500,000 109 1.750 1.867 2.072 0.089
HG-MP-18-4 1,000,000 278 1.686 1.813 1.976 0.076
HG-MP-18-4 1,500,000 451 1.675 1.797 1.956 0.074

HG-MP-18-5 100,000 8 2.714 2.920 3.291 0.197
HG-MP-18-5 300,000 44 1.681 1.832 2.097 0.125
HG-MP-18-5 500,000 99 1.624 1.705 1.813 0.060
HG-MP-18-5 1,000,000 243 1.567 1.621 1.693 0.038
HG-MP-18-5 1,500,000 392 1.563 1.605 1.683 0.038



Water 2016, 8, 359 30 of 37

Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-19-1 100,000 8 4.045 4.323 4.553 0.158
HG-MP-19-1 300,000 40 2.553 2.694 2.801 0.076
HG-MP-19-1 500,000 90 2.267 2.459 2.602 0.085
HG-MP-19-1 1,000,000 233 2.194 2.369 2.531 0.095
HG-MP-19-1 1,500,000 382 2.183 2.346 2.514 0.094

HG-MP-19-2 100,000 7 4.696 5.144 5.656 0.269
HG-MP-19-2 300,000 37 2.966 3.250 3.491 0.146
HG-MP-19-2 500,000 82 2.689 2.857 3.411 0.220
HG-MP-19-2 1,000,000 220 2.423 2.610 2.998 0.151
HG-MP-19-2 1,500,000 366 2.386 2.537 2.905 0.141

HG-MP-19-3 100,000 7 3.472 3.763 4.377 0.244
HG-MP-19-3 300,000 41 2.327 2.400 2.496 0.049
HG-MP-19-3 500,000 93 2.039 2.214 2.343 0.086
HG-MP-19-3 1,000,000 235 1.973 2.124 2.242 0.104
HG-MP-19-3 1,500,000 383 1.946 2.110 2.232 0.106

HG-MP-19-4 100,000 7 3.132 3.578 4.251 0.341
HG-MP-19-4 300,000 38 1.920 2.073 2.231 0.094
HG-MP-19-4 500,000 89 1.837 1.942 2.077 0.078
HG-MP-19-4 1,000,000 227 1.802 1.883 2.033 0.070
HG-MP-19-4 1,500,000 367 1.761 1.846 1.938 0.054

HG-MP-19-5 100,000 8 4.624 4.822 5.025 0.128
HG-MP-19-5 300,000 37 2.740 3.008 3.238 0.173
HG-MP-19-5 500,000 86 2.566 2.721 3.068 0.147
HG-MP-19-5 1,000,000 225 2.413 2.580 2.984 0.157
HG-MP-19-5 1,500,000 370 2.385 2.553 2.922 0.151

HG-MP-20-1 100,000 7 6.054 6.502 7.171 0.406
HG-MP-20-1 300,000 29 2.624 2.896 3.197 0.161
HG-MP-20-1 500,000 64 1.951 2.338 2.534 0.189
HG-MP-20-1 1,000,000 177 1.863 2.106 2.387 0.153
HG-MP-20-1 1,500,000 298 1.815 2.079 2.353 0.158

HG-MP-20-2 100,000 7 2.957 3.075 3.164 0.066
HG-MP-20-2 300,000 44 2.011 2.115 2.213 0.059
HG-MP-20-2 500,000 98 1.889 1.996 2.138 0.078
HG-MP-20-2 1,000,000 249 1.755 1.922 2.065 0.086
HG-MP-20-2 1,500,000 406 1.732 1.898 2.063 0.089

HG-MP-20-3 100,000 7 3.866 4.021 4.160 0.092
HG-MP-20-3 300,000 37 2.393 2.555 2.654 0.083
HG-MP-20-3 500,000 82 2.281 2.442 2.583 0.096
HG-MP-20-3 1,000,000 210 2.195 2.295 2.406 0.068
HG-MP-20-3 1,500,000 347 2.191 2.264 2.375 0.057

HG-MP-20-4 100,000 7 4.005 4.359 4.829 0.231
HG-MP-20-4 300,000 39 2.576 2.848 3.328 0.264
HG-MP-20-4 500,000 88 2.266 2.635 3.189 0.287
HG-MP-20-4 1,000,000 229 2.114 2.279 2.572 0.118
HG-MP-20-4 1,500,000 383 2.080 2.209 2.412 0.097

HG-MP-20-5 100,000 8 4.392 4.575 4.767 0.107
HG-MP-20-5 300,000 38 2.848 3.057 3.197 0.103
HG-MP-20-5 500,000 85 2.355 2.641 2.962 0.170
HG-MP-20-5 1,000,000 225 2.241 2.449 2.787 0.156
HG-MP-20-5 1,500,000 371 2.218 2.416 2.758 0.161
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HG-MP-21-1 100,000 7 4.193 4.443 4.693 0.175
HG-MP-21-1 300,000 36 2.283 2.694 2.926 0.198
HG-MP-21-1 500,000 88 2.187 2.439 2.868 0.212
HG-MP-21-1 1,000,000 232 2.069 2.278 2.648 0.189
HG-MP-21-1 1,500,000 381 2.053 2.234 2.606 0.166

HG-MP-21-2 100,000 7 4.089 4.551 4.738 0.184
HG-MP-21-2 300,000 36 2.597 2.850 3.123 0.182
HG-MP-21-2 500,000 85 2.423 2.526 2.809 0.117
HG-MP-21-2 1,000,000 218 2.283 2.385 2.552 0.078
HG-MP-21-2 1,500,000 357 2.258 2.363 2.506 0.073

HG-MP-21-3 100,000 7 3.576 3.738 4.005 0.132
HG-MP-21-3 300,000 38 2.359 2.511 2.732 0.110
HG-MP-21-3 500,000 84 2.242 2.362 2.489 0.080
HG-MP-21-3 1,000,000 211 2.150 2.287 2.419 0.078
HG-MP-21-3 1,500,000 343 2.132 2.256 2.387 0.073

HG-MP-21-4 100,000 7 4.035 4.421 4.864 0.229
HG-MP-21-4 300,000 41 2.571 2.760 3.156 0.180
HG-MP-21-4 500,000 91 2.430 2.584 3.027 0.172
HG-MP-21-4 1,000,000 228 2.358 2.445 2.648 0.075
HG-MP-21-4 1,500,000 371 2.326 2.418 2.569 0.061

HG-MP-21-5 100,000 7 3.394 3.624 3.970 0.154
HG-MP-21-5 300,000 36 1.934 2.090 2.285 0.110
HG-MP-21-5 500,000 77 1.852 1.928 1.987 0.049
HG-MP-21-5 1,000,000 187 1.811 1.871 1.932 0.041
HG-MP-21-5 1,500,000 299 1.807 1.849 1.912 0.035

HG-MP-22-1 100,000 6 4.360 4.724 4.947 0.192
HG-MP-22-1 300,000 29 2.653 2.865 3.331 0.187
HG-MP-22-1 500,000 67 2.433 2.570 2.876 0.123
HG-MP-22-1 1,000,000 177 2.359 2.463 2.778 0.115
HG-MP-22-1 1,500,000 292 2.320 2.406 2.700 0.105

HG-MP-22-2 100,000 7 5.460 5.961 6.762 0.352
HG-MP-22-2 300,000 33 2.952 3.298 3.512 0.180
HG-MP-22-2 500,000 78 2.767 2.927 3.164 0.118
HG-MP-22-2 1,000,000 200 2.585 2.759 2.881 0.081
HG-MP-22-2 1,500,000 327 2.558 2.709 2.823 0.071

HG-MP-22-3 100,000 6 5.746 6.032 6.365 0.189
HG-MP-22-3 300,000 30 3.479 3.761 4.024 0.170
HG-MP-22-3 500,000 69 3.111 3.348 3.703 0.186
HG-MP-22-3 1,000,000 187 2.852 3.043 3.322 0.150
HG-MP-22-3 1,500,000 313 2.795 2.990 3.214 0.128

HG-MP-22-4 100,000 7 6.886 7.296 8.005 0.314
HG-MP-22-4 300,000 29 3.900 4.310 4.769 0.275
HG-MP-22-4 500,000 64 3.200 3.567 3.772 0.165
HG-MP-22-4 1,000,000 175 2.965 3.211 3.428 0.136
HG-MP-22-4 1,500,000 293 2.934 3.105 3.347 0.110

HG-MP-22-5 100,000 7 5.056 5.460 5.878 0.262
HG-MP-22-5 300,000 33 3.062 3.358 3.662 0.202
HG-MP-22-5 500,000 74 2.788 3.003 3.200 0.130
HG-MP-22-5 1,000,000 197 2.607 2.811 3.003 0.130
HG-MP-22-5 1,500,000 327 2.595 2.777 2.940 0.116
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-23-1 100,000 7 4.849 5.032 5.176 0.109
HG-MP-23-1 300,000 32 3.097 3.298 3.583 0.161
HG-MP-23-1 500,000 68 2.817 2.976 3.283 0.134
HG-MP-23-1 1,000,000 175 2.698 2.852 3.083 0.125
HG-MP-23-1 1,500,000 286 2.680 2.819 3.052 0.123

HG-MP-23-2 100,000 6 5.228 5.433 5.812 0.172
HG-MP-23-2 300,000 31 3.259 3.413 3.694 0.145
HG-MP-23-2 500,000 68 2.822 3.093 3.386 0.153
HG-MP-23-2 1,000,000 171 2.599 2.724 2.935 0.106
HG-MP-23-2 1,500,000 281 2.546 2.678 2.918 0.102

HG-MP-23-3 100,000 6 5.641 6.113 6.425 0.243
HG-MP-23-3 300,000 29 3.180 3.592 3.844 0.205
HG-MP-23-3 500,000 65 2.795 3.147 3.617 0.297
HG-MP-23-3 1,000,000 170 2.517 2.688 2.912 0.134
HG-MP-23-3 1,500,000 285 2.466 2.616 2.868 0.138

HG-MP-23-4 100,000 6 6.290 6.716 7.035 0.251
HG-MP-23-4 300,000 31 3.817 4.090 4.547 0.267
HG-MP-23-4 500,000 70 2.920 3.375 3.832 0.259
HG-MP-23-4 1,000,000 188 2.687 3.171 3.534 0.249
HG-MP-23-4 1,500,000 310 2.676 3.120 3.482 0.245

HG-MP-23-5 100,000 6 5.280 5.587 5.935 0.179
HG-MP-23-5 300,000 31 3.160 3.399 3.676 0.126
HG-MP-23-5 500,000 74 2.984 3.134 3.255 0.097
HG-MP-23-5 1,000,000 192 2.785 2.981 3.233 0.116
HG-MP-23-5 1,500,000 318 2.758 2.938 3.103 0.094

HG-MP-24-1 100,000 6 5.318 5.584 5.862 0.154
HG-MP-24-1 300,000 29 2.858 3.072 3.472 0.161
HG-MP-24-1 500,000 66 2.485 2.783 2.990 0.130
HG-MP-24-1 1,000,000 170 2.435 2.612 2.717 0.103
HG-MP-24-1 1,500,000 279 2.424 2.556 2.677 0.087

HG-MP-24-2 100,000 6 4.789 4.924 5.110 0.113
HG-MP-24-2 300,000 30 2.877 3.070 3.257 0.100
HG-MP-24-2 500,000 70 2.758 2.856 2.985 0.066
HG-MP-24-2 1,000,000 177 2.661 2.741 2.834 0.053
HG-MP-24-2 1,500,000 286 2.597 2.698 2.789 0.064

HG-MP-24-3 100,000 6 4.805 4.967 5.251 0.121
HG-MP-24-3 300,000 30 2.818 2.950 3.215 0.117
HG-MP-24-3 500,000 71 2.560 2.672 2.947 0.108
HG-MP-24-3 1,000,000 186 2.322 2.533 2.641 0.100
HG-MP-24-3 1,500,000 306 2.300 2.507 2.628 0.098

HG-MP-24-4 100,000 5 5.789 6.111 6.468 0.196
HG-MP-24-4 300,000 27 2.739 3.016 3.278 0.160
HG-MP-24-4 500,000 68 2.415 2.721 2.973 0.166
HG-MP-24-4 1,000,000 182 2.373 2.545 2.673 0.093
HG-MP-24-4 1,500,000 301 2.350 2.495 2.639 0.085

HG-MP-24-5 100,000 6 5.640 6.032 6.278 0.222
HG-MP-24-5 300,000 28 3.403 3.593 3.907 0.156
HG-MP-24-5 500,000 70 3.026 3.249 3.510 0.157
HG-MP-24-5 1,000,000 195 2.896 3.052 3.297 0.130
HG-MP-24-5 1,500,000 325 2.839 3.002 3.239 0.120
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-25-1 100,000 5 8.848 9.325 9.966 0.323
HG-MP-25-1 300,000 23 4.380 4.719 5.144 0.251
HG-MP-25-1 500,000 58 3.720 4.153 4.517 0.224
HG-MP-25-1 1,000,000 162 3.601 3.825 3.948 0.114
HG-MP-25-1 1,500,000 272 3.553 3.746 3.918 0.113

HG-MP-25-2 100,000 5 7.750 8.258 8.815 0.347
HG-MP-25-2 300,000 22 4.698 4.991 5.284 0.198
HG-MP-25-2 500,000 53 4.079 4.441 4.669 0.186
HG-MP-25-2 1,000,000 147 3.806 3.998 4.204 0.106
HG-MP-25-2 1,500,000 250 3.721 3.919 4.092 0.099

HG-MP-25-3 100,000 5 9.253 10.002 10.738 0.410
HG-MP-25-3 300,000 23 4.541 5.301 5.869 0.330
HG-MP-25-3 500,000 53 3.902 4.300 4.625 0.216
HG-MP-25-3 1,000,000 144 3.548 3.814 4.157 0.196
HG-MP-25-3 1,500,000 240 3.540 3.746 4.031 0.187

HG-MP-25-4 100,000 6 10.317 10.770 11.175 0.250
HG-MP-25-4 300,000 26 6.737 7.139 7.647 0.296
HG-MP-25-4 500,000 57 5.489 6.035 6.360 0.258
HG-MP-25-4 1,000,000 157 5.038 5.307 5.531 0.162
HG-MP-25-4 1,500,000 267 4.911 5.171 5.340 0.153

HG-MP-25-5 100,000 6 7.093 7.418 7.809 0.241
HG-MP-25-5 300,000 26 4.073 4.571 4.953 0.271
HG-MP-25-5 500,000 57 3.687 3.962 4.311 0.168
HG-MP-25-5 1,000,000 154 3.490 3.623 3.705 0.063
HG-MP-25-5 1,500,000 257 3.486 3.584 3.662 0.052

HG-MP-26-1 100,000 5 8.500 8.946 9.759 0.346
HG-MP-26-1 300,000 23 4.648 4.971 5.200 0.158
HG-MP-26-1 500,000 55 4.033 4.301 4.724 0.185
HG-MP-26-1 1,000,000 148 3.822 3.996 4.229 0.119
HG-MP-26-1 1,500,000 244 3.801 3.947 4.128 0.096

HG-MP-26-2 100,000 5 9.118 9.329 9.730 0.194
HG-MP-26-2 300,000 25 4.657 5.186 5.594 0.287
HG-MP-26-2 500,000 57 4.350 4.713 5.083 0.250
HG-MP-26-2 1,000,000 150 4.088 4.255 4.495 0.133
HG-MP-26-2 1,500,000 249 3.945 4.140 4.384 0.138

HG-MP-26-3 100,000 5 8.255 8.520 8.806 0.193
HG-MP-26-3 300,000 25 4.617 5.086 5.339 0.204
HG-MP-26-3 500,000 58 4.115 4.450 4.747 0.207
HG-MP-26-3 1,000,000 158 3.864 4.158 4.395 0.154
HG-MP-26-3 1,500,000 263 3.785 4.074 4.278 0.153

HG-MP-26-4 100,000 6 7.665 8.035 8.558 0.322
HG-MP-26-4 300,000 26 4.660 5.010 5.257 0.170
HG-MP-26-4 500,000 60 3.775 4.069 4.428 0.232
HG-MP-26-4 1,000,000 163 3.370 3.644 4.081 0.224
HG-MP-26-4 1,500,000 268 3.336 3.566 4.069 0.197

HG-MP-26-5 100,000 5 10.069 10.737 12.767 0.775
HG-MP-26-5 300,000 21 4.860 5.238 5.915 0.269
HG-MP-26-5 500,000 50 4.257 4.488 4.959 0.201
HG-MP-26-5 1,000,000 143 3.660 3.977 4.101 0.119
HG-MP-26-5 1,500,000 243 3.623 3.916 3.996 0.105
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-27-1 100,000 5 8.241 8.685 9.215 0.337
HG-MP-27-1 300,000 24 3.929 4.726 5.600 0.457
HG-MP-27-1 500,000 58 3.470 3.913 4.231 0.216
HG-MP-27-1 1,000,000 153 3.240 3.647 4.113 0.253
HG-MP-27-1 1,500,000 249 3.207 3.565 4.004 0.253

HG-MP-27-2 100,000 5 8.303 8.962 9.490 0.339
HG-MP-27-2 300,000 25 4.541 5.029 5.419 0.269
HG-MP-27-2 500,000 59 3.987 4.495 4.944 0.308
HG-MP-27-2 1,000,000 154 3.917 4.284 4.643 0.253
HG-MP-27-2 1,500,000 251 3.872 4.189 4.570 0.239

HG-MP-27-3 100,000 4 11.815 13.338 14.740 0.994
HG-MP-27-3 300,000 18 3.595 4.198 4.941 0.446
HG-MP-27-3 500,000 50 3.209 3.492 3.948 0.242
HG-MP-27-3 1,000,000 143 3.127 3.307 3.690 0.179
HG-MP-27-3 1,500,000 238 3.105 3.279 3.666 0.179

HG-MP-27-4 100,000 5 10.554 11.139 12.130 0.483
HG-MP-27-4 300,000 21 5.667 6.019 6.377 0.209
HG-MP-27-4 500,000 50 4.849 5.259 5.543 0.213
HG-MP-27-4 1,000,000 139 4.635 4.878 5.097 0.132
HG-MP-27-4 1,500,000 231 4.586 4.779 4.931 0.118

HG-MP-27-5 100,000 5 7.028 7.555 8.051 0.276
HG-MP-27-5 300,000 25 4.292 4.711 4.983 0.187
HG-MP-27-5 500,000 57 4.046 4.255 4.500 0.127
HG-MP-27-5 1,000,000 151 3.750 4.021 4.166 0.117
HG-MP-27-5 1,500,000 249 3.687 3.982 4.136 0.122

HG-MP-28-1 100,000 5 14.302 15.472 16.244 0.586
HG-MP-28-1 300,000 21 7.162 7.688 8.135 0.322
HG-MP-28-1 500,000 47 6.129 6.440 7.299 0.336
HG-MP-28-1 1,000,000 135 4.861 5.392 5.943 0.299
HG-MP-28-1 1,500,000 234 4.825 5.281 5.700 0.265

HG-MP-28-2 100,000 5 9.033 9.488 10.233 0.385
HG-MP-28-2 300,000 22 5.498 5.831 6.135 0.208
HG-MP-28-2 500,000 50 4.772 4.959 5.243 0.137
HG-MP-28-2 1,000,000 135 4.170 4.428 4.722 0.167
HG-MP-28-2 1,500,000 223 4.104 4.285 4.580 0.126

HG-MP-28-3 100,000 5 11.762 12.479 13.480 0.559
HG-MP-28-3 300,000 20 6.084 6.585 7.036 0.313
HG-MP-28-3 500,000 48 5.228 5.461 5.791 0.145
HG-MP-28-3 1,000,000 134 4.731 4.974 5.302 0.143
HG-MP-28-3 1,500,000 224 4.655 4.893 5.152 0.121

HG-MP-28-4 100,000 5 13.457 14.776 15.516 0.633
HG-MP-28-4 300,000 21 7.402 7.974 8.524 0.355
HG-MP-28-4 500,000 46 6.330 6.716 7.224 0.270
HG-MP-28-4 1,000,000 127 5.502 5.815 6.458 0.242
HG-MP-28-4 1,500,000 215 5.389 5.639 6.011 0.177

HG-MP-28-5 100,000 5 11.717 12.876 13.534 0.547
HG-MP-28-5 300,000 20 6.120 6.588 6.938 0.195
HG-MP-28-5 500,000 47 5.200 5.612 5.856 0.186
HG-MP-28-5 1,000,000 132 4.948 5.189 5.515 0.168
HG-MP-28-5 1,500,000 225 4.838 5.078 5.427 0.175
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Network # Function Evaluations Mean # Iterations Min Cost Mean Cost Max Cost Stddev Cost
(in 106 EUR) (in 106 EUR) (in 106 EUR) (in 106 EUR)

HG-MP-29-1 100,000 4 14.410 14.959 15.641 0.391
HG-MP-29-1 300,000 17 6.257 6.851 7.230 0.274
HG-MP-29-1 500,000 41 5.417 5.735 6.186 0.244
HG-MP-29-1 1,000,000 117 4.778 5.062 5.592 0.247
HG-MP-29-1 1,500,000 198 4.573 4.884 5.499 0.240

HG-MP-29-2 100,000 5 16.444 17.201 17.823 0.481
HG-MP-29-2 300,000 20 8.337 9.329 11.109 0.855
HG-MP-29-2 500,000 44 6.069 7.131 8.155 0.664
HG-MP-29-2 1,000,000 122 5.017 5.703 6.354 0.431
HG-MP-29-2 1,500,000 207 4.849 5.560 6.256 0.433

HG-MP-29-3 100,000 5 14.855 15.869 16.619 0.623
HG-MP-29-3 300,000 19 7.681 8.655 9.365 0.575
HG-MP-29-3 500,000 43 5.592 6.125 6.899 0.345
HG-MP-29-3 1,000,000 128 5.057 5.268 5.750 0.208
HG-MP-29-3 1,500,000 220 4.952 5.142 5.552 0.180

HG-MP-29-4 100,000 5 10.829 11.970 12.557 0.583
HG-MP-29-4 300,000 20 5.808 6.507 7.228 0.437
HG-MP-29-4 500,000 47 4.842 5.515 6.538 0.500
HG-MP-29-4 1,000,000 130 4.634 4.965 5.531 0.306
HG-MP-29-4 1,500,000 215 4.617 4.789 5.139 0.164

HG-MP-29-5 100,000 5 12.781 13.652 14.963 0.558
HG-MP-29-5 300,000 21 6.976 7.236 7.459 0.174
HG-MP-29-5 500,000 50 5.965 6.242 6.573 0.219
HG-MP-29-5 1,000,000 137 5.492 5.740 6.058 0.170
HG-MP-29-5 1,500,000 230 5.438 5.619 5.932 0.150

HG-MP-30-1 100,000 5 12.217 13.480 14.729 0.911
HG-MP-30-1 300,000 19 6.766 7.087 7.380 0.184
HG-MP-30-1 500,000 44 5.801 6.267 6.518 0.221
HG-MP-30-1 1,000,000 120 5.097 5.470 5.839 0.222
HG-MP-30-1 1,500,000 204 4.878 5.298 5.759 0.235

HG-MP-30-2 100,000 4 13.930 15.653 16.982 0.971
HG-MP-30-2 300,000 17 6.030 6.555 7.026 0.278
HG-MP-30-2 500,000 43 4.803 5.357 5.764 0.287
HG-MP-30-2 1,000,000 118 4.242 4.749 5.238 0.293
HG-MP-30-2 1,500,000 195 4.142 4.585 5.019 0.271

HG-MP-30-3 100,000 5 11.964 12.701 13.300 0.358
HG-MP-30-3 300,000 20 7.102 7.397 7.777 0.240
HG-MP-30-3 500,000 46 5.744 6.096 6.395 0.226
HG-MP-30-3 1,000,000 127 4.891 5.412 6.154 0.318
HG-MP-30-3 1,500,000 214 4.820 5.301 5.885 0.278

HG-MP-30-4 100,000 5 9.219 9.739 10.796 0.445
HG-MP-30-4 300,000 20 5.297 5.783 6.497 0.317
HG-MP-30-4 500,000 49 4.966 5.413 5.974 0.327
HG-MP-30-4 1,000,000 128 4.530 4.847 5.207 0.260
HG-MP-30-4 1,500,000 215 4.432 4.629 5.021 0.169

HG-MP-30-5 100,000 4 12.417 13.202 13.632 0.362
HG-MP-30-5 300,000 17 5.356 5.751 6.004 0.220
HG-MP-30-5 500,000 43 4.525 4.804 5.023 0.175
HG-MP-30-5 1,000,000 123 4.096 4.425 4.759 0.214
HG-MP-30-5 1,500,000 205 4.051 4.323 4.681 0.205
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