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Abstract: A hybrid rainfall-runoff model was developed in this study by integrating the variable
infiltration capacity (VIC) model with artificial neural networks (ANNSs). In the proposed model,
the prediction interval of the ANN replaces separate, individual simulation (i.e., single simulation).
The spatial heterogeneity of horizontal resolution, subgrid-scale features and their influence on the
streamflow can be assessed according to the VIC model. In the routing module, instead of a simple
linear superposition of the streamflow generated from each subbasin, ANNSs facilitate nonlinear
mappings of the streamflow produced from each subbasin into the total streamflow at the basin outlet.
A total of three subbasins were delineated and calibrated independently via the VIC model; daily
runoff errors were simulated for each subbasin, then corrected by an ANN bias-correction model.
The initial streamflow and corrected runoff from the simulation for individual subbasins serve as
inputs to the ANN routing model. The feasibility of this proposed method was confirmed according
to the performance of its application to a case study on rainfall-runoff prediction in the Jinshajiang
River Basin, the headwater area of the Yangtze River.

Keywords: variable infiltration capacity model; artificial neural networks; ensemble predictions;
bias-correction; routing model

1. Introduction

The Jinshajiang River, the headwater area of China’s Yangtze River, is rife with hydropower
resources that will be ready to put into use once the cascade power stations currently under construction
in the area are complete. The cascade dams will be responsible for flood control, hydroelectricity
generation and agricultural and industrial water consumption, so water resource planning, particularly
accurate predictions of runoff, will be of substantial economic and social importance. Managing water
resources effectively will also protect the lower Yangtze region from flood disasters.

The physically-based variable infiltration capacity (VIC) model [1,2] is a soil vegetation
atmospheric transfer scheme that explicitly depicts the impact of spatial variability in infiltration,
precipitation and vegetation on water fluxes throughout the landscape. A variety of updates to
the original VIC model have made it capable of simulating quite complex hydrological processes.
The newest version of the VIC model is comprised of three soil layers, which allow for explicitly
depicting the interactions between the surface and groundwater [3]. The upper two soil layers, which
generate the surface runoff, are characterized by the dynamic effects of precipitation on soil moisture;
the lower soil layer, which determines the product of the base flow, represents the gradual variations
in seasonal soil moisture with respect to the interaction between deeper soil water and subsurface
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flow. Subgrid-scale heterogeneity is also represented in regards to soil moisture storage, evaporation
and runoff production [1,2,4-7]. In recent studies, the VIC model has been applied to several different
scales of watersheds [8-10]. The VIC model has also been applied in several other research fields, for
example to simulate streamflow ensembles [11], snowmelt [12], global flood events [13] and to conduct
uncertainty analysis of climate data and model parameter sets [14]. Given the numerous applications
and updates to the VIC model throughout its nearly twenty years of existence, the current version of the
model is well suited to parameterizing various factors of the water budget process, including horizontal
soil moisture distribution, evapotranspiration, infiltration capacity and subsurface flow heterogeneities.
Booming populations and the excessive construction of dams, however, have left the traditional routing
model unable to accurately reflect complex hydropower regulation schemes as the respective runoff of
each subbasin is post-processed with a routing model via linear superimposition [15,16].

The artificial neural network (ANN) was designed to mimic biological neural processes to
execute “brain-like” computations and is known as a powerful tool for modeling multidimensional
nonlinear problems. ANNs can be applied to various aspects of the hydrologic modeling field, such as
rainfall-runoff modeling [17,18], groundwater modeling [19,20], water quality assessment [21], regional
flood frequency analysis and reservoir operations [22,23]. ANNs can also be utilized as bias-correction
tools for multiple-source data [24,25]. Abramowitz et al. [26], for example, used ANNSs to characterize,
quantify and ultimately resolve systematic errors in a land surface model (LSM). Despite the attractive
potential capability to map nonlinearity in rainfall runoff behavior, ANNs have been questioned for
this purpose due to their lack of physically-realistic components or parameters [27,28]. In response,
researchers have focused on integrating the ANN form with conceptual hydrological models as
opposed to applying the ANN alone as a simple black-box model [29-32]. These hybrid models
can yield highly accurate forecasts of dynamic processes, as the combination appropriately captures
unknown and nonlinear components of the mechanistic model via the neural network [29].

In addition to the major criticism that ANNSs lack physical mechanisms, other scholars have
pointed out that ANN establishment is random in the underlying system; the results may fluctuate
even with the same configuration [33]. There is currently a general consensus that single-point forecasts
from the ANN model have finite value due to the variability of the outputs or uncertainty in the
optimization procedure. To feasibly and effectively use modeling techniques to conduct water resource
planning, it is necessary to construct a reasonable prediction band of the hydrologic variables to secure
reliable information that accurately represents hydrological problems [34]. In this study, the primary
focus was establishing an appropriate ANN prediction band to generate prediction ensembles and
assess the uncertainty of ANN outputs.

The VIC model is useful for characterizing the spatial variability of infiltration, precipitation and
vegetation; the ANN model is useful for nonlinear mapping. This paper presents a hybrid hydrology
model comprised of a VIC model and an ANN routing model. In the proposed model, outflow
processes including overland flow and groundwater in each subbasin are simulated by the VIC model.
Next, each subbasin’s simulated daily runoff errors are corrected by an ANN bias-correction model.
For runoff routing, the initial streamflow and simulated runoff corrected by the ANN are input to an
ANN routing model. Finally, the flow inputs are routed by the ANN routing model to the outlet of the
network forming a hydrograph of the simulation.

2. Integrating ANNs with the VIC Model

2.1. Variable Infiltration Capacity Model

The VIC model is a hydrologically-based, macroscale land surface model that represents the
spatio-temporal subgrid-scale variability of precipitation, infiltration, runoff generation, evaporation
and vegetation. The outflow processes include quick runoff and slow runoff. Quick runoff includes
saturation and infiltration excess runoff [35]; the ARNO model [36] represents the slow runoff. Rainfall,
maximum and minimum temperature, vegetation type and soil texture are the main input variables to
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the VIC model for conducting daily runoff simulation. The daily generated grid cell flow is routed
to the edge of the grid cell based on the physical topology of the area to be modeled, then routed to
the watershed outlet through the river networks (for a more detailed description of the VIC model,
interested readers are advised to refer to Liang and Xie’s previous study [35]). In the present study, the
spatial resolution of the VIC model was on a 10 km x 10 km grid with a 24-h time step.

2.2. Artificial Neural Networks

ANNSs are mathematical and computational models designed to mimic, per their namesake,
biological neural networks [37]. As shown in Figure 1, an integrated ANN structure includes an input
layer, an output layer and at least one hidden layer with different quantities of neurons in each
layer. The number of hidden nodes in a neural network is typically determined by trial-and-error.
Determining connection weights and patterns of connections appropriately is also crucial. The most
commonly-used ANN in the hydrology field is a feed-forward network with a back-propagation (BP)
training algorithm [38,39]. The weights connecting each layer can be modified until the errors are
minimized or the stopping criterion is met.

ANN Bias-Correction
Model.

~

( Initial Runoff }

_| ANN Bias-Correction
Model.

Initial Runoff

ANN Bias-Correction
<Subcatchment 3>: Model.

VIC model
Initial Runoff

Figure 1. Flowchart of the variable infiltration capacity (VIC) and ANN model.
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2.3. Hybrid VIC and ANN Model

The semi-distributed VIC model can explicitly represent the effects of the spatial variability
of infiltration, precipitation and vegetation on water fluxes throughout the landscape. It cannot,
however, accumulate the total runoff generated from individual subbasins by linear superposition
alone. As discussed above, the hydrology model developed in this study was designed to integrate
the advantages of both ANNSs and the VIC model. A flow chart of the semi-distributed VIC model
equipped with ANNSs is provided in Figure 1. The hybrid model includes three components: The VIC
model, the ANN bias-correction model (ABCM) and the ANN routing model (ARM). The first
component simulates each subbasin runoff process by delineating and calibrating them separately.
Next, each subbasin’s simulated daily runoff errors are corrected by the ABCM. The corrected
streamflows from the simulation for the three subbasins are then input to the ARM, which routes them
to the outlet of the network to form the hydrograph of the outlet of the entire watershed.
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The VIC model can be driven by meteorological data and calibrated by streamflow data in each
subbasin. To ensure the most accurate possible discharge is obtained, the simulated errors of the VIC
model can be calculated using the initial streamflow and ABCM-simulated runoff using Equation (1):

Ei(t) = PBPi[Qsmi(t)fQobi(t - 1)/ Qobi(t - 2)1 LR Qobi(t - l)] (1)

where Qg (t) and E;(t) respectively denote the computed discharge and simulated error of each
subbasin i at time ¢. Q,p, (t — 1) denotes the initial flow of each subbasin i at time t — 1. Fgp represents
the BP neural network. It is necessary to test the autocorrelation of individual subbasin runoff values
to obtain the ANN input parameters first, then the ANN can be used to establish the functional
relationship of Q, (t) and E;(t). The ANNS in this model were designed for a “one-step-ahead”
prediction, so there is a single node (E;(t)) for the ANN output. Finally, the corrected flow Q4 (t) of
each subbasin is calculated by adding E;(t) to Qs (t):

de,-(t) = Qsmi(t) + Ei(t) ()

Typically, the initial subbasin flow affects the total runoff output during the concentration process.
The total outflow Q,;(t) at the whole basin outlet can be determined by inputting all subbasin-corrected
flows using Equation (3), accordingly, where Qg (t) and Q,,,4,(t) denote the total runoff output and
corrected flow of each subbasin i at time t, respectively:

Quu(t) = Fap  [Quay (£), Quuay (t = 1), Quuay (£ —2), -, Qg (E —7),
dez(t)r dez(t - 1)/ dez (t - 2)' sy dez (t - m)/ (3)
de3 (t)/ de3(t - 1)/ deg(t - 2)/ tees de3(t - 1’1)

We used the shuffled complex evolution (SCE-UA) algorithm to optimize the VIC model for each
subbasin. An ensemble of 100 models was acquired by training the ANNs 100 times with the SCE-UA
algorithm. This arithmetic averaging technique was then applied to acquire the final output from the
prediction band ensembles. Said technique is simple, effective and does not introduce any additional
parameters as opposed to other approaches, like the principle of entropy maximization or weighted
averaging. A cross-correlation approach was employed to secure reasonable input parameters [40,41].
Furthermore, the node quantity in the hidden layer of the ANNs was specified from one to 30 to
optimize the ANN architectures.

3. Model Application and Case Study

3.1. Study Area

The Jinshajiang River Basin, the headwater area of the Yangtze River, is mainly located in the east
of the Tibetan plateau area. It has a drainage area of 326 x 103 km?, an annual average temperature
from 16.4 °C to below zero and elevation ranging from 320 m to 6574 m. The area is characterized, as
mentioned above, by an abundance of water resources. Precipitation in the basin gradually increases
from northwest to southeast in a stepwise manner. Floods occur frequently during the five-month
monsoon season from May to October. The whole basin can be delineated into three subbasins based
on the underlying structure of the hybrid model, as shown in Figure 2. Subbasin 1, located upstream
of the Jinshajiang River, is an area typically utilized for animal husbandry. Subbasin 2, which features
especially abundant water resources, has been dammed by several cascade hydropower stations.
The more populated downstream area, Subbasin 3, has also seen many large-scale water projects.
To this effect, the discharge process in the area is likely influenced by anthropogenic activities (e.g.,
dams, irrigation and municipal water use) in addition to natural phenomena.
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Figure 2. Jinshajiang River Basin [42].

3.2. Data Preparation

Daily meteorological data including precipitation, maximum temperature and minimum
temperature provided by the China Meteorology Administration were fed into the VIC model.
One-hundred and ten precipitation observation stations provided daily precipitation data while
maximum and minimum temperature information was provided by 33 meteorological stations
(Figure 2). The inverse squared distance method was used to interpolate the daily climate variables
to 10-km resolution. Soil texture in the Jinshajiang River Basin was classified according to the global
Food and Agriculture Organization (FAO) soil maps with 10-km resolution (http://www.fao.org/
geonetwork), and the vegetation dataset was derived based on Advanced Very High Resolution
Radiometer (AVHRR) and land data assimilation system (LDAS) information. Land cover was
defined by referring to the University of Maryland’s 14 types of global 1-km land cover data.
Shuttle radar topography mission (SRTM) digital elevation data was downloaded from the SRTM
website (http:/ /www.cgiar-csi.org/data) with a spatial resolution of 3 arcs. Topography was obtained
in ARCGIS software based on the digital elevation data.

3.3. Calibrating the VIC Model

Streamflow data measured between 2002 and 2010 for the three subbasins and total discharge
records were used for the purposes of our case study. According to runoff measurements at the three
hydrological control stations, the model was trained from 2003 to 2007 to capture both wet season
and dry season information; it was validated for the period of 2008 to 2010. Warm-up data from 2002
were used to reduce sensitivity to state-value initialization errors. By inputting the meteorological data
and observed streamflow data into the VIC model, the three subbasins were calibrated separately; the
upstream monitoring station was calibrated first (including Subbasin 1 and Subbasin 2) followed by
downstream Subbasin 3.

3.4. Configuring the ABCM

First, the appropriate input vectors of the ANN model were determined via auto-correlation
among the dataset of each subbasin’s runoff (i.e., by statistical analysis). As shown in Figure 3, the
correlation varied between the current streamflow and initial streamflow at different times in different
basins. Any initial streamflow with a correlation coefficient larger than 90% plus the simulated
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streamflow at the current time were selected as the input vectors of each subbasin’s ABCM. This took
place in a three-step process:

1.

Calculate Qups, (t — 1), Qops, (£ —2) ..., Qops, (t —11) and Qs (t) for Subbasin 1; Q,ps, (£ — 1),

Qobsz (t - 2) cee Qobsz (t - 6) and Qsmz (t) for Subbasin 2; Qab53 (t - 1)/ Q0b53 (t - 2)/ Qab53 (t - 3)
and Qs (t) for Subbasin 3.

Let E;(t) plus Qsm, (t) be the corrected flow Q4. (t) of each subbasin.
Determine the optimal number of hidden neurons of each subbasin’s ABCM by trial-and-error.

Each ANN model was calibrated and validated 30 times independently and averaged to eliminate

stochastic errors. To avoid over-training the ANNSs, both the calibration and validation data were
applied to search the optimal number of hidden neurons of each subbasin. The performance statistics of
different hidden nodes of each subbasin’s ABCM in both calibration and validation periods are shown
in Figure 4. As the number of hidden nodes increased, the Nash and Sutcliffe efficiency coefficient

(NSE) value increased gradually in the calibration period; in the validation period, the NSE value first
increased and then dramatically decreased. As a result, the subbasins” ABCMs contained 4, 5 and 6
moderately hidden nodes, respectively.

1
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Figure 4. Performance of different hidden nodes of each ANN bias-correction model (ABCM).
NSE, Nash and Sutcliffe efficiency coefficient.
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3.5. Configuring the ARM

The ARM was established by inputting the corrected flow of every subbasin based on the
correlation of subbasin runoff and total runoff (Figure 5). The performance of different hidden
nodes of the ARMs in both calibration and validation periods are shown in Figure 6. Figures 5 and 6
together indicate that the initial streamflow of subbasins that had correlation coefficients with current
total runoff greater than 90% was successfully input into the ARM. This included calculating Q,,4, (t),
Quay (t —=1) ..., Qua, (t — 10) for Subbasin 1; Qa,(t), Qumd,(t —1) ..., Qua,(t — 5) for Subbasin 2;
and Qyu,(t), Quma, (t —1),Quas (t — 2) for Subbasin 3. The optimal quantity of hidden layer nodes
was two.

—— Sub Basin 1-whole basin
—=— Sub Basin 2-whole basin
0.95 —&— Sub basin 3-whole basin

0.9

0.85

0.8

Correclation

0.75

0.7

0.65

L L L L L L L
-20 -15 -10 -5 0 5 10 15 20
Lag

Figure 5. Correlation of each subbasin runoff and total runoff.
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Figure 6. Performance of different quantities of ANN routing model (ARM) hidden nodes.

4. Results and Discussion

Table 1 reports the performance of the VIC model in each subbasin for both calibration and
validation periods. Two statistical criteria were selected to assess the predictive capability of the hybrid
model: the relative error (RE) and the NSE. Figure 7a—c display the time series of the measured and
simulated streamflow of the three subbasins. As shown in Figure 7, the VIC model performance was
indeed acceptable, and the simulated discharges were consistent with the observed streamflow series.
Good NSE results were achieved for Subbasin 1, while Subbasins 2 and 3 had lower NSEs (Table 1).
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Table 1. Performance of the VIC model in each subbasin.

Calibration Validation
Model Catchment NSE RE NSE RE
(%) (%) (%) (%)
Subbasin 1 86.63 8.73 85.39 1.34
VIC Model Subbasin 2 78.46 —18.61 78.23 —20.3
Subbasin 3 78.82 —16.07 77.44 —16.57
(a) 8000 — r y . v r
original streamflow
7000 simulated hydrograph
Calibration Testing
0 " N s " : s
(o] 365 730 1095 1460 1825 2190 2555 2920
Days betwee 2003 and 2010 (Subbasin 1)
(b) 12000 -
original streamflow
simulated hydrograph | Calibration Testing
10000
. 8000
K
= ‘
D
§‘ 6000
&
4000+
2000 '
00 365 730 1095 1460 1825 2190 2555 2920
Days between 2003 and 2010 (Subbasin 2)
c)7 ( T T -
(e)7000—— original streamflow !
simulated hydrograph
6000}
Calibration Testing
5000 - '
3
£ 4000}
&
=
S 3000}
P
2000+
1000
0 : 1 A A i A A A A
0 365 730 1095 1460 1825 2190 2555 2920

Days between 2003 and 2010 (Subbasin 3)

Figure 7. Comparison of the original observed streamflow and the simulated runoff hydrograph

according to the three-subbasin VIC model.

Subbasin 1, located on the northeastern part of the Qinghai-Tibet Plateau, is upstream of the
Jinshajiang River at the streamflow control station Shigu. Tableland and alpine valleys characterize
the almost entirely undeveloped and steady flow above Shigu station. Conversely, the populated
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areas of Subbasin 2 and Subbasin 3 have experienced rapid development in recent decades, and
thus, anthropogenic activities have remarkably altered the discharge process. In short, humans were
likely responsible for the discrepancies among subbasins. The NSEs at the three subbasins exceeded
77%, and the RE values ranged between —20.3% and 1.34% in the calibration and validation periods.
The streamflow was underestimated during all simulated periods, especially in the dry seasons,
possibly due to the impact of operational reservoirs and relatively inadequate climate observation
stations. These results were acceptable [43], but would need to be improved should they be applied to
any actual engineering project.

The corrected ensemble mean flow of each subbasin was determined after bias-correction as shown
in Table 2. By comparison between Tables 1 and 2, the ABCM was found to reduce the RE and improve
the NSE significantly during the calibration and validation periods. The consistently good performance
over the calibration and validation periods suggests that the ABCM has favorable generalization
properties and also rules out the possibility of preferable results being a result of overtraining the
ANN model. The performance of Subbasin 1, which had an NSE value of approximately 100%, was
quite a bit better than the other two subbasins (which had NSE values ranging from 97.19% to 97.92%).
The RE values of the three subbasins were positive after being corrected by the ABCM, indicating that
the model overestimated all simulated phases.

Table 2. Performance measures for ABCM ensemble means.

Calibration Validation
Catchment NSE RE NSE RE
(%) (%) (%) (%)
Subbasin 1 99.76 0.09 99.72 0.47
(99.68-99.75) (—0.04-0.11) (99.65-99.73) (0.08-0.62)
Subbasin 2 97.92 1.73 97.63 1.94
(96.81-98.24) (1.35-2.23) (96.19-98.87) (1.25-3.12)
Subbasin 3 97.81 1.85 97.19 2.13
(96.29-98.23) (1.07-2.14) (95.82-96.64) (2.34-3.97)
Note: Italicized values are the range of model performance across 100 ANN models. Ensemble means exceeding
a single ABCM are bolded.

The daily ensemble prediction band of runoff for Subbasin 2, as well as its ensemble mean,
observed values and VIC model-simulated values are shown in Figure 8. For the high flow, the
forecasting width was wide, and thus, the coverage probability was high; the opposite was the case for
the low flow. The forecasting width was slightly higher in the validation period than in the calibration
period, and the ensemble mean was consistent with the observed data. In effect, the ABCM was
able to correct errors in the VIC simulation and reproduce the seasonal hydrograph effectively in
terms of both the magnitudes and timing of peak floods. Table 2 and Figure 8 together indicate that
the ensemble consisting of independent ABCMs neutralized ensemble average errors; the resulting
ensemble averages could serve as the final results for practical application. It is worth mentioning that
some ensemble means exceeded some single ABCMs (bolded in Table 2).

The performance of the VIC and ANN ensemble mean model in terms of NSE and RE during
the calibration and validation periods is presented in Table 3, along with the performance of the VIC
model using the traditional linear routing model. To further explore the potential of the proposed
hybrid model, the output prediction results from the VIC and ANN ensemble mean model were
compared against those of the VIC and linear regression model and the VIC and Muskingum-Cunge
(MC) model. The linear regression model built a linear relationship between the streamflows of each
subbasin based on the VIC model and the total runoff at the whole basin outlet. The MC method
provided a numerical solution based on the traditional Muskingum routing model [44]. As a mesoscale
river-routing scheme (RRS), the MC method has been coupled to land surface models (LSMs), such
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as the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison
Project, Phase 2 (ALMIP-2) [45].
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Figure 8. Daily prediction interval, ensemble mean, observed values and VIC model-simulated values
corresponding to Subbasin 2.

Table 3. Traditional VIC model, VIC and ANN ensemble mean model, VIC and linear regression model
and VIC and MC model performance during calibration and validation. MC, Muskingum-Cunge.

Calibration Validation
Model NSE RE NSE RE

(%) (%) (%) (%)
VIC 78.03 —21.51 78.47 ~20.02

VIC and MC 95.77 ~153 95.34 —0.85

VIC and 95.62 —1.74 95.11 ~12

Regression
98.89 043 97.76 —0.86
VIC and ANN (98.24-98.92) (0.24-0.46) (96.73-97.85) (—1.11-0.14)

The daily discharge behavior at the whole basin outlet was less accurately reproduced than that
at any single subbasin outlet (Tables 1 and 3). The integrated models drastically outperformed the
traditional VIC model in both calibration and validation periods, as shown in Table 3. The traditional
linear superposition routing method used in the VIC model cannot accurately represent the complex,
dynamic runoff process. The evaluation indices of the VIC and linear regression model and the
VIC and MC model were very similar, indicating that the two integrated models had comparable
performance. Although the MC model has a comprehensive physical support, it is difficult to operate
due to the large amount of data that it requires and the massive computational burden associated
with it. The performance of the VIC and linear regression model was certainly inferior to the VIC
and ANN ensemble mean model despite certain advantages (e.g., simplicity, facile implementation).
Generally, the VIC and ANN ensemble mean model performed best; its NSE values ranged from
97.76% to 98.89%, and its RE values ranged between —0.86% and 0.43%. In short, the VIC and ANN
model very accurately characterizes rainfall-runoff relationships. A comparison of the measured and
predicted daily streamflow results from the traditional VIC model, VIC and ANN ensemble mean
model, VIC and linear regression model and VIC and MC model is shown in Figure 9.
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Figure 9. Comparison of the observed and estimated daily runoff hydrographs from the VIC model,
VIC and ANN ensemble mean model, VIC and linear regression model and VIC and MC model during
the calibration period (July to October, 2005).

In order to evaluate the predictive uncertainty in different flow domains, the entire dataset was
partitioned into three parts [46]: low flow (x < u (average value)), medium flow (n < x < p + 28
(standard deviation)) and high flow (x > w + 25) [47]. The percentage of coverage (POC) and prediction
interval with reference to ensemble average (PIEA) statistics of the VIC and ANN model at the whole
basin in different runoff domains, along with the total dataset, are listed in Table 4. The POC was
64.45% during the calibration period and 66.92% during the validation period for the total dataset.
As the two indices of a higher coverage probability and narrower forecasting width are mutually
exclusive, the PIEA was lower in the calibration period (8.74%) compared to the validation period
(10.89%). These results suggested that the hybrid model is feasible and consistent.

Table 4. Estimates of uncertainty indices in different flow domains for the VIC and ANN model (daily).
POC, percentage of coverage.

Model Cateeo POC (%) Prediction Band with Respect No. of % of Total
Phase gory ° to Ensemble Mean (%) Patterns Data
Complete flow 64.45 8.74 1826 100
. . Low flow 58.98 6.83 1213 66.40
Calibration 1. 43:m flow 72.36 11.43 515 28.20
High flow 90.63 12.03 98 5.39
Complete flow 66.92 10.89 1096 100
L Low flow 59.15 8.44 675 61.62
Validation 16 4ium flow 76.95 12.08 338 30.86
High flow 89.49 13.07 83 7.52

The daily ensemble prediction band of runoff for the whole basin, as well as its ensemble mean,
observed values and VIC model-simulated values are presented in Figure 10. Compared to Figure 8,
the forecasting width of the whole basin was wider regardless of the period. The whole basin is very
large, so the hydrological processes at work across it are highly complex and nonlinear; it is very
challenging to represent all of the operational factors related to dams or agricultural activities in the
area. That being said, these factors do have some regular patterns. For example: in the summer,
individuals living in the area use more water for drinking, irrigation and filling reservoirs. The ANN
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model (especially the ANN ensemble mean) is a vital tool for seeking these patterns to improve the
forecasting performance of the model on the whole.

4
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Figure 10. Daily ensemble prediction band of runoff, ensemble mean, observed values and VIC
model-simulated values (whole basin).

5. Summary and Conclusions

An integrated rainfall-runoff model based on VIC and ANN models was built and implemented
in the Jinshajiang River Basin in this study. The spatial distribution characteristics of the model
input parameters were represented accurately by the VIC model considering the heterogeneity of the
physico-geographical components, while the nonlinear mapping of runoff from each subbasin to the
total streamflow at the whole basin outlet was established by two ANN models. Ensemble predictions
were determined by constructing a prediction interval for the ANN models and then used to assess
uncertainty and to improve the model’s reliability. The results of the case study indicated that the
hybrid hydrology model based on the VIC and dual ANNSs outperformed several other similar models
and, further, that the proposed model can feasibly and effectively represent rainfall-runoff in areas
like the Jinshajiang River Basin. The results of this study also may provide a scientific reference for
basin-scale flood control, for better understanding the impact of climate change on streamflows and for
conducting water resource management in the Jinshajiang River Basin and other regions with similar
climatic characteristics (e.g., the Xin River Basin [48]).

This study was not without limitations. For example, limited data from only three stations
were used to build the proposed model, and the soil data and vegetation data were assumed to be
consistent on a yearly basis. The routing scheme used to simulate each subbasin is linear, which is
disadvantageous in regards to generalizability. It is imperative to carefully account for hydrological
blockages, like dams and certain anthropogenic activities in the watershed, as they considerably alter
the hydrological regimes. Dam regulation schemes vary with various inflows, so in a future study, we
will account for runoff classification and build three independent ABCMs and ARMs accordingly based
on drought years, normal years and wet years. We plan to focus on taking runoff classification into
account to improve the VIC model’s performance and to reduce model uncertainty, as well. We also
hope to secure a greater quantity of measurements that can be used to further explore the modeling
performance of increasing subdivision levels in the VIC model.
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