Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

Huda Almaaofi¹, Amir Etemad-Shahidi², and Rodney A. Stewart³,*

Section A: Review of evaluation approaches for surface water quality management remediation options

References	Location	Study	MCDA	Weighting	Ranking	Evalı Of	uation NPS	Unce	ertainty alvsis	Stak Invo	eholder lvement	Romarks
References	Location	Approach	Technique	Method	Method	Yes	No	Yes	No	Yes	No	-
Ji et al. [1]	Tianjin, China	Water Resources Allocation	inexact two- stage stochastic programmin g model	Probability distribution	Optimization		\checkmark	\checkmark			√	Inexact Two-Stage Stochastic Programming for Water Resources Allocation under Considering Demand Uncertainties and Response
Xu et al. [2]	Xiaoqing River Watershed	Water Supply Management	Stochastic Multi- Objective Chance- Constrained Programmin g Model	Various weight combination s and probabilistic levels.	Log-normal distribution		V	√			\checkmark	A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed
Casadei et al. [3]	Lake Trasimeno, Central Italy	Water Resources Management	SimBaT Decision Support System	Hydrological model	Short-term probabilistic assessments		\checkmark	\checkmark			\checkmark	Integrated Water Resources Management in a Lake System: A Case Study in Central Italy.
Walker et al. [4]	Danube Catchment, Serbia	Water Quality Management	PCA approaches	Weighted aggregation	Average rank		\checkmark		\checkmark		\checkmark	Multi-criterion water quality analysis of the Danube River in Serbia: a visualisation approach
Jaiswal et al. [5]	Benisagar Catchment, India	Catchment Asst & Prioritization	Fuzzy, Analytic Hierarchy Process (AHP)	Geometric mean method	Clustering of final priorities		√	\checkmark			√	Prioritizing susceptible areas in a watershed for soil conservation measures

Table S1. Review of evaluation approaches for surface water quality management remediation options.

Fan et al. [6]	Taizi Catchment, China	Catchment Water Management	Integrated Risk Asst (IRA), GIS	Simple weight method	'One-Out, All- Out' (OOAO)	\checkmark		\checkmark		\checkmark	Integrated risk assessment methodology for effective restoration management
Haider et al. [7]	Ravi River, Pakistan	Water Quality Management	Fuzzy Set	Simple additive weighting	Fuzzy OUTASTAR	\checkmark	\checkmark			\checkmark	Framework to evaluate different WQM options (Wetland types) to meet the water quality objectives of natural rivers
Rahman et al. [8]	Northern Gaza	Water Management	AHP	Weighted Linear Combination and PROMETHE E II	MeTHod	\checkmark		\checkmark		\checkmark	Impact Assessment and Multicriteria Decision Analysis of Alternative Managed Aquifer Recharge Strategies Based on Treated Wastewater in Northern Gaza
Malik et al. [9]	Lidder Catchment Himalayas	Catchment Asst & Prioritization	Remote Sensing & GIS	Knowledge- based weights	Weighted linear combination	\checkmark		\checkmark		\checkmark	Prioritizing watersheds for natural resource conservation and management
Gallego- Ayala et al. [10]	Incomati Catchment, Mozambiq ue	Catchment Water Planning	AHP	Pairwise comparison	АНР	\checkmark		\checkmark	\checkmark		Stakeholders' preferences regarding development of water resources management plans
Yu et al. [11]	Yongding Catchment, China	Catchment Water Management	Multi- objective evaluation	Multi-level, stepwise weighting	Principle component projection approach	\checkmark		\checkmark		\checkmark	Evaluating multi-objective scenarios to support decision- making for effective river ecological restoration by artificial recharge
Zhang et al. [12]	Bowen Basin Queenslan d, Australia	Water Management	AHP, fuzzy TOPSIS	Pairwise comparison	Fuzzy TOPSIS-	\checkmark	\checkmark			\checkmark	Identify better mine water management practices for reducing raw water use
Chang et al. [13]		Catchment Water Management	Fuzzy theory	Pairwise comparison	Fuzzy theory	\checkmark		\checkmark		\checkmark	Sampling frequency for river water quality monitoring network
Badar et al. [14]	Dal Lake Catchment, Himalaya	Catchment Asst & Prioritization	Remote Sensing and GIS	Knowledge- based weights	GWLF model	\checkmark		\checkmark		\checkmark	Conservation and management strategies of Dal Lake ecosystem

Do et al. [15]	Xindian river Catchment, Taiwan	Catchment Water Management	АНР	Simple weight	AHP method - Expert Choice software	\checkmark		\checkmark		\checkmark	Sampling frequency for river water quality monitoring network
Hughey [16]	rivers Catchment, New Zealand	Catchment Water Management	River Values Assessment System	Weight Summation	Relative importance ranking	\checkmark		\checkmark		\checkmark	Improved policies and rules around water and river use, development and conservation.
Roozbahani et al. [17]	Melbourne , Australia	Water Management	PROMETHE E with Precedence Order in the Criteria	Additive Utility Function	PROMETHEE with Precedence Order in the Criteria (PPOC)	\checkmark		\checkmark		\checkmark	Storm water management
Biswas et al. [18]	Chittagong Hill Tracts, Banglades h	Catchment Water Planning and Management	AHP	Pairwise comparison	АНР	\checkmark		\checkmark		\checkmark	Evaluate management strategies for mountain watersheds
Colin et al. [19]	Vineyard catchment, France	Catchment Water Management	Fuzzy Set	Simple weight method	Fuzzy Rule- Based Mode	\checkmark	\checkmark			\checkmark	Simulate the impact of land use changes on water and mass transfers
Calizaya et al. [20]	Lake Poopo basin, Bolivia	Catchment Water Management	Saaty's analytical hierarchy process AHP	Pairwise comparison	Utility Value	\checkmark		\checkmark	\checkmark		A tool to support stakeholders in managing their water resources

	Criteria	Sub-criteria variables	References
	Physical	 pH (Acidity) pH (Alkalinity) Turbidity/ Total Suspended Solids Odour Temperature (summer season) (TS) Temperature (winter season) (TW) Salinity 	[21–23] [21–23] [21–23] [7] [23] [23] [22,23]
Water quality objectives	Water quality objectives Biological Chemical	 Total Dissolved Solids (TDS) Dissolved Oxygen (DO) Chemical Oxygen Demand Biochemical Oxygen Demand Nitrates (NO⁻₃) Nitrites (NO⁻₂) Ammonia (NH₃) 	[21] [6,21–23] [6,21,23] [6,21,22,24,25] [22,24] [21,24] [6,21] [6,21]
		 Coliforms (Coli) Invertebrate (INV) Plankton count Chlorophyll-a (Chl-a) Algae (Alg) Fish 	[0,21,24] [21] [6,7,22,23] [7,23] [23] [6,22,23] [6,7,22,23]
Environmental objectives	ow and hological Ecological indicators licators	 Biodiversity (BD) Nutrients (NT) Water quality (WQ) Pesticides Heavy metals (HM) Conservation (CNS) Water allocation (WA) Water quantity (WQN) Environmental flow (EF) Morphological conditions (MC) 	[18,24,26–31] [18,28,30,31] [6,18,29–32] [27] [23,24,27] [18,26,31] [28,30] [7,28,30] [6,7,22,23,26] [6,22,23]
nic objectives	Flo Cost morp	 5 Soil erosion (SE) 6 Condition of riparian area (CRA) 7 Debris/ Floating waste (FW) 1 Water quality treatment cost (WQTC) 2 Water quality monitoring cost (WQMC) 3 Drinking water bill cost (DWBC) 4 Incidents/Waterways Screening Cost (WSC) 5 Project/Investment Cost (IC) 	[18,26] [23,26] [23,33] [34] [34] [32] [26] [26,28,33]
Econor	Value	 6 Maintenance Cost (MC) 1 Restoration (RS) 2 Recreation (RC) 	[26,28] [7,34] [7,26]

Section B. Review of sub-criteria correlated to surface water quality catchment management

Table S2. Review of Sub-criteria correlated to surface water quality catchment management.

		3 Capability of monetary fund (CMF)	[25,28,33]
	ial s	1 Fishing, Boating, Camping (FBC)	[7,26]
	ior	2 Access to water course (AWC)	[24]
	reat dica	3 Impact on human health (IHH)	[24,29,33]
tives	Rec	4 Visual amenity (VA)	[27]
ojec	JIS	1 Job opportunity (JO)	[7,25–28,30,31]
lot	cato	2 Responsibility (RSP)	[24,33]
cia	l ar idio	3 Heritage values	[27]
So	ura 1 Ir	4 Willingness to pay (WTP)	[33]
	Cult	5 Willingness to change behavior (WCB)	[18,24]
	Spiri	6 Willingness for conservation activities (WCA)	[34]

Section C: The Application of Euclidean Distance by the In-center of Centroids

This method is based on ranking two trapezoidal fuzzy numbers by comparing both values of the in-center of centroids. The advantage of this method is considered to be easy and representative of a straightforward calculation among other clustering analysis methods, as well as being satisfactory for users [35]. The basic operation in this method involves splitting the area of the fuzzy trapezoid number into three parts. The first, second, and third parts consist of a triangle, a rectangle, and a triangle, respectively (Figure S1). Azman et al. [35] discussed in details the definitions of fuzzy number membership and the operation process.

Figure S1. In-center of centroids.

The following is an application for the Euclidean Distance by the In-center of Centroids (EDIC) ranking method using the outcomes from the aggregation of Strategies 1 and 2 from Table 9 in the text. The ranking process can be summarized as the following:

Step 1: Calculate the area of each shape. The area for triangle is equal to width*height, while the area for rectangle is equal to ½*base*height; see Table SC1 below:

Area of the shapes	Strategy 1	Strategy 2
$A_{\Delta APB} = \frac{1}{2}(b-a)w$	$= \frac{1}{2} (5.75 - 4.97) \times 1$ = 0.39	$= \frac{1}{2} (6.52 - 5.52) \times 1$ = 0.5
$A_{\Delta BCQP} = (c-b)w$	$= (6.65 - 5.75) \times 1$ = 0.9	$= (7.52 - 6.52) \times 1$ = 1
$A_{\Delta CQD} = \frac{1}{2}(d-c)w$	$= \frac{1}{2}(7.32 - 6.65) \times 1$ $= 0.34$	$= \frac{1}{2}(8.52 - 7.52) \times 1$ $= 0.5$

Table S3. Area calculation for each shape of the trapezoidal fuzzy number.

<u>Step 2</u>: Calculate the centroids area for triangle and rectangle. The centroid of a triangle is located at a distance of 1/3 its height and 1/3 its base. The centroid of a rectangle is located at a distance of $\frac{1}{2}$ its height and $\frac{1}{2}$ its base, see Table S4 below:

Table S4. Calculation of the centroids area.

Area of centroids	Strategy 1	Strategy 2
$\Delta APB, M_1 = \frac{1}{3}(b-a), \frac{1}{3}w$	$= \frac{1}{3} (0.39), \frac{1}{3} \times 1$ = 0.13,0.33	$= \frac{1}{3} (1), \frac{1}{3} \times 1$ = 0.33, 0.33
$\Delta BCQP, M_2 = \frac{1}{2}(c-b), \frac{1}{2}w$	$= \frac{1}{2} (0.9), \frac{1}{2} \times 1$ = 0.45, 0.5	$= \frac{1}{2} (1), \frac{1}{2} \times 1$ = 0.5, 0.5
$\Delta CQD, M_3 = \frac{1}{3}(d-c), \frac{1}{3}w$	$= \frac{1}{3} (0.34), \frac{1}{3} \times 1$ = 0.11,0.33	$= \frac{1}{3} (1), \frac{1}{3} \times 1$ = 0.33, 0.33

<u>Step 3:</u> Determine the distance from each simple shape's centroid to the reference axes (x & y). Refer to Table S4 below:

Distance to axes	Strategy 1	Strategy 2
$M_1 = \frac{1}{3}(b-a) + a, \frac{1}{3}w$	= 5.1,0.33	= 5.85,0.33
$M_2 = \frac{(c+b)}{2}, \frac{w}{2}$	= 6.99,0.5	= 7.02,0.5
$M_3 = \frac{1}{3}(d-c) + c, \frac{1}{3}w$	= 6.76,0.33	= 7.85,0.33

<u>Step 4:</u> Multiply each simple shape's area by its distance from centroid to reference axes as shown in Table S5 below:

Shape	Area (A)	x	AX	S1	S2
APB	$\frac{1}{2}(b-a)w$	$\frac{1}{3}(b-a) + a$	$\left[\frac{(b-a)w}{2}\right]\left[\frac{(b-a)+a}{3}\right]$	0.75	2.17
BCQP	(c-b)w	$\frac{(c+b)}{2}$	$[(c-b)w]\left[\frac{(c+b)}{2}\right]$	5.58	7.02
CQD	$\frac{1}{2}(d-c)w$	$\frac{1}{3}(d-c)+c$	$\left[\frac{(d-c)w}{2}\right]\left[\frac{(d-c)+c}{3}\right]$	0.83	1.42
SHAPE	Area (A)	Ŷ	ΑΥ	S1	S2
APB	$\frac{1}{2}(b-a)w$	$\frac{1}{3}w$	$\left[\frac{(b-a)w}{2}\right]\left[\frac{w}{3}\right]$	0.13	0.17
BCQP	(c-b)w	$\frac{w}{2}$	$[(c-b)w]\left[\frac{w}{2}\right]$	0.45	0.5
CQD	$\frac{1}{2}(d-c)w$	$\frac{1}{3}w$	$\left[\frac{(d-c)w}{2}\right]\left[\frac{w}{3}\right]$	0.11	0.17

Table S5. Multiplication of area with distance.

<u>Step 5:</u> Sum the products of each simple shape's area and their distances from the centroid to the reference axes as shown in Table S6 below:

Table S6. Total shape AX.

Total shape A(X,Y)	Strategy 1	Strategy 2	
= APB + BCQP + CQD	7.16, 0.69	10.61, 0.84	

<u>Step 6</u>: Sum the individual simple shape's areas to determine total shape area as shows in *Equation* S1 and Table S7 below:

$$\sum_{A} = \left[\frac{1}{2}(b-a)w\right] + \left[(c-b)w\right] + \left[\frac{1}{2}(d-c)w\right]$$
(S1)

Total shape area	Strategy 1	Strategy 2
$=\frac{(d+c-b-a)w}{2}$	= 1.63	= 2

Table S7. Total shape area.

<u>Step 7:</u> Divide the summed product of areas and distances by the summed object total to find the in-centre on the total shape, as shown in Table S8 below.

Alternatives	$(x_0^-) = \frac{(d^2 - cd + 3c^2 - 2b^2 - ab)}{3d + 3c - 3b - 3a}$	$(y_0^-) = \frac{(d+2c-2b-a)w}{3d+3c-3b-3a}$
Strategy 1	4.40	0.42
Strategy 2	5.30	0.42

Table S8. The in-center of the total shape.

<u>Step 8</u>: Raking the function of the trapezoidal fuzzy number shown in Table S9 below. R² is the Euclidean distance from the in-center of the centroids.

Alternatives	Ranking Function $\sqrt{x_0^{-2} + y_0^{-2}}$	R ²	Rank
S1	$\sqrt{4.40^2 + 0.42^2}$	4.42	1
S2	$\sqrt{5.30^2 + 0.42^2}$	5.31	2

Table S9. Ranking function and the euclidean distance from the in-center of the centroids.

According to the results (R²) from Table S9, S2 rank ahead of S1.

References

- 1. Ji, L.; Sun, P.; Ma, Q.; Jiang, N.; Huang, G.-H.; Xie, Y.-L. Inexact two-stage stochastic programming for water resources allocation under considering demand uncertainties and response—a case study of tianjin, china. *Water* **2017**, *9*, 414.
- 2. Xu, Y.; Li, W.; Ding, X. A stochastic multi-objective chance-constrained programming model for water supply management in xiaoqing river watershed. *Water* **2017**, *9*, 378.
- 3. Casadei, S.; Pierleoni, A.; Bellezza, M. Integrated water resources management in a lake system: A case study in central italy. *Water* **2016**, *8*, 570.
- 4. Walker, D.; Jakovljević, D.; Savić, D.; Radovanović, M. Multi-criterion water quality analysis of the danube river in serbia: A visualisation approach. *Water Res.* **2015**, *79*, 158–172.
- 5. Jaiswal, R.; Ghosh, N.C.; Lohani, A.; Thomas, T. Fuzzy ahp based multi crteria decision support for watershed prioritization. *Water Res. Manag.* **2015**, *29*, 4205–4227.
- Fan, J.; Semenzin, E.; Meng, W.; Giubilato, E.; Zhang, Y.; Critto, A.; Zabeo, A.; Zhou, Y.; Ding, S.; Wan, J. Ecological status classification of the taizi river basin, china: A comparison of integrated risk assessment approaches. *Environ. Sci. Pollut. Res.* 2015, *22*, 14738–14754.
- Haider, H.; Singh, P.; Ali, W.; Tesfamariam, S.; Sadiq, R. Sustainability evaluation of surface water quality management options in developing countries: Multicriteria analysis using fuzzy utastar method. *Water Res. Manag.* 2015, 29, 2987–3013.
- 8. Rahman, M.; Rusteberg, B.; Uddin, M.; Saada, M.; Rabi, A.; Sauter, M. Impact assessment and multicriteria decision analysis of alternative managed aquifer recharge strategies based on treated wastewater in northern gaza. *Water* **2014**, *6*, 3807.
- 9. Malik, M.I.; Bhat, M.S. Integrated approach for prioritizing watersheds for management: A study of lidder catchment of kashmir himalayas. *Environ. Manag.* **2014**, *54*, 1267–1287.
- 10. Gallego-Ayala, J.; Juízo, D. Integrating stakeholders' preferences into water resources management planning in the incomati river basin. *Water Res. Manag.* **2014**, *28*, 527–540.
- 11. Yu, S.; Wang, M. Comprehensive evaluation of scenario schemes for multi-objective decision-making in river ecological restoration by artificially recharging river. *Water Res. Manag.* **2014**, *28*, 5555–5571.
- 12. Zhang, X.; Gao, L.; Barrett, D.; Chen, Y. Evaluating water management practice for sustainable mining. *Water* **2014**, *6*, 414–433.
- 13. Chang, C.-L.; Lin, Y.-T. Using the vikor method to evaluate the design of a water quality monitoring network in a watershed. *Int. J. Environ. Sci. Technol.* **2014**, *11*, 303–310.
- Badar, B.; Romshoo, S.; Khan, M.A. Integrating biophysical and socioeconomic information for prioritizing watersheds in a kashmir himalayan lake: A remote sensing and gis approach. *Environ. Monit. Assess.* 2013, 185, 6419–6445.
- 15. Do, H.T.; Lo, S.-L.; Phan Thi, L.A. Calculating of river water quality sampling frequency by the analytic hierarchy process (AHP). *Environ. Monit. Assess.***2013**, *185*, 909–916.
- 16. Hughey, K.F. Development and application of the river values assessment system for ranking new zealand river values. *Water Res. Manag.* **2013**, *27*, 2013–2027.
- 17. Roozbahani, A.; Zahraie, B.; Tabesh, M. Promethee with precedence order in the criteria (PPOC) as a new group decision making aid: An application in urban water supply management. *Water Res. Manag.* **2012**, *26*, 3581–3599.
- Biswas, S.; Vacik, H.; Swanson, M.; Haque, S.M.S. Evaluating integrated watershed management using multiple criteria analysis—A case study at chittagong hill tracts in bangladesh. *Environ. Monit. Assess.* 2012, 184, 2741–2761.
- Colin, F.; Guillaume, S.; Tisseyre, B. Small catchment agricultural management using decision variables defined at catchment scale and a fuzzy rule-based system: A mediterranean vineyard case study. *Water Res. Manag.* 2011, 25, 2649–2668.
- Calizaya, A.; Meixner, O.; Bengtsson, L.; Berndtsson, R. Multi-criteria decision analysis (mcda) for integrated water resources management (IWRM) in the lake poopo basin, bolivia. *Water Res. Manag.* 2010, 24, 2267–2289.
- 21. Ocampo-Duque, W.; Ferre-Huguet, N.; Domingo, J.L.; Schuhmacher, M. Assessing water quality in rivers with fuzzy inference systems: A case study. *Environ. Int.* **2006**, *32*, 733–742.

- 22. Gottardo, S.; Semenzin, E.; Giove, S.; Zabeo, A.; Critto, A.; de Zwart, D.; Ginebreda, A.; Marcomini, A. Integrated risk assessment for wfd ecological status classification applied to llobregat river basin (spain). Part i–fuzzy approach to aggregate biological indicators. *Sci. Total Environ.* **2011**, *409*, 4701–4712.
- 23. Leigh, C.; Qu, X.; Zhang, Y.; Kong, W.; Meng, W.; Hanington, P.; Speed, R.; Gippel, C.; Bond, N.; Catford, J. Assessment of river health in the liao river basin (taizi sub-catchment). Brisbane, Australia. *Int. Water Cent. Brisb. Aust.* **2012**, 131.
- 24. Foxon, T.J.; McIlkenny, G.; Gilmour, D.; Oltean-Dumbrava, C.; Souter, N.; Ashley, R.; Butler, D.; Pearson, P.; Jowitt, P.; Moir, J. Sustainability criteria for decision support in the UK water industry. *J. Environ. Plan. Manag.* **2002**, *45*, 285–301.
- 25. Cai, X.; Lasdon, L.; Michelsen, A.M. Group decision making in water resources planning using multiple objective analysis. *J. Environ. Plan. Manag.* **2004**, *130*, 4–14.
- 26. Eder, G.; Duckstein, L.; Nachtnebel, H.P. Ranking water resource projects and evaluating criteria by multicriterion q-analysis: An austrian case study. *J. Multi-Criteria Decis. Anal.* **1997**, *6*, 259–271.
- 27. Bowen, R.E.; Riley, C. Socio-economic indicators and integrated coastal management. *Ocean Coast. Manag.* **2003**, *46*, 299–312.
- 28. Karnib, A. An approach to elaborate priority preorders of water resources projects based on multi-criteria evaluation and fuzzy sets analysis. *Water Res. Manag.* **2004**, *18*, 13–33.
- 29. Abrishamchi, A.; Ebrahimian, A.; Tajrishi, M.; Marino, M.; Asce, H. Case study: Application of multicriteria decision making to urban water supply. *J. Environ. Plan. Manag.* **2005**, *131*, 326–335.
- 30. Straton, A.; Jackson, S.; Marinoni, O.; Proctor, W.; Woodward, E. Exploring and evaluating scenarios for a river catchment in northern australia using scenario development, multi-criteria analysis and a deliberative process as a tool for water planning. *Water Res. Manag.* **2011**, *25*, 141–164.
- Sun, X.; Xiong, S.; Zhu, X.; Zhu, X.; Li, Y.; Li, B.L. A new indices system for evaluating ecological-economicsocial performances of wetland restorations and its application to taihu lake basin, China. *Ecol. Model.* 2015, 295, 216–226.
- 32. Martin-Ortega, J.; Berbel, J. Using multi-criteria analysis to explore non-market monetary values of water quality changes in the context of the water framework directive. *Sci. The Total Environ.* **2010**, *408*, 3990–3997.
- 33. Makropoulos, C.K.; Natsis, K.; Liu, S.; Mittas, K.; Butler, D. Decision support for sustainable option selection in integrated urban water management. *Environ. Model. Softw.* **2008**, *23*, 1448–1460.
- 34. Jang, T.; Vellidis, G.; Kurkalova, L.A.; Boll, J.; Hyman, J.B. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion. *Environ. Manag.* **2015**, *55*, 657–670.
- 35. Azman, F.N.; Abdullah, L. A new centroids method for ranking of trapezoid fuzzy numbers. *J. Teknol. Sci. Eng.* **2014**, *68*, 101–108.

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).