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Abstract: The proposed Surface Water and Ocean Topography (SWOT) mission aims to improve
spaceborne estimates of river discharge through its measurements of water surface elevation, river
width and slope. SWOT, however, will not observe baseflow depth, which limits its value in
estimating river discharge especially for those rivers with heterogeneous channel geometry. In this
study, we aim to obtain river depths from spaceborne observations together with in situ data of
river discharge. We first obtain SWOT-like observables from current satellite techniques. We obtain
river water level and slope time series from multi-mission altimetry and effective river width from
satellite imagery (MODIS). We then employ a Gauss–Helmert adjustment model to estimate average
river depth for 16 defined reaches along the Po River in Italy, for which we use our spaceborne
observations in two recognized models for discharge estimation. The average river depth estimates
along the Po River are validated against surveyed cross-section information, which shows a generally
good agreement in the range of ∼10% relative root mean squared error. Furthermore, we analyzed
the sensitivity of error in the estimated river depth to errors of individual parameters. We show that
the estimated river depth is less influenced by errors of river width and river discharge, while it is
strongly influenced by errors in water level. This result gives a perspective to the SWOT mission to
infer river depth by coarse estimates of river width and discharge.

Keywords: river discharge; satellite altimetry; satellite imagery

1. Introduction

River discharge is perhaps the single most important hydrologic quantity representing the amount
of available freshwater on landmasses [1]. Despite its importance, the publicly available in situ river
discharge database has been declining steadily over the past few years due mainly to economic and
political reasons [2–4]. The number of available runoff gauging stations has gone down from about
8000 (pre-1970) to less than 1000 (around the year 2015). Also during this period, the total monitored
annual stream flow has dropped accordingly by about 75%. Figure 1 indicates that not only the number
of existing stations has decreased, but also in situ measurements over a number of important basins in
Africa and South America are no longer available. In fact, most of the active gauges are located over
developed countries, and the density of stations is much sparser in the non-industrialized countries [5].
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Figure 1. Available stations (updated in March 2017) with discharge data according to the Global
Runoff Data Centre (GRDC) database (http://www.bafg.de/GRDC) for different years from 1970–2013.

The potential of spaceborne and airborne techniques for obtaining river discharge estimates
has been demonstrated by many studies [1,4,6–11]. The work in [12] found a power law correlation
between satellite-derived effective width and discharge using ERS 1 SAR images and simultaneous
ground measurements of discharge. Different models are examined in [9] using satellite-derived
hydraulic parameters including water surface width, surface velocity, stage and slope. The research
in [13] employed TOPEX/Poseidon altimetry data to estimate river discharge based on a relation
between water level and discharge. The study in [14] used a data assimilation technique (ensemble
Kalman filter) built around a river hydrodynamic model to recover water depth and discharge.
The work in [4] introduced a statistical approach to derive discharge from river height through a rating
curve based on quantile functions. At-Many-stations Hydraulic Geometry (AMHG) was proposed
in [15] where paired coefficients and exponents of At-a-station Hydraulic Geometry (AHG) from many
cross-sections of a given river reach are functionally related to one another, following a log-linear
relationship. The study in [16] presents the Metropolis–Manning (MetroMan) algorithm to estimate
river bathymetry, the roughness coefficient and discharge based on input measurements of river water
surface elevation (H) and slope (s) using the Metropolis algorithm in a Bayesian Markov chain Monte
Carlo scheme. The research in [17] implemented a form of Manning’s equation to retrieve the river low
flow bathymetry, roughness and discharge (H0, K, Q). The Mean-annual Flow and Geomorphology
(MFG) algorithm was introduced in [11], which uses the so-called wide-channel approximation leading
to a form of Manning’s equation that approximates river depth as the difference between water surface
elevation and the cross-sectional average river bathymetry. Furthermore, Ref. [11] described the
Mean Flow with Constant Roughness (MFCR) approach, which assumes a constant value for the
roughness coefficient and uses the Water Balance Model (WBM) mean annual flow estimation. Recently,
different methodologies were developed to reconstruct a spatially- and temporally-complete estimate
of discharge from a set of observations [18–21]. Moreover, Kalman filters and smoothers have been
widely used with river water level data for discharge estimation. The work in [14] assimilated synthetic
water elevation observations into a river hydrodynamics model using an ensemble Kalman filter to
estimate river discharge. The study in [22] used Kalman filtering to assimilate water level information
with simulations from a coupled hydrological and hydrodynamic model to estimate discharge in an
ungauged basin scenario. The study in [23] estimated river bathymetry for retrieving river discharge
from the Surface Water and Ocean Topography (SWOT) satellite mission using an ensemble Kalman
filter-based data assimilation algorithm coupled with a hydrodynamic model. The research in [24]
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assimilated in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for
streamflow forecasts in the Amazon.

However, all of these studies are limited to some extent by the characteristics of present-day
sensors. The proposed SWOT mission, a joint project between the United States and France, aims to
alleviate the limitations and significantly improve spaceborne estimates of river discharge. The SWOT
mission will provide measurements of water surface elevation, river width and slope, through which
discharge can be estimated for river widths down to 50–100 m [25]. Despite the promising perspective
of the mission, one should keep in mind that SWOT will not observe baseflow depth (Figure 2), which
limits its value for estimating river discharge especially for those rivers with heterogeneous channel
geometry [26]. Therefore, river channel bathymetry is a significant source of uncertainty in estimating
discharge from spaceborne measurements [7].

H

H0
D

W

V

S
S slope
W effective river width
H surface water level
D river depth
H0 riverbed’s height
V stream flow velocity

Figure 2. A schematic representation of a river with observable parameters (black) and unobservable
ones (red, orange) from space. H0 is the average riverbed’s height that does not correspond to the
height of the deepest location in the channel section.

Some recent research was devoted to estimate river depth from currently available remote sensing
techniques. The work in [27] assessed the feasibility of mapping fluvial systems with passive optical
remote sensing and analyzing the physical processes of radiative transfer in shallow stream channels.
A spectrally-based approach was suggested in [28] to retrieve depth from passive optical image data.
Further, Ref. [29] developed a Forward Image Modeling (FIM) framework for the remote mapping of river
morphology via depth retrieval from passive optical images. The research in [30] used a combination
of remote sensing imagery and open-channel flow principles to estimate depths for each pixel in
an imaged river, which was called the Hydraulically-Assisted Bathymetry (HAB) model. Moreover,
Ref. [31] derived mean reach depth from the parameters of the power law establishing the rating curve
between water stages from satellite altimetry. A general relation to estimate the bankfull depth was
introduced in [32] from observed width and slope, although with significant error in the estimation.
The work in [14] used a data assimilation technique (ensemble Kalman filter) built around a river
hydrodynamic model to recover water depth and discharge. Similarly, Ref. [7] estimated bathymetric
depth and slope using synthetically-generated SWOT measurements and a Data Assimilation (DA)
methodology. The study in [33] combined coupled hydrologic/hydrodynamic modeling of an Arctic
river with virtual SWOT observations using a local ensemble Kalman smoother to characterize river
depth. An algorithm to obtain estimates of river depth and discharge was developed in [34] based
on Manning’s equation, which reduces the computational expense in contrast to data assimilation
techniques. Finally, Ref. [26] proposed “linear” and “slope-break” extrapolation methods that seek to
identify optimal locations where there is high correlation between w (cross-sectional flow width) or
W (effective width) and H (water surface elevation). As they concluded, the slope-break method can
detect fewer optimal locations, even though it shows fewer errors than the linear method. Recently,
Ref. [35] estimated discharge and as a by product bathymetry based on variational data assimilation
using data of water levels and width.
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However, none of the aforementioned studies used real spaceborne observations of both water
level and river width at the same time to estimate river depth. In this paper, we aim to obtain the river
depth using SWOT-type spaceborne observations: water surface elevation (H), effective river width
(W) and slope (S). To this end, we use satellite altimetry data for H and S and satellite imagery for
the estimation of W. We use our spaceborne observations in two recognized models for discharge
estimation developed by Bjerklie [9] and Dingman and Sharma [36]. Since river depth is an unknown
in these models, we employ a Gauss–Helmert adjustment model to estimate average river depth along
16 reaches defined over the Po River in Italy. We validate our results against surveyed cross-section
information along the river.

2. Case Study

The Po River, located in the Po valley in Italy, flows 652 km eastward through many important
Italian cities, including Turin (Torino), Piacenza and Ferrara (Figure 3). Since the river is subject to
heavy flooding, over half its length is controlled with dikes. A major dam is located at the village of
Isola Serafini 40 km downstream of Piacenza [37]. For this study, we defined 16 reaches along the river
from Bressana (45.11◦, 9.12◦) up to Berra (44.98◦, 11.98◦) almost every 20 km (Table 1). In order to obtain
two distinct reaches up and downstream of the dam at Isola Serafini, Reach 5 ends at the dam with a
length of 11.8 km, and Reach 6 starts from the dam location with a length of 28.2 km. The river reaches
are delineated in Figure 3. We selected this river for this study because of the following reasons.

1. The Po River with its narrow width (150–650 m) highlights the limitations of both altimetry
and imagery.

2. We have access to a variety of in situ data for the validation purposes.
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Figure 3. The Po River flowing eastward in Italy. The red triangles indicate the location of virtual
stations and the white ones the location of gauging stations from west to east: Piacenza, Cremona,
Borgoforte, Sermide and Pontelagoscuro.
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Table 1. Selected reaches along the Po River.

Reach Number
Starting Point Ending Point

Reach Length
Lat. Lon. Chainage Lat. Lon. Chainage

(◦) (◦) (km) (◦) (◦) (km) (km)

1 45.11 9.12 250.00 45.10 9.34 270.00 20.00
2 45.10 9.34 270.00 45.11 9.55 290.00 20.00
3 45.11 9.55 290.00 45.08 9.66 310.00 20.00
4 45.08 9.66 310.00 45.07 9.82 329.36 19.35
5 45.07 9.82 329.36 45.09 9.90 341.16 11.80
6 45.09 9.90 341.16 45.03 10.07 369.36 28.20
7 45.03 10.07 369.36 45.00 10.28 389.34 19.98
8 45.00 10.28 389.34 44.94 10.46 409.37 20.02
9 44.94 10.46 409.37 44.96 10.66 429.37 20.00

10 44.96 10.66 429.37 45.04 10.79 449.36 20.00
11 45.04 10.79 449.36 45.07 11.00 469.33 19.97
12 45.07 11.00 469.33 45.06 11.21 489.36 20.03
13 45.06 11.21 489.36 44.97 11.39 509.36 20.00
14 44.97 11.39 509.36 44.92 11.57 529.34 19.98
15 44.92 11.57 529.34 44.96 11.75 549.36 20.02
16 44.96 11.75 549.36 44.98 11.98 569.35 19.99

3. Data

In this study, we obtained river water level and width from spaceborne sensors. We use the data
from different altimetry missions: TOPEX/Poseidon, ENVISAT, CryoSat-2 and the satellite with ARgos
and ALtiKa instruments (SARAL/ALtiKa), to generate water level time series along the river. In order
to obtain river width, we use MODIS surface reflectance eight-day composites with 250 m spatial
resolution (MOD09Q1). We also use in situ data of river discharge for the estimation of river depth
and surveyed cross-section information for the validation. Table 2 lists all the data used in this study.

Table 2. Summary of the datasets used in this study. AIPO, Agenzia Interregionale Fiume Po.

Variable Dataset
Resolution

Time Period Source
Spatial Temporal

Effective river width W MODIS 250 m 8 d 2000–2014 [38]

Variable Surface water level H and slope S

Multi-mission altimetry︸ ︷︷ ︸ – 3 d 2000–2014

[39]

TOPEX/Poseidon – 10 d 1992–2002
ENVISAT – 35 d 2002–2010
TOPEX/Poseidon XT – 10 d 2002–2005
ENVISAT XT – 30 d 2010–2012
CryoSat-2 – 369 d 2012–2014
Jason-2 – 10 d 2008–2016

River discharge Q in situ – 1 d 1995–2013 AIPO

Channel sections surveyed every 250 m – – AIPO

3.1. In Situ Data

In situ datasets at five gauging stations along the Po River are available from from 1995–2013.
Table 3 lists the location, elevation, average width, average flow velocity and annual discharge at these
gauging stations.
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Table 3. The location and height of available in situ data along the Po River. The height refers to the
mean water level derived from daily time series.

Name
Lat. Lon. Elevation Average Width Average Flow Velocity Average Discharge

(◦) (◦) (m) (km) (m/s) (m3/s)

Piacenza 45.06 9.70 42.37 106 0.61 933
Cremona 45.13 9.99 29.03 157 0.82 1075
Borgoforte 45.05 10.75 14.05 164 0.84 1313
Sermide 45.02 11.29 9.50 329 0.44 1378
Pontelagoscuro 44.89 11.61 3.48 175 3.01 1477

Moreover, we have access to channel section surveys at approximately 250 m intervals between
Busca Tornello and the outlet of the river (350 km). These data are provided by Agenzia Interregionale
Fiume Po (AIPO).

3.2. Water Level from Satellite Altimetry

With the help of virtual stations and the method defined in [39] (see Table 3 in [39]), individual
water level time series along the Po River are densified. That geodetic method allows us to connect
hydraulically and statistically all virtual stations of several satellite altimeters and produce water level
time series at any location along the river. Here, we generate densified altimetric water level time
series at the location of each selected reach. For that, we stacked the selected altimetric measurements
by shifting the water level hydrographs of all the virtual stations according to a corresponding time lag.
The time lag represents the time that the stream flows from one virtual station to the one downstream.
For the time lag estimation, which is necessary for stacking the altimetric measurements, we used
average river width W̄ obtained from satellite images (explained in Section 3.3) together with the
average slope S̄ derived from satellite altimetry as inputs for a hydraulic model that estimates average
flow velocity from the width and slope of a river [39]:

V = 1.48 · W̄0.8S̄0.6 , (1)

in order to compute the time lag, we then estimate the wave traveling time TL by [6,40]:

TL =
L
c

(2)

in which L is the distance between virtual stations and c is the celerity. In the case of the kinematic
wave equation, the momentum balance can be arranged using the Manning formula, and consequently,
the celerity c can be expressed as [41]:

c = 5/3V , (3)

We derive average flow velocity values at each virtual station using Model (1), the estimated
river width using imagery and river slope from the average water level of each virtual station.
After estimating the time lag and stacking the measurements, the following algorithm is performed to
densify the time series:

1. Normalization of the data between zero and one: The measurements are merged by normalizing
the time series according to their statistical characteristics. This step helps to make the range for
the distribution of water level variations at different virtual stations consistent. For the merging
process, the data of each virtual station is normalized by assigning the third percentile to zero
and the 85th percentile to one.

2. Confidence limit definition of 99% of a Student’s t-test for a sliding time window: The length
of the time window can be experimented with to achieve the best performance. Here, a time
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window of one month (15 days before and 15 days after the selected measurement) is chosen as it
leads to optimal results in terms of time series behavior and the number of identified outliers.

3. Outlier identification and rejection: The identification and the rejection of the outliers is carried
out by an iterative data snooping method and by iteratively updating the confidence limits.
The data snooping method searches for the observation (always one observation) with the largest
gross error [42].

4. Rescaling of normalized values to their corresponding river water level heights: After removing
the outliers, the combined normalized altimetric values are ready to be rescaled back to their true
water level values.

5. Constructing the time series: After rescaling, we now have a cloud of measurements with their
corresponding uncertainty for the selected location along the river, which is free from outliers.
The dense time series of water level can then be obtained by connecting the measurements using
a three-point distance weighted moving averaging.

Following the above algorithm, for the densified time series at the all 16 reaches, we obtain an
effective temporal resolution of around three days from individual time series with originally a 10- or
35-day sampling interval. Time series in the Figure 4 show the densified water level and effective river
width measurements obtained over the reach number 12 (the Borgoforte gauging station).
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Figure 4. (Top panel) Water level time series from satellite altimetry and effective river width from
satellite imagery for Reach 12. (Bottom panel) Scatter plot of river discharge against water level
(correlation coefficient = 0.73) and effective river width (correlation coefficient = 0.52).

3.3. River Width from Satellite Imagery

In order to derive the effective width (W) at different river reaches, we apply the algorithm
introduced by [38] on MODIS images. The work in [38] developed a Markov Random Fields (MRF)
model, which considers spatial correlation between neighboring pixels and the long-term temporal
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behavior of the river. In this method, to extract the river mask in each image, we define the Maximum
A Posteriori (MAP) estimate of the MRF that models the interaction between different constraints
and auxiliary sources of information. Based on Bayes’ rule, the posterior probability (P(d| f )) of the
hypothesis f (labeling structure) given the observations d (pixel values) is proportional to the product
of the prior probability (P( f )) and the likelihood (P( f |d)). In this case, the likelihood represents the
agreement between the label and value of pixels, and the prior probability describes the priority
between different hypotheses. Our aim is to find a realization of the MRF maximizing the posterior
probability. In this way, an energy minimization frame is developed regarding the problem and solved
by the graph cuts technique, which is a powerful solution for a wide range of image segmentation
problems. We followed the approach by [38] and used an undirected graph with two terminals to
extract the river mask by finding the max-flow solution on the graph. Figure 5 presents an example
of a derived water mask. It shows that the method is able to continuously capture meandering river
paths even for a narrow river like the Po.

(1)
(2) (3) (4) (5)

(6) (7)
(8) (9)

(10)

(11) (12)
(13)

(14) (15)
(16)

Figure 5. (Top panel) A MODIS image of the Po river with the selected river reaches. (Bottom panel)
River mask extracted applying the proposed method by [38]. Date: 28 July 2000.

Although the graph cuts technique is preferred because of its ability to find a globally-optimal
solution in polynomial time, it cannot provide any uncertainty measurement associated with the
determined river mask. To overcome this deficiency, Ref. [43] introduced a method to measure
uncertainty in graph cuts solutions by measuring the max-marginal probability for each pixel. In this
way, a probabilistic river mask can also be provided. Following this, a reliable river area time series
is generated together with its uncertainty. We retain the assigned labels for pixels with marginal
probabilities higher than 10% in both water and land masks. This leaves a third region that contains
pixels with marginal probabilities less than 10% in both masks. This is the uncertain region, for which
we cannot define a proper label based on the available information. We consider the area of the third
region as an error in river area measurement.

Figure 4 shows the time series of effective river width together with the estimated uncertainty for
Reach 12. Since the river is very narrow with respect to the MODIS pixel size of 250 m, the magnitude
of uncertainty is relatively large. In Figure 4 (bottom panel), we compare the obtained effective river
width against in situ discharge for the same reach. An agreement between the behavior of the two
time series is expected. The majority of the river section passes through urban areas with river channel
contraction at the shoreline leading to the non-natural behavior of the river. Figure 4 (bottom panel)
comprises the obtained water level and the effective river width with the in situ discharge data at
Borgoforte. The scatter plots clearly demonstrate the challenge of using satellite imagery for discharge
estimation, whereas water level from altimetry agrees relatively well.
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4. Methodology to Estimate River Depth

In order to estimate the riverbed’s height H0 and, consequently, river depth H − H0, we rely
on two models developed for discharge estimation. It should be noted that H0 is the average
riverbed’s height that does not correspond to the height of deepest location in the channel section
(see Figure 2). Generally, a functional relationship between depth and discharge can be developed from
the Manning equation, which is applicable to natural rivers [44]. For a wide rectangular channel with
W > 10(H − H0), discharge can be obtained from the Manning equation as:

Q =
1
n
(H − H0)

1.67WS0.5 , (4)

in which n is the channel resistance. In practice, the channel resistance cannot be measured directly
and often varies considerably with discharge [9]. However, statistical studies by [9,36] have shown that
reasonably accurate estimates of discharge Q for within-bank flows can be obtained without resistance
as an input variable. The main assumption behind these studies is that the resistance varies with the
channel geometry. The works in [9,36] show that discharge can be estimated as:

Bjerklie et al. [9],

Q = aW1.02(H − H0)
1.74S0.35 (5)

Dingman & Sharma [36],

Q = aW1.17(H − H0)
1.57S0.34 (6)

for a wide range of rivers. These models are calibrated using a large database of observed flow
measurements from 103 rivers in the United States and New Zealand.

For the estimation of the riverbed’s height H0, we have considered both Models (5) and (6).
To this end, we use the estimated river width W from satellite imagery, densified altimetric height H,
slope S from satellite altimetry and river discharge Q from in situ data. When all these parameters
are available, only the H0 remains as unknown. However, estimating H0 in such non-linear models,
in which different datasets bring different levels of uncertainty, needs extra care. In fact, considering
the stochastics of Figure 4 (bottom left), the estimation of H0 would mean finding the water level (H)
where no water passes through the channel (Q = 0) with the added complexity of further stochastic
parameters. From the point of view of adjustment, this is an ill-posed extrapolation of data with
uncertainties in both axes. Since the data of both axes are provided with uncertainty, standard
regression with least squares estimation does not lead to a meaningful H0. Therefore, we derive the H0,
and consequently river depth, by implementing a Gauss–Helmert Model (GHM). Adjustment with the
GHM [45] is a combination of adjustment with condition equations and adjustment with observation
equations [46].

In the GHM, we add four terms, eQ, eW, eH, eS, to Equations (5) and (6), representing the error in
discharge, river width, water level and slope, respectively. Hence, Equation (5) would lead to:

Q− eQ − a(W − eW)1.02(H − eH − H0)
1.74(S− eS)

0.35 = f (a, H0, eQ, eW, eH, eS, Q, W, H, S) = 0. (7)

We now have an implicit functional relationship f (.) linking unknown parameters
a, H0, eQ, eW, eH, eS to observations Q, W, H, S. We can linearize the function by splitting up
the quantities:

H0 = H0
0 + δH0, a = a0 + δa

eW = e0
W + δeW, eH = e0

H + δeH

eS = e0
S + δeS, eQ = e0

Q + δeQ

(8)
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and choose Taylor points related to both parameters and uncertainties: a0, H0
0 , e0

Q, e0
H and e0

S.
Linearization around these Taylor points yields:

f = f
∣∣∣∣
0
+

∂ f
∂a

∣∣∣∣
0
δa +

∂ f
∂H0

∣∣∣∣
0
δH0+

∂ f
∂eQ

∣∣∣∣
0
(eQ − e0

Q) +
∂ f

∂eH

∣∣∣∣
0
(eH − e0

H) +
∂ f
∂eS

∣∣∣∣
0
(eS − e0

S) +
∂ f

∂eW

∣∣∣∣
0
(eW − e0

W) .
(9)

After reshaping, one obtains:

f =


f 1
∣∣∣∣
0
− ∂ f 1

∂eQ

∣∣∣∣
0
eQ

0 − ∂ f 1

∂eH

∣∣∣∣
0
e0

H −
∂ f 1

∂eS

∣∣∣∣
0
e0

S −
∂ f 1

∂eW

∣∣∣∣
0
e0

W

...

f m
∣∣∣∣
0
− ∂ f m

∂eQ

∣∣∣∣
0
e0

d −
∂ f m

∂eH

∣∣∣∣
0
e0

H −
∂ f m

∂eS

∣∣∣∣
0
e0

S −
∂ f m

∂eW

∣∣∣∣
0
e0

W


︸ ︷︷ ︸

w
m×1

+


∂ f 1

∂a

∣∣
0

∂ f 1

∂H0

∣∣
0

... ...
∂ f m

∂a

∣∣
0

∂ f m

∂H0

∣∣
0


︸ ︷︷ ︸

A
m×2

[
δa

δH0

]
︸ ︷︷ ︸
δx
2×1

+


∂ f 1

∂eQ

∣∣
0

∂ f 1

∂eH

∣∣
0

∂ f 1

∂eS

∣∣
0

∂ f 1

∂eW

∣∣
0 0 0 0 0 ... 0 0 0 0

0 0 0 0 ∂ f 2

∂eQ

∣∣
0

∂ f 2

∂eH

∣∣
0

∂ f 2

∂eS

∣∣
0

∂ f 2

∂eW

∣∣
0 ... 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 ... ∂ f m

∂eQ

∣∣
0

∂ f m

∂eH

∣∣
0

∂ f m

∂eS
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︸ ︷︷ ︸

δv
4m×1

= 0

(10)

Then, we have the linearized version of (7):

w+Aδx+BTδv = 0 (11)

The upper indices 1, 2, ..., m in matrix BT and vector δv are an index to the observations of
discharge, river width, water level and slope. In this formulation, we have two global parameters
a, H0 and 4-m parameters to be estimated from m epochs of {Qi, Hi, Si, Wi}. In the GHM, the least
squares objective function is:

δ̂x = argmin δvTPδv, subject to the Equation (11), (12)

where P is the weight matrix with dimension 4 m × 4 m:

P = diag
(

1/σ2
Q1

, 1/σ2
H1

, 1/σ2
S1

, 1/σ2
W1

, ..., 1/σ2
Qm

, 1/σ2
Hm

, 1/σ2
Sm

, 1/σ2
Wm

)
. (13)

The main benefit of the GHM lies within the weight matrix, which the uncertainties of
different measurements carefully take into account. For minimizing Equation (12), the corresponding
Lagrangian reads:

L(v, δx,λ) =
1
2
δvTPδv − λT(BTδv +Aδx+w), (14)

Setting the gradients of the Lagrangian with respect to δv, δx, λ to zero yields the equation system: P 0 B

0 0 AT

BT A 0


δ̂vδ̂x
λ̂

 =

 0
0
−w

 (15)
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by solving Equation (15), we obtain δ̂x, δ̂v and λ̂ as:

δ̂v = −B(BTPB)−1{w−A[AT(BTPB)−1A]−1AT(BTPB)−1w} (16)

δ̂x = [AT(BTPB)−1A]−1AT(BTPB)−1w (17)

λ̂ = (BTPB)−1{w−A[AT(BTPB)−1A]−1AT(BTPB)−1w} , (18)

which we can use to update and estimate â, Ĥ0, ˆeQ, ˆeH, êS and ˆeW. We then update unknown
parameters and observations and iterate the whole until convergence is achieved for the norm of
δ̂x and δ̂v (< 10−9). After the final iteration, we obtain a and H0 with their uncertainties, for which
uncertainties of water level, river width, slope and discharge are taken into consideration.

5. Results, Validation and Discussion

Solving the models by [9,36] with the Gauss–Helmert formalism allows us to estimate two
unknown parameters of these models namely a and H0. For the implementation of the method,
we need data of water level (H), slope (S), river width (W) and river discharge (Q). As described
in Section 3, we obtain water level time series after applying the densification process [39] over the
selected virtual station along the river. Thus, we obtain a water level time series at the middle of each
reach, from which we estimate the corresponding time variable slope. The effective river width is
obtained from satellite imagery following the method proposed by [38].

In order to fill the weight matrix P, in the Equation (13), we obtain σHi from satellite altimetry
(error envelope in Figure 4 top); σWi are taken from the error estimation of our effective river width
estimation (error envelope in Figure 4 middle); and σSi are obtained by the error propagation of
consecutive height measurements:

σ2
Si
=

1
d2 (σ

2
Hup

i
+ σ2

Hdo
i
) , (19)

in which d is the distance between the center of two consecutive reaches. For σQi , we consider 10% of
Q measurements, i.e., σQi = 0.1Qi.

Unlike H, W and S that are available for each reach, discharge data are not individually available
for each reach. We use discharge data at five in situ gauges along the river. However, the question
remains which in situ discharge data lead to a better result for the estimation of H0. The intuitive
answer to this question is, of course, the discharge data at the gauge nearest to the selected reach.
In order to assess this issue, we first estimated H0 and a for all the reaches with the help of discharge
data at all the gauges. Figure 6 shows the estimated H0 after the implementation of the GHM for the
selected reaches along the Po River. For each reach, we obtain five estimates of Ĥ0 and â, for which
we use different discharge data. It is interesting to observe that the estimated H0 for each reach is
nearly independent of the choice of discharge data. In principle, we obtain similar values with a
discrepancy of ∼2% with respect to average riverbed’s height with the discharge data of different
gauges. Comparing the estimated H0 with those surveyed along the river (black steps) shows a general
good agreement in the range of ∼10% relative RMSE.

Such a good agreement is better visible in the scatter plot of estimated H0 versus in situ H0

(Figure 7). The scatter is aligned around the diagonal line indicating a good performance of our
method for river depth estimation. The results show a marginal difference between the estimated
H0 from the two models, with slightly better performance of the model by [9] (Table 4). As expected,
the estimated â values, which act like scale factors, are different for both models. The difference is due
to the different power for water level, slope and width data. It should be noted that the unit of value a
is also different for the two models. In the case of the model by [9], the unit of a is m0.24 s−1, and in the
case of the model by [36], it is m0.26 s−1.
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Figure 6. Estimated river bed profile along the Po River for 16 defined reaches. VS refers to
virtual station.
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Figure 7. Scatter plot of estimated H0 using discharge data of different gauging stations along the
Po River.

Table 4. Estimated river bed height H0 using the two selected models, for which discharge data of the
nearest gauge are used.

Reach Hins
0 (m)

Model by Bjerklie et al. [9] Model by Dingman and Sharma [36]

â Ĥ0(m) Ĥ0 − Hins
0 (m) â Ĥ0 (m) Ĥ0 − Hins

0 (m)

1 50.27 0.69 50.37 ± 0.15 0.10 0.39 50.66 ± 0.14 0.39
2 45.62 0.60 44.72 ± 0.15 0.89 0.30 44.96 ± 0.14 0.66
3 40.09 1.36 41.47 ± 0.10 1.38 0.67 41.69 ± 0.09 1.59
4 35.91 2.06 40.73 ± 0.03 4.83 0.88 40.85 ± 0.03 4.94
5 32.20 29.20 32.07 ± 0.01 0.12 11.95 32.13 ± 0.01 0.07
6 24.60 0.80 24.91 ± 0.09 0.31 0.40 25.16 ± 0.08 0.57
7 20.63 0.22 16.06 ± 0.31 4.56 0.13 16.53 ± 0.31 4.10
8 17.18 0.27 13.06 ± 0.26 4.12 0.16 13.58 ± 0.26 3.60
9 12.92 0.74 12.07 ± 0.14 0.85 0.42 12.48 ± 0.13 0.44

10 11.54 0.50 9.37 ± 0.16 2.17 0.27 9.77 ± 0.16 1.77
11 7.38 0.53 7.04 ± 0.16 0.34 0.29 7.48 ± 0.16 0.10
12 2.70 1.40 5.64 ± 0.07 2.94 0.73 5.91 ± 0.07 3.21
13 2.08 1.25 3.00 ± 0.10 0.92 0.66 3.31 ± 0.09 1.23
14 −0.26 0.58 −1.49 ± 0.20 1.23 0.34 −0.87 ± 0.19 0.61
15 −3.00 4.83 1.07 ± 0.04 4.07 2.28 1.23 ± 0.04 4.24
16 −6.29 4.97 −1.32 ± 0.08 4.97 2.64 −1.07 ± 0.07 5.22
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In order to investigate the impact of the length of time series on the result, we arbitrarily consider
20%, 40%, 60%, 80% and 100% of data in the time series of water level, width and discharge. Figure 8
shows the estimated H0 for all reaches, where the results of using different portions of datasets for the
estimation of H0 are very similar to each other and lie within the estimated error. This result shows
that the estimation of H0 is insensitive to the length of the time series.
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Figure 8. Estimated river bed height by considering 20%, 40%, 60%, 80% and 100% of data in the time
series of water level, width and discharge along the Po River for 16 defined reaches.

As a result of GHM, δ̂v is also estimated, which comprises the corrections to the original
observations. Figure 9 shows estimated residuals for discharge êQ, water level êH and effective
river width êW data of Reach 1 in the case of using the model by [9]. In fact, the two global unknowns
of a and H0 are estimated by adjusting the observations within the selected model and minimizing
the error.
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Figure 9. Estimated residual for observations of discharge ˆeQ, water level ˆeH and effective river width
ˆeW for the first reach along the Po River.

Despite good agreement for most reaches, the estimated H0 for Reaches 4, 7, 8, 12, 15 and 16 show
relatively large errors, which can be better seen in Figure 10.
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Ĥ0 −H ins
0 , Q from Pontelaoscuro
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Figure 10. Bar plot of difference between estimated riverbed’s height Ĥ0 and those from in situ using
discharge data of different gauging stations along the Po River.

The errors seem to be independent of the choice of the in situ gauge for discharge data. Table 4
lists the results of H0 estimation for both of the models [9,36], for which we use the discharge data of
the nearest in situ station to the reach. It should be noted that for Reaches 1–5, located upstream of
the dam, we use the discharge data at a station also located upstream of the dam. The reason for that
was the difference between stream behavior up- and down-stream of the dam, which was discussed
in detail by [39]. A possible reason for such large errors is the quality of water level or river width
time series at these reaches. The water level time series show generally good correlation (>0.6) with
discharge data (Figure A1 in Appendix A), and no specific mismatch is visible at the problematic
reaches. On the other hand, the correlation coefficients of effective river width with discharge data for
all reaches are generally small especially at Reaches 1, 4 and 6 (Figure A2 in Appendix A). However,
again, the reaches with a large error for the estimated H0 do not show a distinctly low correlation
in comparison to other reaches. Based on these results, one can conclude that such large errors in
estimated H0 could be due to the choice of the model. In fact, for heterogeneous reaches with variable
channel resistance along the river, a single model does not represent the flow over the entire reach.

The error we obtain for the estimated H0 originated from different sources. Our error
assessment should distinguish between systematic errors, accuracy and the precision of our estimation.
The systematic error and accuracy in our case are mainly related to the choice of functional model for
depth estimation. This is, of course, testable by using different models and by assessing its effect on
the estimation of H0. In our study, since both models are very similar, we have obtained similar results.
In order to assess the sensitivity of estimated H0 to the precision of W, H and S, we write H0 as an
explicit function of all other parameters (in the case of model by Bjerklie et al.):

H0 = H −
[ Q

aW1.02S0.35

]0.57 , (20)

and obtain its error dH0 as a function of error in other variables:

dH0 = dH +
∂H0

∂Q
dQ +

∂H0

∂W
dW +

∂H0

∂S
dS , (21)

in which ∂H0/∂H = 1, which means that any error in H will directly transfer into an equal error in H0.
The sensitivities ∂H0/∂Q, ∂H0/∂W and ∂H0/∂S depend on other parameters that are varying

in time. In order to assess the error in H0 due to the error of water level, width and discharge, here
we assume a constant error of 0.7 m for water level time series from altimetry, which would lead
to a constant error of 0.05 m/km for the slope of two consecutive reaches with a distance of 20 km
(Equation (19)). For the effective river width, we use our time variable uncertainty estimates based on
the method by [43]. For discharge, a multiplicative error of 10% is assumed. Figure 11 shows partial
errors in H0 due to the errors of other parameters in Reach 1. The contribution is about 0.2 m of the
discharge’s precision on the precision of estimated H0. The average error in H0 due to the errors of
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our width estimates is about 0.3 m. Since ∂H0/∂S is time variable, a constant error in slope leads to a
time variable error contribution with the average value of approximately 0.2 m for reach 1. This result
shows that among all the parameters in Models (5) and (6), errors in height will contribute the most in
the estimation of H0 under the assumption that dH = 0.7 m.

Figure 12 shows the average of time series for the error contribution of different parameters over
all 16 reaches. It is interesting to observe a large sensitivity of H0 to slope for Reaches 15 and 16,
at which we obtain a relatively large error. This means that for these reaches, the error in slope will
be amplified with a larger error in the estimation of river depth. Moreover, the effects of errors in
discharge and river width for the estimation of river depth are generally smaller than those for water
level and slope.
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Figure 11. Time series of error in H0 due to the error in Q, H, W and S for Model (1) over Reach 1.
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Figure 12. Average error in H0 due to errors in discharge, water level, effective river width and slope
over all 16 reaches.

The direct formulation (21) is also beneficial for investigating why the estimation of H0 is
insensitive to the choice of discharge station. Figure 13 shows that ∂H0/∂Q for Reach 1 varies between
3 × 10−4 and 12 × 10−4 with an average value of 6.8× 10−4. On the other hand, according to Table 3,
average discharge at different stations is 933, 1075, 1313, 1378 and 1477 m3/s, respectively. This would
mean that for the estimation of H0 of Reach 1, a mischoice of Pontelagoscuro station with an average
discharge of 1477 m3/s instead of Piacenza with an average discharge of 933 m3/s would lead to only
0.36 m error in H0 (6.8× 10−4 × (1477− 933) = 0.36).
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Figure 13. The time variable sensitivity of estimated H0 to discharge observation ∂H0/∂Q.

6. Perspective for the SWOT Mission

In the future, the SWOT mission will provide measurements of water surface elevation, river
width and slope, through which discharge can be estimated for river widths down to 50–100 m,
which allows us to obtain consistent and coherent information about the spatial distribution of river
discharge. However, SWOT does not have the objective of and cannot be a replacement for in situ gauge
networks [47]. SWOT will irregularly sample mid-latitude locations approximately three times per its
21-day cycle rather than nearly continuously, as in a gauge estimate. Although irregular sampling is
appropriate to monitor the global water cycle, it is inadequate for many local-scale questions on rivers
where SWOT may not fully observe temporal dynamics [11,47].

Moreover, SWOT will not observe full river networks. According to the study by [25] given
the ability to observe rivers wider than 100 m, SWOT would observe more than 60% of the global
sub-basins with an area of 50,000 km2. In terms of estimation of river depth, recent studies suggest
that it may be possible to estimate river depth simultaneously from SWOT observations alone using
multiple overpasses over several adjacent river reaches. However, studies are required to improve the
understanding of the number of essential observations for a proper estimation of river depth [48].

The results in this study give a perspective of the SWOT mission and its scientific challenges in
the following ways:

• Satellite altimetry is put on an operational footing through the Sentinel 3 series of the European
Copernicus program. At the same time, research satellites such as CryoSat-2, SARAL/AltiKa
or Jason-3 remain in orbit and provide complementary space-time sampling. This constellation
addresses many current limitations and opens a significant area of investigation into the
operational use of altimetry missions for hydrological purposes. Developing methods to generate
dense time series of water level using altimetry data, demonstrated in this study, raise the hope
of using operational altimetry together with SWOT data in the future for a better monitoring of
temporal dynamics in many rivers around the world.

• Remote sensing techniques have been introduced as viable choices to monitor surface water
variations [5]. Optical and SAR satellite imagery missions provide the opportunity to monitor
surface water extent repeatedly at appropriate time intervals. Recent missions provide images
with better spatial and temporal resolution. Different Landsat missions have been gathering
images in various multispectral bands from the Earth since 1980. Recently, Landsat 8 with 30 m
spatial resolution has provided monthly images of the Earth’s surface. Applications that demand
a high temporal resolution preferably make use of the daily snapshots of MODIS imagery with
250-m resolution. Since 2015, Sentinel-2 has provided images with better resolution (10 m, 20 m,
60 m) and also a high revisit time (five days). On the other hand, SAR missions with images from
ERS-1, ERS-2 and ENVISAT in C-band are the main sources for spatial water area monitoring in
the tropical area, which is cloudy and rainy most of the year [12]. TerraSAR-X in X-band provides
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high resolution images with 1-, 2- and-3 meter pixel size every two days. From 2014 onwards,
Sentinel-1A has provided continuous imagery (day, night and all weather) in C-band, expanding
our understanding of surface water. Therefore, developing reliable algorithms to obtain reliable
dynamic river masks, as developed by [38] and implemented in this study, gives the perspective
of the SWOT mission that the results from different imagery sensors could be combined with the
results from SWOT for a better monitoring of river masks in the future.

• In terms of river depth estimation, our results in Figures 11–13 highlight the weaker dependency
of error in river depth estimation to the error of river width and river discharge. This means that
a preliminary result of river width and a coarse river discharge would be enough to estimate river
depth. This is especially important for discharge algorithms, which work based on Manning’s
flow resistance equation, and the initial values of variables play an important role in the fast
and precise estimation of discharge. Moreover, this result would mean that one could use a
rough estimation of river discharge instead of in situ data and still receive acceptable results for
river depth.

7. Summary and Conclusions

In this paper, we estimated the average river depth for 16 reaches along the Po River from
SWOT-type observables water surface elevation, effective river width and slope using models by [9,36].

In order to obtain dense time series of water level from altimetry, we followed the method
suggested by [39]. We connected all the virtual stations of several satellite altimeters along the Po River
and produced water level time series at any location along the river. To this end, the selected altimetric
measurements are stacked at the center of each reach by shifting the water level hydrographs of all
virtual stations according to time lag between different virtual stations. The stacked measurements
are then merged by normalizing the time series according to their statistical characteristics. After an
outlier identification process, we rescaled the measurements back to their true water level values.
For the densified time series at the 16 reaches, we obtained an effective temporal resolution of around
three days from individual time series with originally a 10- or 35-day sampling interval. Time series of
slope were obtained by differencing the time series of the water level at two consecutive reaches.

In order to derive effective width, we used MODIS images and extracted a dynamic river
mask by employing the algorithm developed by [38]. This algorithm uses an MRF model regarding
all sources of information available in images: spatial correlation between neighboring pixels and
the long-term temporal behavior of the river. We then extracted the river mask in each image by
maximizing a posteriori estimation in Markov random fields through minimizing the energy using
the graph cuts technique. Although the graph cuts technique is preferred because of its ability to
find a globally-optimal solution in polynomial time, it cannot provide any uncertainty measurement
associated with the determined river mask. We have used the method by [43] to estimate uncertainty
in the graph cuts solutions by measuring the max-marginal probability for each pixel. Following this,
we generated a reliable river area time series together with its uncertainty.

With the help of the effective river width from satellite imagery, as well as water level and slope
from satellite altimetry, we estimated river depth by implementing a Gauss–Helmert adjustment
scheme on two models by [32,36]. Unlike variables observed from the space, discharge data are not
available for each reach individually. We use discharge data at five in situ gauges along the river.
An interesting result of this work is that the estimated H0 for each reach only weakly depends on the
choice of discharge data, since we obtained similar values for H0 with a discrepancy of only ∼2% with
the discharge data of different gauges. This result was explained by the low partials ∂H0/∂Q, making
the obtained H0 less sensitive to the choice of discharge gauge.
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We validated our results against surveyed cross-section information along the Po River.
Validation shows general good agreement in the range of ∼10% relative RMSE. However, we faced
some problematic reaches (4, 7, 8, 12, 15 and 16) for which the estimated H0 is relatively large.
We inconclusively discussed possible sources for such error by analyzing the quality of water level
and effective river width time series. We have demonstrated that the water level time series generally
correlate well (>0.6) with discharge data, and no specific pattern at the problematic reaches has been
found. On the other hand, the correlation coefficients of effective river width with discharge data show
generally small values especially at Reaches 1, 4 and 6. However, again, the reaches with a large error
for the estimated H0 do not show a distinctly lower correlation in comparison to other reaches.

The sensitivity analysis in this study especially demonstrates that the the estimated river depth is
less influenced by the error of river width and river discharge, while it is strongly influenced by error
in water level and slope. These results give a perspective of the SWOT mission, where the estimation of
river depth would be possible using coarse estimates of river width and discharge and improved water
level and slope time series. Moreover, this result would mean that one could use a rough estimation
of river discharge instead of in situ data and still receive acceptable river depth. On the other hand,
given the abundance of existing and future altimetry and imagery missions, developing methods to
generate dense time series of water level using altimetry data and reliable river width from satellite
imagery raises the hope of using operational altimetry and imagery including the Sentinel-series
together with SWOT data in the future for a better monitoring of temporal dynamics in many rivers
around the world.
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Appendix A. Comparison of Water Level and Effective River Width with Discharge

Figure A1 shows scatter plots of discharge at nearby gauging stations against water level time
series for 16 reaches along the Po River. The water level time series show a generally good correlation
(>0.6) with discharge data. Figure A2 shows the scatter plots for the effective river width time series
for the 16 reaches. The correlation coefficients of effective river width with discharge data for all
reaches are generally small especially at Reaches 1, 4 and 6. Since the Po River width is generally
narrow for the MODIS pixels with 250 m resolution, such low correlation coefficients for the obtained
river width are expected. Moreover, the river passes through many urban regions with managed
channels, making the river width and discharge less correlated.

https://ladsweb.nascom.nasa.gov
https://earth.esa.int/web/guest/data-access
ftp://avisoftp.cnes.fr/AVISO/pub/saral/gdr_t/
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Figure A1. Comparison of water level time series and discharge at nearby gauging stations for
16 reaches along the Po River.
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Figure A2. Comparison of effective river width and discharge at close-by gauging stations for 16 reaches
along the Po River.
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Figure A3 shows the surveyed sections along Reach 4 with the average water level at each
section obtained from satellite altimetry. The section at Chainage 312, for instance, would lead to a
non-homogeneous dependency between river width and discharge and would consequently lead to
an inaccurate estimation of H0 using the selected models. However, since we consider the averaged
parameters of reaches, the effect of an individual problematic section on the final results should
be negligible.
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Figure A3. Sections along Reach 4. The red straight line represents the average water level obtained
from altimetry.
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