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Abstract: Uranium contamination of groundwater increasingly concerns rural residents depending
on home wells for their drinking water in communities where uranium is a source of contamination.
Established technologies to clean up contaminated aquifers are ineffective in large contaminated areas
or are prohibitively expensive. Permeable reactive barriers (PRBs) are a low-cost alternative to these
methods. In this paper, the applicability of clay ceramic pellets was investigated as permeable reactive
barriers (PRBs) material for the treatment of uranium-contaminated groundwater. Flow-through
columns were fabricated and used to mimic the flow path of a contaminant plume through the
reactive media. Experiment results show that clay ceramic pellets effectively remove uranium from
uranium-contaminated water and also can be a cost-efficient technique for remediating uranium
contaminated groundwater by a clay pellet barrier. Using clay ceramic pellets is also a practical
treatment method for uranium removal from drinking water and can supply potable water for
households in the affected areas.

Keywords: clay ceramics; permeable reactive barrier; uranium; cation exchange capacity;
flow-through column

1. Introduction

Uranium contamination of groundwater increasingly concerns rural residents depending on
home wells for their drinking water in communities with a legacy of mining [1] as well as those living
in areas naturally occurring uranium is a source of contamination [2–4]. In the United States, naturally
occurring elevated uranium in groundwater is widespread in the west and is scattered in Eastern
states [2,5]. Also significant problems stemming from the legacy of uranium development still exist
today in the Colorado Plateau area [6].

Uranium in ground water is most commonly found in its hexavalent oxidation state U(VI) as the
uranyl ion (UO2

2+) [7]. The aqueous solubility of U(VI) makes it difficult to physically remove uranyl
from water. Clean-up of contaminated aquifers is difficult due to the inaccessibility to the subsurface
and the volume of soil and groundwater requiring treatment [8]. Established technologies such as
pump-and-treat and soil excavation are ineffective in large contaminated areas or are prohibitively
expensive [9]. Permeable reactive barriers (PRBs) are a low-cost alternative to these methods [10].
The PRB is an in situ permeable treatment zone designed to intercept and remediate a contaminant
plume. Several mechanisms have been proposed for the treatment of uranium using elemental iron
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(zero-valent iron) as PRB material, including reductive precipitation [11,12], sorption onto hydrous
ferric oxide [13], and co-precipitation with iron oxides [14].

The purpose of the present study is to investigate the applicability of low temperature sintering
clay ceramics as PRB material for the treatment of uranium-contaminated groundwater. Natural
clays are characterized with sorption ability of different chemical compositions [15–20] and thus are
suitable materials for environmental technologies. Clay adsorption capacity is generally increased
by granulation [21]. However, such materials have a weak point. Considering the colloidal
character of clay minerals, after purification of polluted water such water contains another kind
of pollution—colloidal particles of clay containing adsorbate. Low temperature sintered clay ceramics
can help to resolve this disadvantage for water purification technologies [22]. The sintering treatment
makes clay ceramics insoluble in water. Clay ceramics used in this study have negatively charged
sites on their surfaces which adsorb and hold positively charged uranyl ions by electrostatic force.
Clay ceramics are water-insoluble and easy to remove from water after treating contaminated water.
Flow-through columns were built and used to mimic the flow path of a contaminant plume through
the reactive media. A peristaltic pump slowly fed the contaminant medium. Uranyl nitrate was used
as a source of Uranium(VI). We also tested the efficiency and practicability of clay ceramic pellets
to facilitate abatement of uranium from drinking water. Underprivileged communities do not have
access to expensive water purification systems and current methods for purifying water on a small
scale are temporary solutions for a small volume of purified water and expensive. The clay ceramic
pellets can be used to remove uranium in any environment where individuals are at risk of ingesting
uranium contaminated water.

2. Materials and Methods

Two different clays from Arizona Cheto (smectite mineral) and New Mexico Gallup (illite mineral)
were used for production of ceramic pellets. Both clays are 2:1 layer minerals where an octahedral
sheet is bonded to two tetrahedral sheets. These clay minerals have significant permanent negative
charges which contribute to the cation exchange capacity (CEC) of clays [23]. The permanent negative
charge in the clay results from the substitution of divalent cations for trivalent cations in the octahedral
sheet [24]. For example, the permanent negative charge in the smectite group results from substitution
of divalent cations Mg2+ for trivalent cations Al3+ in the octahedral sheet. The CEC is a measure of the
clay’s ability to hold positively charged ions. Uranium sorbs to clay through this unique characteristic.

2.1. Fabrication of Clay Pellet and Flow-Through Column

Dry clays from Arizona Cheto and New Mexico Gallup were mixed with water and spread
into a silicon mold in the form of a pellet. These samples were sintered (thermal curing) in a
laboratory furnace. A first densification took place below 150 ◦C from drying the residual water
on clay surface [25]. The clay pellets were further heated until chemically bonded water with clay
molecules escaped from the clay. The curing process is well described in Reference [22].

Flow-through columns were fabricated using acrylic tubes having an effective height of 25.4 cm
and internal diameter of 2.5 cm. The columns have four lateral sampling ports capped with Mininert
valves. The columns were equipped with check valves at the inlet and outlet, which allowed for
draining liquids out of the columns. These columns were used for flow-through experiments for
uranium removal from groundwater as well as water purification experiments for uranium removal
from drinking waters as shown in Figure 1.
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Figure 1. Flow-through column apparatus and experimental setup for nonstationary flow-through 
experiments (left) and stationary water purification experiments (right). 

2.2. Experimental Procedure and Sampling 

The columns were packed with clay ceramic pellets. Uranium solution was prepared by 
dissolving 0.0015 g uranyl nitrate hexahydrate into 2 L of deionized water (about 400 ppb uranium 
solution). A peristaltic pump was used to feed the uranium medium at 5.75 mL/hour to the column. 
Waste liquid was collected in a 2 L playtypus platy bottle. Samples were taken from the side ports to 
obtain concentration profile within a column as shown in Figure 2. A 20-gauge needle was injected 
through the Mininert port valve (Sigma-Aldrich, St. Louis, MO, USA) to withdraw 5 mL of fluid with 
a disposable syringe. Samples were taken every 24 h and data were collected for five days. Samples 
were analyzed using Agilent 7500 Series ICP-MS (Santa Clara, CA, USA) equipped with a Agilent 
micromist nebulizer part No. (G3266-65003) (Agilent, Santa Clara, CA, USA) and Cetac (Omaha, NE, 
USA), ASX 520 Autosampler (Cetac, Omaha, NE, USA). 

 
Figure 2. Schematic of the flow-through experimental setup. 

3. Results and Discussion 

3.1. Clay Characterization 

Ceramic pellets were made from Arizona Cheto clay and New Mexico Gallup clay as shown in 
Figure 3. These samples were imaged using the scanning electron microscopy (SEM) (Hitachi High 
Technologies, Dallas, TX, USA). Figure 4 shows SEM images of Cheto (Cheto, AZ, USA) and Gallup 
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Figure 1. Flow-through column apparatus and experimental setup for nonstationary flow-through
experiments (left) and stationary water purification experiments (right).

2.2. Experimental Procedure and Sampling

The columns were packed with clay ceramic pellets. Uranium solution was prepared by dissolving
0.0015 g uranyl nitrate hexahydrate into 2 L of deionized water (about 400 ppb uranium solution). A
peristaltic pump was used to feed the uranium medium at 5.75 mL/h to the column. Waste liquid was
collected in a 2 L playtypus platy bottle. Samples were taken from the side ports to obtain concentration
profile within a column as shown in Figure 2. A 20-gauge needle was injected through the Mininert
port valve (Sigma-Aldrich, St. Louis, MO, USA) to withdraw 5 mL of fluid with a disposable syringe.
Samples were taken every 24 h and data were collected for five days. Samples were analyzed using
Agilent 7500 Series ICP-MS (Santa Clara, CA, USA) equipped with a Agilent micromist nebulizer
part No. (G3266-65003) (Agilent, Santa Clara, CA, USA) and Cetac (Omaha, NE, USA), ASX 520
Autosampler (Cetac, Omaha, NE, USA).
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Figure 2. Schematic of the flow-through experimental setup.

3. Results and Discussion

3.1. Clay Characterization

Ceramic pellets were made from Arizona Cheto clay and New Mexico Gallup clay as shown
in Figure 3. These samples were imaged using the scanning electron microscopy (SEM) (Hitachi
High Technologies, Dallas, TX, USA). Figure 4 shows SEM images of Cheto (Cheto, AZ, USA) and
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Gallup clay (Gallup, NM, USA) pellet samples. Both clays have open structures formed by laminar
particles which keep edge-to-edge and edge-to-face contacts. Cheto clay particles appear as small and
irregularly-shaped flakes, which is a distinctive morphology of smectite clay. It has been reported that
clays in Northern New Mexico were formed by smectite and illite [26]. The SEM image of Gallup clay
shows abundant pseudo-hexagonal illite platelets, which suggests that Gallup clay has a morphology
closer to that of illite than that of smectite.
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3.2. Flow-Through Experiments for Uranium Removal from Groundwater

Uranium concentration profiles were determined along the length of the column after 24 h of
operation, when the hydraulic retention time was 12 h. Figure 5 depicts the concentration profiles
along the length of the column for uranium abatement with Gallup and Cheto clay pellets. In this
experiment, uranium levels were reduced from 370 ppb to 107 ppb with Gallup clay pellets and
370 ppb to 17 ppb with Cheto clay pellets. Cheto clay pellets have a faster reaction rate than Gallup
clay pellets because of the high cation exchange capacity (CEC). Arizona Cheto clay belongs to the
smectite clay group and has a high CEC value (about 120 cmolc/kg) [27,28]. Gallup clays are expected
to have lower CEC values since illite has generally low CEC values (about 40 cmolc/kg) [26]. That is,
1 kg of Cheto and Gallup clay could take 120 centimols and 40 centimols of uranyl ion, respectively.
This data indicates that slow reaction kinetics may require a treatment system with a longer hydraulic
retention time.

Figure 5 shows the rate of uranium removal in each solution. Hydraulic retention time in this
experiment was 12 h. The sample medium retrieved from Port 1 was exposed to pellets about 2–3 h
whereas the sample medium in Port 4 was exposed to pellets about 9–10 h. Uranium removal was
fastest during the initial 2–3 h of the test, followed by a more gradual decline as the solution flew from
Port 1 to Port 4 in the column. In order to make a judgment that the observed uranium abatement
between Port 1 and Port 4 is statistically meaningful, the two-sample t-test [29] was conducted using
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Minitab Statistical Software [30]. Analysis results in Table 1 showed a statistically significant difference
(p ≤ 0.05) between Port 1 and Port 4. The results indicate a significant difference between the two
means at the 95 percent confidence level.
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Figure 5. Concentration profiles for Uranium abatement in the flow-through column with Gallup clay
pellets (top) and Cheto clay pellets (bottom) after 24 h.

Table 1. Statistical analysis of uranium concentration data for Port 1 and Port 4

Clay Type Cheto Clay Gallup Clay

Port location Port 1 Port 4 Port 1 Port 4
Mean value 190.1 107.5 60.1 17.54

Standard deviation 18.2 14.7 17.8 4.61
Standard error mean 8.2 6.6 8.9 2.3

p-value 0.000 0.019

3.3. Water Purification Experiments for Uranium Removal from Drinking Water

The US Environment Protection Agency (EPA) established the drinking water standard of 30 ppb
for uranium in public drinking water supplies. Feasibility of uranium abatement in contaminated
drinking water was tested using clay ceramic pellets. The uranium concentration was recorded until
the concentration was decreased to 30 ppb. Uranyl nitrate solution was used in the experiments as
a contaminated water source. The flow-through column was packed with clay pellets and uranium
medium and sealed by rubber plugs. Samples were taken from Port 1 of the column and analyzed
using ICP-MS to measure uranium concentration. The uranium removal rates were faster than those
of flow-through experiments. A total 68% of uranium was removed during the initial two hours for
Gallup clay pellets and 89% was removed in the first hour with Arizona clay pellets.

As shown in Figure 6, uranium concentration in the uranyl solution showed a rapid initial drop
in the first hour of the experiment, followed by a more gradual decline during the remainder of the
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test. At constant ambient conditions, the uranium concentration decreased from 370 ppb to 30 ppb for
Cheto pellets in 10 h and to 22.75 ppb for Gallup pallets in 34 h.Water 2017, 9, 761  6 of 8 
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4. Conclusions

Flow-through experiments suggest that clay pellet barriers can effectively intercept and remove
uranium from contaminated groundwater. The removal efficiency was not decreased considerably in
time and no noticeable permeability change was found in the column. Clay pellets are not susceptible
to clogging or rapid passivation by reaction products unlike iron corrosion products. In the drinking
water purification experiments, the uranium concentration was reduced to a concentration below the
EPA’s safe drinking water limit of 30 ppb. The manageable end-product is easy to handle and dispose
of. Results show that clay ceramic pellets effectively remove uranium from uranium-contaminated
water and can be a cost-efficient technique for remediating uranium contaminated groundwater.
This method is also a practical treatment method for uranium removal from drinking water and can
supply potable water for households in the affected rural areas.
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