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Abstract: In deciding what crops to grow, farmers will look at, among other things, the economically
most productive use of the water and land resources that they have access to. However, optimizing
water and land use at the farm level may result in total water and land footprints at the catchment
level that are in conflict with sustainable resource use. This study explores how data on water and
land footprints, and on economic water and land productivity can inform micro-level decision making
of crop choice, in the macro-level context of sustainable resource use. For a proposed sericulture
project in Malawi, we calculated water and land footprints of silk along its production chain, and
economic water and land productivities. We compared these to current cropping practices, and
addressed the implications of water consumption at the catchment scale. We found that farmers may
prefer irrigated silk production over currently grown rain-fed staple crops, because its economic water
and land productivity is higher than that for currently grown crops. However, because the water
footprint of irrigated silk is higher, sericulture will increase the pressure on local water resources.
Since water consumption in the catchment generally does not exceed the maximum sustainable
footprint, sericulture is a viable alternative crop for farmers in the case study area, as long as silk
production remains small-scale (~3% of the area at most) and does not depress local food markets.

Keywords: water footprint; land footprint; economic water productivity; economic land productivity;
crop choice; CSR; sericulture; silk; Malawi

1. Introduction

Suppose you are a farmer in Malawi. What crops would you grow, and on what factors would
you base that decision? You would probably consider the availability, quality and cost of seeds, labour,
land, water, fertilizers and technology, the access to markets, available capital to invest, insurance,
and what alternative options you have to feed your family if crops fail. Now, you are aware that
pressures on water and land resources are increasing—due to climate change, growing populations and
more demanding lifestyles—and you want to find out how your operations affect overall questions
of sustainability, efficient resource use, and equity. How can you make sure you maximize your
farming operations’ profitability, while at the same time minimizing harmful impacts on both others in
your area and on the next generation? After all, they will also need the natural resources to support
their livelihoods.

This stream-of-thought sketches the tension between micro-level decision making in agriculture
and its macro-level effects. Much research has been done to identify factors that influence local crop
choice [1–7]. In the current study, we focus on water and land availability and consider indicators
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such as water and land footprints and economic water and land productivity [8–11]. Water footprints
(WF) and land footprints (LF) of crop production represent the volume of water (m3) and area of land
(m2) that are appropriated to produce a crop (kg) [12]. Footprints inform the farmer how much water
and land the intended crop requires in absolute terms, or, if compared to a benchmark footprint for
that crop, in relative terms [13,14]. Economic water productivity (EWP, in € m−3) and economic land
productivity (ELP, in € m−2) address economic considerations, by showing how much money each
cubic meter of water or square meter of land generates.

Whereas micro-level questions focus on efficiency and productivity, macro-level questions are
concerned with the sustainability and equity of resource use at the higher system level, such as the
catchment, biome or even global level [15]. Total footprints at the system level result from the pressures
placed on the system by all individual water and land using activities combined. Studies concerned
with macro-level questions typically try to quantify total pressure limits of the system, also termed
assimilation capacity, operation space or boundaries [15–17]. Exceeding these lead to undesirable
consequences. Defining maximum sustainable footprints is one way to quantify such macro-level
limits to resource use [13,18]. If farmers are only guided by micro-level factors—such as local water
and land footprints, or economic and land productivities of their intended crops—then maximum
sustainable system footprints may eventually be violated at the macro-level. On the other hand, total
footprint limits at the system level only become practical if they can be translated to implications at the
local level.

The aim of this study is therefore to explore how data on water and land footprints and economic
water and land productivity can inform micro-level decision making on crop choice, in the context of
macro-level sustainability of resource use, for a case study of proposed silk production in Mzimba
District in Malawi. Malawi is economically poor, but relatively rich in arable land and water resources.
It has a large untapped potential for irrigation expansion [19]. Nevertheless, agricultural output is
low and about a quarter of the population is unable to secure its minimum daily recommended food
intake, despite enough food being produced at the national level [20]. The Malawian government
therefore wants to diversify the current low-value, staple-crop-only agricultural portfolio, in order
to boost overall productivity and possibly increase exports. Introducing sericulture can help achieve
the desired diversification, while holding the promise of providing better livelihoods to rural families.
Cultivating silk is labour intensive, requires low skill levels, and silk has had and is expected to have
a steady global market for years to come [21]. However, sericulture has implications for land and
water resource use, both locally for the farmers’ operations and for the wider catchment. In this
study, we explore the local implications of silk production based on water and land productivity, and
we place water footprints in the context of catchment-level water availability. We conclude with a
discussion of whether farmers should appropriate local water and land resources to sericulture based
on these factors.

2. Method and Data

2.1. The Production Chain of Raw Silk

The production chain of raw silk has several steps, each of which may have a water or land
footprint associated with it. The total water or land footprint of raw silk is the sum of the respective
footprints in each step [12]. The first step of silk production is the cultivation of mulberry shrubs for
their leaves and the rearing of silkworms (Bombyx mori). The leaves serve as feed for the silkworms,
which are raised on rearing beds in special nurseries. When the worms reach maturity, they form
cocoons, which, once pupation is about to complete, are harvested. After each harvest (4–7 per year),
the nurseries have to be thoroughly cleaned to prevent the spread of diseases and promote general
hygiene before a new batch of worms is reared [2]. The harvested cocoons are stifled to kill the
pupae inside without disturbing the structure of the silk shell. This is usually done by means of hot
air-conditioning, which is why the process is referred to as drying. After drying, the cocoons are
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heated in boiling water in order to soften the gummy protein sericin to a point where unravelling
of the silk filament is possible. The dry raw silk is then reeled onto bobbins and is ready for further
processing, dyeing or direct sale. The processes that require water and land are shown in Figure 1.
In the case of water use, we distinguish between the green WF, representing the consumptive use of
rainwater, and the blue WF, referring to the consumptive use of surface or groundwater [12].
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2.2. Study Area

The choice for the case study in Malawi is borne out of an intended sericulture project by a
non-governmental organisation (NGO) based in The Netherlands. This project is to be implemented
around three estates and roughly 200 surrounding smallholder farms in the Mzimba District in the
Northern Region of Malawi (Figure 2). The study area is within the Nyika Plateau catchment, with an
elevation of about 1200 m above mean sea level and temperatures ranging between 9 ◦C and 30 ◦C.
With an average annual precipitation of 644 mm and an average annual potential evapotranspiration
of 1350 mm, the climate can be classified as subtropical highland variety [22]. The wet season starts
in November and ends in April, and the dry season is from May to October. The main soil types
are sandy loam and silty clay loam. These climate and soil conditions are favourable for mulberry
cultivation [23]. The perennial Runyina River close to the study location is the preferred source of
irrigation water.

Smallholder farmers currently grow crops such as tobacco, groundnuts and maize, while the
estates mainly grow chillies and paprika. The project intends to replace currently grown crops with
mulberry shrubs for silk production on about 20 hectares of the estates, and on half a hectare of each of
the smallholder farms.
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Figure 2. Location of the study area where switching from currently grown crops (maize, chillies,
paprika, groundnuts, and tobacco) to sericulture is being considered.

2.3. Calculation of Water and Land Footprints and Economic Productivities

Water and land footprints were assessed along each step of the production chain of raw silk
(Figure 1), following the global water footprint standard [12]. To estimate the WF of mulberry
cultivation and the currently grown crops (maize, chillies, paprika, groundnut and tobacco), we
used the method as in Mekonnen and Hoekstra [24], but replaced the CropWat model with the more
advanced AquaCrop model developed by the Food and Agriculture Organisation of the United Nations
(FAO) [25]. AquaCrop simulates the daily soil water balance and biomass growth, in order to estimate
crop water use and yield. Because mulberry is a perennial crop—and AquaCrop is developed for
annuals—we set crop parameters such that AquaCrop mainly simulates canopy development and
reflects local (projected) cropping practice. For mulberry shrubs, yield refers to the tonnes of leaves
that can be harvested per year per hectare (note: not to the yield in terms of mulberries). For currently
grown crops, simulated yields are scaled based on average local yields in the study area (Figure 2).
We calculated land footprints (m2 kg−1) by taking the inverse of the yield, and we distinguished
between green and blue WF based on the method described in Chukalla et al. [26]. To account for
inter-annual variation in WFs, we simulate crop production for each year in the period 1986–2016.
We ignored the blue WF related to energy for pumping water to the fields in case mulberry shrubs are
irrigated, because the exact location, setting and types of pumps are not yet decided. We also ignored
the grey WF, because of a lack of sensible data and its high dependency on local, actual practices.

We assumed that the leaves represent the full value gained from the mulberry plantation, so no
value or WF is attributed to by-products such as berries. Based on estimates from the International
Centre of Insect Physiology and Ecology (ICIPE, pers. comm. via email), we assumed that 187.5 kg of
fresh mulberry leaves are needed to harvest 9.1 kg of dry cocoons, which after processing yield 1 kg of
dry raw silk.
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Data on soil properties are taken from De Lannoy et al. [27] and local data. We assumed that soil
fertility is good and does not hamper crop production. Crop calendars were taken from Chapagain
and Hoekstra [28] and Portmann et al. [29]. Climate data have been taken from global high-resolution
datasets by Harris et al. [30] and Dee et al. [31]. These daily fields—evaluated at the location of the
estates—have been scaled such that the monthly averages match monthly fields that were observed
locally, at the nearby Bolero climate station.

We evaluated five mulberry cultivation scenarios, in which we compare various irrigation
strategies and techniques for growing mulberry shrubs (Table 1), to assess the effect of farming
practice on WFs and LFs.

Table 1. Different scenarios of cultivating mulberry shrubs evaluated in this study.

Scenario Irrigation Strategy Irrigation Technique Expected Effect

Rain-fed No irrigation None Sensitive to climate variability; a dry year leads
to lower leaf yields.

Full-furrow Full irrigation Furrow No water stress; optimum yields. High
evaporation because large part of soil is wetted.

Full-drip Full irrigation Drip No water stress; optimum yields. Lower
evaporation because small part of soil is wetted.

Deficit-drip Deficit irrigation Drip
Some water stress, leading to lower yields. Lower
evaporation because small part of soil is wetted.
Smaller water footprint per tonne of leaves.

Deficit-drip-organic
mulching Deficit irrigation Drip

Some water stress, leading to lower yields. Very
low evaporation because of protective organic
mulching layer covering the soil. Minimum
water footprint per tonne of leaves.

The blue WF associated with cleaning, drying, cooking and reeling is highly dependent on
local factors and practices. Due to the lack of a credible source, we assumed a water footprint
of 100 L per harvest for cleaning the premises and five harvests per year, based on a one-hectare
operation and a consumptive fraction of 10%. Generating electricity requires water, which needs
to be accounted for [12]. Singh [32] estimates that electricity consumption of cocoon drying is
1.0 kWh per kg cocoons. We assumed a conservative blue WF of the energy mix for Malawi at
400 m3 TJ−1 (or 0.00144 m3 kWh−1) based on a study by Mekonnen et al. [33]. Kathari et al. [34] report
that—using a multi-end reeling machine—cocoon cooking consumes 57 L of water per kg of raw silk
and reeling 100 L per kg of raw silk. We adopted these estimates here as well, since a similar centrally
operated multi-end reeling machine is anticipated to be used in the Malawi project. This machine—if
wood-powered—requires 2.6 kg of wood per kg of cocoon for the cooking and reeling processes [35].
We calculated the WF related to wood using the average (green) WF of wood in Malawi of 74 m3 per
m3 of wet round-wood (or 137 L kg−1 dry firewood) as determined by Schyns et al. [36]. However,
solar power is the project’s preferred source of energy to power the machine. We therefore estimated
the blue WF of cooking with solar energy as well, by converting the caloric value of wood into an
equivalent amount of solar energy, and multiplying solar energy demand with the blue WF of solar
energy of 150 m3 TJ−1 as estimated by Mekonnen et al. [33]. For the lack of a better estimate, the LF of
silk processing (for the rearing facilities and equipment storage) is assumed at 100 m2 per hectare of
mulberry shrubs.

We calculated the economic water productivity (EWP, in € m−3) and economic land productivity
(ELP, in € m−2) of silk and of the currently grown crops, by dividing the local market price (€ kg−1) by
the WF (m3 kg−1) or LF (m2 kg−1), respectively.
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Finally, we placed the WF in the context of water availability at the catchment level. Due to
the lack of local hydrological assessments for the Nyika Plateau catchment, we took data on local
water scarcity levels from the high-resolution global study by Mekonnen and Hoekstra [37] to see if
sustainability levels are currently being exceeded. In addition, we drew up a hypothetical case based
on local precipitation figures to obtain a rough estimate of water availability levels in the catchment.

3. Results

3.1. The Water and Land Footprint of Silk Production

The total WF and LF of silk production is a summation of all WFs and LFs along the production
chain of silk, as shown in Figure 1. We summarized all steps into two major components: (1) the WF
and LF of silk related to cultivation of mulberry leaves; and (2) the WF and LF of silk related to the silk
processing steps of cleaning, drying, cooking and reeling.

3.1.1. The Water and Land Footprint of Mulberry Cultivation

The WF of rain-fed mulberry leaves is 423 m3 t−1 and the LF 820 m2 t−1—on average over
the period 1986–2016 (Table 2). The WF is 100% green, because only rainwater stored in the soil
is consumed. Since there is no irrigation in this scenario to keep plants from suffering water stress,
footprints strongly depend on the prevailing weather conditions in a given year. Temporal variability of
both water and land footprints is high, as shown by their respective standard deviations of 169 m3 t−1

and 537 m2 t−1.
If the mulberry fields are irrigated, the LF of leaf production goes down considerably, to 236 m2 t−1

on average, and the total WF shrinks by at least 25%. The WF associated with full irrigation using the
furrow technique is 314 m3 t−1, and becomes smaller with each improvement in irrigation practice.
In the best-practice scenario in terms of water consumption per metric ton of leaves—i.e., deficit
irrigation using drip systems while applying a layer of organic mulching—the WF is 254 m3 t−1.
Temporal variability of footprints is much lower than under rain-fed conditions, because the shrubs do
not suffer water stress as they do under rain-fed conditions. For example, under full drip irrigation,
standard deviations are 19 m3 t−1 and 10 m2 t−1 for WF and LF, respectively. However, the WF does
have a blue component in these scenarios.

Footprints expressed per tonne of mulberry leaves are converted to footprints per kg of raw
silk based on the assumed feed requirement of 187.5 kg of mulberry leaves per kg of final raw silk.
Water and land footprints of silk related to mulberry leaf production are listed in Table 3. It shows
that rain-fed silk has a green water consumption of 79,300 L kg−1 and irrigated silk has a total water
consumption between 47,500 and 58,900 L kg−1. Land footprints range from 154 m2 kg−1 under
rain-fed condition to 44 or 45 m2 kg−1 under irrigation scenarios.
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Table 2. Green and blue water footprint (WF) and average, minimum and maximum total WF and land footprint (LF) of mulberry leaf production per metric ton of
leaf for five different scenarios. Average WF and LF are production weighted over the period 1986–2016.

Scenario WFavg;green (m3 t−1) WFavg;blue (m3 t−1) WFavg;total (m3 t−1) WFmin (m3 t−1) WFmax (m3 t−1) LFavg (m2 t−1) LFmin (m2 t−1) LFmax (m2 t−1)

Rain-fed 423 0 423 340 1336 820 532 3704
Full-furrow 117 197 314 278 356 236 217 254

Full-drip 117 180 297 265 339 236 217 254
Deficit-drip 129 142 271 239 308 243 216 278

Deficit-drip-organic mulching 122 132 254 223 288 242 212 279

Table 3. Green and blue WF and average, minimum and maximum total WF and LF of raw silk related to mulberry leaf production per kg of raw silk for five different
scenarios. Average WF and LF are production weighted over the period 1986–2016.

Scenario WFavg;green (L kg−1) WFavg;blue (L kg−1) WFavg;total (L kg−1) WFmin (L kg−1) WFmax (L kg−1) LFavg (m2 kg−1) LFmin (m2 kg−1) LFmax (m2 kg−1)

Rain-fed 79,300 0 79,300 63,800 250,500 154 100 694
Full-furrow 22,000 37,000 58,900 52,100 66,800 44.2 40.7 47.7

Full-drip 22,000 33,700 55,700 49,600 63,500 44.2 40.7 47.7
Deficit-drip 24,100 26,600 50,800 44,800 57,800 45.6 40.5 52.1

Deficit-drip-organic mulching 22,800 24,800 47,500 41,900 54,000 45.4 39.8 52.2
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3.1.2. The Water and Land Footprint of Cleaning, Drying, Cooking and Reeling

Table 4 shows the WF of cleaning, drying, cooking and reeling, which in each process step is fully
blue. The reeling process is the major water consuming step, but this is only so if we assume that the
multi-end machine runs on solar power. Alternatively, the reeling machines may run on firewood, or
small-scale sericulture farmers—who cannot afford a multi-end reeling machine at all—may simply
heat water in pots on firewood stoves. The use of firewood profoundly alters the water footprint.
While a solar-energy powered silk processing has a total blue WF of 180 L kg−1, using firewood results
in a much larger green WF of firewood of over 3200 L kg−1. The choice of energy source to heat water
for cooking therefore has a substantial influence on the total WF of the processing of silk.

Table 4. Green, blue and total water footprint (WF) related to cleaning, drying, cooking and reeling per
kg of raw silk, assuming water for cooking is heated using solar energy.

Process Step WFgreen (L kg−1) WFblue (L kg−1) WFtotal (L kg−1)

Cleaning 0 2 2
Drying electricity 0 13 13
Cooking cocoons 0 57 57
Reeling silk 0 100 100
Multi-end machine energy when solar powered 0 8 8
Alternative: multi-end machine energy when wood powered 3200 0 3200

Total 0 180 180

The land footprint of the rearing facilities and equipment storage was estimated at 100 m2 per
hectare of mulberry plantation.

3.1.3. The Total Water and Land Footprint of Silk Production

The total footprint of raw silk is the sum of the footprint of mulberry leaf production and the
footprint of silk processing (Table 5). The total WF of silk decreases with each mulberry cultivation
scenario, while the blue portion of 62.8% in the full-furrow irrigation scenario decreases to 52.3% in
the best-practice scenario of deficit drip irrigation with organic mulching. For each scenario, a full WF
split per colour and stage of the production chain is shown in Figure 3. We find that the largest parts
of both the total LF and WF are the result of the mulberry cultivation component. The LF related to
processing is around 1% of the total, while the WF related to processing is 0.2–0.4% of the total.

Table 5. Green, blue and total water footprint (WF) and land footprint (LF) of silk under five mulberry
cultivation scenarios per kg of raw silk.

Scenario WFgreen (L kg−1) WFgreen (%) WFblue (L kg−1) WFblue (%) WFtotal (L kg−1) LFtotal (m2 kg−1)

Rain-fed 79,300 99.7 180 0.3 79,500 155
Full-furrow 22,000 37.2 37,200 62.8 59,200 44.7

Full-drip 22,000 39.4 33,900 60.6 55,900 44.7
Deficit-drip 24,100 47.3 26,800 52.7 50,900 46.1

Deficit-drip-organic mulching 22,800 47.7 25,000 52.3 47,800 45.9
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3.2. Economic Water and Land Productivity

Producing one kg of silk requires far more water and land than to produce one kg of the crops
currently grown by farmers (Table 6). The market price of silk, on the other hand, is much higher
than for the other crops. Comparing economic water and land productivities of silk with those of
currently grown crops confirms that silk generates more economic value per unit of natural resource
used. The average ELP of silk—0.37 € m−2 for the rain-fed scenario and 1.24–1.28 € m−2 for the drip
irrigation scenarios—is considerably higher than the ELP of currently grown crops, which ranges
from 0.04 € m−2 for maize to 0.19 € m−2 for chillies. The average EWP of silk for the rain-fed scenario,
0.72 € m−3, is much larger than the EWP of maize, groundnuts and tobacco, slightly larger than the
EWP of paprika and similar as the EWP of chillies. Under drip irrigation, the EWP of silk is estimated
at 1.02 to 1.20 € m3, which is much higher than for all currently grown rain-fed crops. The large
range for the EWP of rain-fed silk (0.23–0.89 € m−3) compared with, for example, silk production
under full drip irrigation (0.90–1.15 € m−3), demonstrates the higher variability of rain-fed versus
irrigated production.

Table 6. Economic water productivity (EWP) and land productivity (ELP) for silk under three scenarios,
and for five currently grown crops. Minimum and maximum EWP are based on highest and lowest WF
over the period 1986–2016, respectively. Silk yields are simulated; yields of current crops and market
prices are based on local data.

Crop WFtotal
(L kg−1)

Yieldavg
(kg ha−1)

Market Price
(€ kg−1)

EWPmin
(€ m−3)

EWPavg
(€ m−3)

EWPmax
(€ m−3)

ELPavg
(€ m−2)

Silk, rain-fed 79,500 65 57.00 0.23 0.72 0.89 0.37
Silk, full drip irrigation 55,900 226 57.00 0.90 1.02 1.15 1.28

Silk, def. drip irr., organic mulch 47,800 220 57.00 1.05 1.20 1.35 1.24
Maize 2500 1500 0.26 0.01 0.10 0.16 0.04
Chilly 3400 750 2.50 0.42 0.74 0.84 0.19

Paprika 1900 1350 1.20 0.36 0.64 0.73 0.16
Groundnuts 3300 1250 0.48 0.03 0.15 0.23 0.06

Tobacco 3300 1250 1.05 0.00 0.32 0.40 0.13

EWP and ELP vary with WF and LF, respectively, as well as with changing market prices. With a
local estimate of a bottom market price for raw silk of 54 € kg−1, average EWP and ELP of rain-fed
silk (the least productive form of silk production) reduce to 0.68 € m−3 and 0.35 € m−2, respectively.
When we assume a low market price of raw silk of 42 € kg−1, as has been reported in India [38], EWP
and ELP of rain-fed silk would be 0.53 € m−3 and 0.27 € m−2, respectively. Under such low silk prices,
average water productivities of chillies and paprika—if unchanged themselves—become higher than
for rain-fed silk; land productivity of silk remains higher than for currently grown crops regardless
such low silk prices. Both average EWP and average ELP of irrigated silk remain higher than those for
currently grown crops even under low silk price estimates.

3.3. Macro-Level Sustainability

Current consumption of blue water resources for agricultural and domestic purposes in the Nyika
Plateau watershed is low and remains within sustainable limits for most of the year according to
Mekonnen and Hoekstra [37]. Only toward the end of the dry season, in October and November, total
blue WFs in the watershed are slightly higher than the volume of water that is sustainably available,
potentially causing moderate water scarcity in that part of the year. This estimate is based on the
assumption that 80% of runoff is to be reserved to maintain environmental flows. Due to the lack of a
reliable catchment-level assessment, no exact sustainability limit could be given. However, small-scale
mulberry cultivation in the order of magnitude proposed in the project is not expected to cause water
scarcity in the catchment.

To sketch out what would happen if silk production in the area takes off on a larger scale, we
considered the following hypothetical case. Based on local data, average rainfall over the period
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1986–2016 is 644 mm per year. The Malawi Government estimates the local runoff coefficient at
20% [39]; Ghosh and Desai report a runoff coefficient of 25% for the nearby Rukuru River and 34% for
the also nearby Luweya River [40]. We conservatively assume here that 20% of annual precipitation
around the study location becomes runoff, and thus becomes a blue water resource. In addition, from a
precautionary principle, we assume that 80% of this runoff is to remain in rivers and streams to protect
riparian ecosystems [41]. Given these assumptions, local total blue WFs are sustainable as long as they
do not exceed about 25 mm per year on average (the macro-level sustainability limit). The blue WF of
mulberry shrubs under full drip irrigation is about 750 mm per year. This implies that up to 3.3% of
the local watershed area could be used for irrigated mulberry cultivation, before water consumption
exceeds 20% of annual runoff potentially and environmental flow requirements are violated. Coverage
of the area with irrigated mulberry shrubs beyond this share could lead to moderate water scarcity.
In this scenario, we did not consider the blue WF of other activities, such as the presence of other
irrigated agriculture. However, we know that the agricultural area equipped for irrigation (in the
whole of Malawi) is low, at only 2.3% of the total [19]. Unfortunately, we could not evaluate locally
what flow is sustainably available throughout the year in the Runyina River.

4. Discussion

We calculated WFs and LFs of silk and currently grown crops using FAO’s AquaCrop model,
which yielded several uncertainties. Firstly, AquaCrop is not calibrated for mulberry shrubs or for
local Malawian circumstances. Secondly, although we accounted for variations in time by performing
multi-year analyses, the sensitivities of yield and biomass build-up to specific weather conditions in
a given year may not be fully captured by the model. Leaf yield will also depend on crop genetic
make-up, since different mulberry varieties respond differently to different conditions. Nonetheless,
simulated yields were about the same as anticipated yields of mulberry shrubs (International Centre of
Insect Physiology and Ecology, ICIPE, pers. comm.).

Another source of uncertainty is the conversion factor of mulberry leaves to raw silk. The estimate
of 187.5 kg of leaves to produce 9.1 kg of cocoons and 1 kg of raw silk (as expressed by ICIPE, pers.
comm.) is slightly lower than the estimate by Astudillo et al. [35] of 238 kg leaves per kg raw silk
and slightly higher than the 8.6 kg of cocoons per kg of silk by Patil et al. [42]. Any changes in this
conversion factor directly translate into changes in the footprints of silk. Literature estimates of water
consumption in silk processing also show a spread. For example Kathari et al. [34] estimate that 100 L
of water is needed per kg of raw silk in the reeling process versus 1000 L by FAO [43] for the same
process. However, since processing hardly contributes to overall footprints, the associated uncertainty
is negligible.

There are no other studies to our knowledge quantify the total WF of silk. Astudillo et al. [35]
estimated the blue WF component of silk in an Indian setting at 54.0 m3 kg−1 and 26.7 m3 kg−1,
for conditions following recommended guidelines and under actual farm practices, respectively.
These numbers match our estimates (25.0–37.2 m3 kg−1 for irrigation scenarios), but it has to be
noted that climatic conditions are not necessarily comparable among the studies. Karthik and
Rathinamoorthy [44] and Central Silk Board [38] estimate the LF of silk at 256 m2 kg−1 and 103 m2 kg−1,
respectively. Especially for irrigated scenarios, our estimate is significantly lower (around 45 m2 kg−1),
which can probably be explained by the previously mentioned leaves-to-cocoons-to-silk conversion
factors. This provides one more argument to assess thoroughly these conversion factors before
embarking on sericulture.

We only considered the green and blue WF of silk production, and not the grey WF related to
pollution. Sericulture has more than once been associated with pollution [2,43]. Depending on farming
practices, such as fertilizer and pesticides application, this component may therefore add to the total
WF. In addition, chemicals and disinfectants used in the silk processing stages may increase the WF if
wastewater is not treated properly before disposal.
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Like cotton, silk is a fibre harnessed by the apparel sector, so we thought it relevant to compare the
water and land implications of silk versus cotton fibre. The global average WF of cotton of 9100 L kg−1

and LF of 4.2 m2 kg−1 [45] are much lower than those for silk. Silk therefore is not the preferred source
of fibre to replace cotton on a large scale. The cotton market price in Malawi estimated by Bisani [46]
is 0.46 € kg−1. Therefore, the economic value of cotton is much lower than that of silk. EWP and
ELP of cotton (0.05 € m−3 and 0.11 € m−2, respectively) are lower still than their silk equivalents (see
Table 6). Considering only water and land, this implies that farmers would prefer sericulture to cotton
production if they act as rational economic agents.

The same argument goes for the currently grown crops. Land and water requirements of
silk—which is a luxury item—are higher than for low-value staple food crops, but the monetary
added value per unit of resource is higher still for sericulture. Silk’s advantages hold as long as:
(1) market prices for silk remain high; (2) sericulture does not depress local food markets; and (3) total
(blue) water consumption does not exceed sustainability limits at the catchment level. The implication
is that silk has to remain a marginally produced product, in the case of our study area at no more than
3% of available land in the catchment area.

Clearly, water and land are not the sole factors a farmer considers in choosing what crop to
grow [8,18]. However, footprints and economic productivities—calculated at the local level and placed
in the wider environmental context of catchment-level sustainability—proved useful factors in our
Malawi case study. It helps farmers to link implications of their crop choice to natural resources use
and catchment-level sustainability limits [47]. Especially the estate owners could thereby—however
partially and by no means exhaustively—give substance to their Corporate Social Responsibility
(CSR) programs.

5. Conclusions

This study set out to explore how data on water and land footprints and economic productivity
can inform micro-level decision making on crop choice—in the context of macro-level sustainability of
resource use—with a study of proposed silk production in Malawi.

The total WF and LF of silk depend on the farming practices under which mulberry shrubs are
cultivated. We found the total WF and LF of silk at the study location ranges from 79,500 L kg−1

and 155 m2 kg−1, respectively, under rain-fed conditions, to 47,800 L kg−1 and 45 m2 kg−1 under
the best farming practices. Here, best practice entails the use of deficit drip irrigation with organic
mulch application. Over 99% of both the WF and LF relates to mulberry leaf production. The rest
relates to silk processing, that is cleaning the nurseries, drying and cooking of the cocoons and reeling
the silk. The WF of mulberry cultivation is all green in rain-fed agriculture and a mix of green and
blue under irrigated conditions. The blue WF makes up 52 to 63% of the total WF, depending on the
irrigation strategy and technique. Variability in time is considerably lower in irrigated than in rain-fed
agriculture. A more constant silk production is therefore expected under irrigated farming conditions.

The WF and LF of silk are higher than those of currently grown rain-fed crops (maize, groundnuts,
chilly, paprika and tobacco) and cotton, but the economic water and land productivities are also higher.
Average EWP of silk ranges from 0.72 € m−3 (rain-fed conditions) to 1.20 € m−3 (deficit drip irrigation
with mulching). EWP of cotton is much lower at 0.05 € m−3, and EWPs of currently grown crops range
from 0.10 € m−3 (maize) to 0.74 € m−3 (chilly). Average ELP of silk ranges from 0.37 € m−2 (rain-fed
conditions) to 1.24 € m−2 (deficit drip irrigation with mulching) and is considerably higher than ELP
of the currently grown crops (0.04–0.19 € m−2).

The blue WF resulting from the introduction of irrigated mulberry plantations will increase the
pressure on blue water resources compared with current rain-fed cropping practices. Current total
water footprints in the Nyika Plateau catchment remain below the maximum sustainable footprint
during most months of the year; only toward the end of the dry period is a moderate scarcity reported.
Therefore, as long as irrigated mulberry cultivation takes place on a relatively small scale—not
exceeding ~3% of the catchment area—no harmful environmental effects are expected.
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Sericulture holds the promise of creating agricultural diversity, income and employment for the
rural Malawian setting of our study case. Based on our assessment of water and land productivity,
we conclude that sericulture is a viable alternative for farmers to currently grown crops—especially
if they can irrigate their fields. This conclusion holds as long as prices of silk stay high, production
remains marginal, and local food markets are not repressed. We recommend, however, to more closely
evaluate both catchment hydrology and mulberry leaves-to-cocoons-to-raw silk conversion factors
before a decision to grow silk is made.

With the case study of proposed silk production in Malawi, we have shown how water and
land footprints and economic productivity data can be useful to farmers in choosing their crops.
Moreover, these indicators provide a means for the farmers to give substance to their Corporate Social
Responsibility (CSR) programs. However, final decision making should include considerations of
other relevant factors (about seeds, labour, technology, access to markets, capital and so on) for a fully
comprehensive assessment.
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