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Abstract: Typhoon rainfall is one of the most important water resources in Taiwan. However, heavy
rainfall during typhoons often leads to serious disasters. Therefore, accurate typhoon rainfall forecasts
are always desired for water resources managers and disaster warning systems. In this study, the
quantitative rainfall forecasts from an ensemble numerical weather prediction system in Taiwan
are used. Furthermore, a novel strategy, which is based on the use of a self-organizing map (SOM)
based cluster analysis technique, is proposed to integrate these ensemble forecasts. By means of the
SOM-based cluster analysis technique, ensemble forecasts that have similar features are clustered.
That is helpful for users to effectively combine these ensemble forecasts for providing better typhoon
rainfall forecasts. To clearly demonstrate the advantage of the proposed strategy, actual application
is conducted during five typhoon events. The results indicate that the ensemble rainfall forecasts
from numerical weather prediction models are well categorized by the SOM-based cluster analysis
technique. Moreover, the integrated typhoon rainfall forecasts resulting from the proposed strategy
are more accurate when compared to those from the conventional method (i.e., the ensemble mean of
all forecasts). In conclusion, the proposed strategy provides improved forecasts of typhoon rainfall.
The improved quantitative rainfall forecasts are expected to be useful to support disaster warning
systems as well as water resources management systems during typhoons.

Keywords: typhoon rainfall forecasting; ensemble numerical weather predictions; SOM-based cluster
analysis technique

1. Introduction

Taiwan is located in one of the main paths of Northwestern Pacific typhoons. From 1911 to 2016,
a total of 363 typhoons affected Taiwan (counted by the Taiwan Central Weather Bureau). That is,
about three to four typhoons make landfall in Taiwan in one year (mostly during June to October).
During typhoons, heavy rainfall often causes various types of damages, such as floods, inundation,
and landslides, and result in loss of life and property damage [1]. However, typhoon rainfall is also one
of the most important water resources in Taiwan. On average, about 70% of the annual rainfall occurs
between May and October [2,3], and most rainfall occurs during typhoons. Therefore, as a typhoon
approaches Taiwan, the major goal is to take proper preventive measures, such as flood mitigation
and early warnings. But when the typhoon leaves, the goal is changed to store sufficient water in
reservoirs. Hence, accurate typhoon rainfall forecasts are always desired as essential information for
water resources management and disaster warning systems in Taiwan. However, typhoon rainfall is
difficult to forecast because of the high variability in space and time.
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In recent years, due to the development of atmospheric science and the improvement of computer
technology, the use of numerical weather predictions (NWPs) for quantitative rainfall forecasting
is getting more attention (e.g., [4–8]). Based on the use of physically- and dynamically-based
numerical weather models (NWMs), NWPs for future time are generated according to current weather
conditions. Nowadays, NWPs are seen as the most reliable source for atmospheric forecasts with a
large spatial coverage and high temporal resolution [9]. Researches concerning the verification of
NWPs for the application in hydrologic forecasting are also available in the literature (e.g., [10–12]).
These researches also indicated that the potential of statistical post-processing to improve the skill
and reliability of forecasts could be investigated. In Taiwan, for providing quantitative rainfall
forecasts during typhoons, Taiwan Typhoon and Flood Research Institute (TTFRI) of National Applied
Research Laboratories executes a NWP-based quantitative precipitation forecast experiment [13]. This
experiment is designed as an ensemble prediction system (EPS), which means a collection of two or
more realizations of NWPs for the same location and time. Recently, EPS is increasingly used instead
of a single deterministic prediction in order to capture the uncertainties of NWPs. Based on the use
of different model initial conditions and model physics, EPS yields multiple weather forecasts to
capture the uncertainties of rainfall forecasting [14,15]. Moreover, according to these multiple forecasts,
probabilistic forecasts are obtained [16]. Studies related to the use of quantitative rainfall forecasts from
the TTFRI-EPS have been conducted and confirm the potential of TTFRI-EPS for providing valuable
information on quantitative typhoon rainfall forecasts [13,17–21].

However, as mentioned earlier, the TTFRI-EPS provides ensemble NWPs for the same location
and time, however sometimes these NWPs (especially rainfall forecasts herein) might vary in a wide
range and differ from each other. Consequently, entirely different hydrological scenarios might be
yielded when these ensemble NWPs are used directly, and it can be difficult for users to interpret
the results for decision making. Conventionally, the mean of all ensemble members in EPS (i.e., the
ensemble mean) is adopted as the final result because the ensemble mean is generally more accurate
than individual members [13,22–24]. In fact, the ensemble mean often under-predicts the extreme
rainfall [25], especially when the extremes happen at different locations among ensemble members.
Therefore, in recent years, considerable concern has arisen over the effective use of the ensemble
forecasts from an EPS [25–30]. These researches used statistically based techniques to post-process
ensemble forecasts. For example, Messner et al. [26] used logistic regression to achieve well-calibrated
probabilistic forecasts. Kumer et al. [28] used linear programming and weighted mean techniques to
select the best combination of five streamflow models.

The purpose of this study is to provide improved forecasts of short-term (i.e., 24 h ahead forecasts
herein) typhoon rainfall by means of effective combination of the ensemble NWPs in Taiwan. For this
purpose, firstly the performance of ensemble forecasts from TTFRI-EPS during typhoons is evaluated.
Further, a strategy that is developed based on artificial neural networks (ANNs) is proposed to analyze
and combine these ensemble forecasts. ANN is a kind of data mining technology and is usually used as
an information processing tool in various fields of study (e.g., [31–33]). Hence, the ANN-based strategy
is expected to be useful to effectively integrate these ensemble forecasts and to provide improved
forecasts. Herein, a special ANN, namely Self-organizing map (SOM), is adopted. SOM is powerful
for data analysis [34], and hence it is usually used to provide features that facilitate insight into the
natural processes. The researches (e.g., [35–37]) used SOM to extract observed data with specific
properties, which is helpful to improve the performance of hydrological modeling and forecasting.
Therefore, SOM is used to analyze the ensemble forecasts from TTFRI-EPS for providing more accurate
predictions of typhoon rainfall. That is, the novelty of this study is the use of the SOM-based cluster
analysis technique to combine the TTFRI-EPS ensemble forecasts. Finally, an application is conducted
to demonstrate the superiority of the proposed strategy. The remainder of this paper is organized as
follows. Section 2 introduces the ensemble quantitative rainfall forecast experiment in Taiwan, i.e.,
TTFRI-EPS; Section 3 describes the details of the proposed ANN-based strategy used for integrating
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the ensemble forecasts of TTFRI-EPS; Section 4 contains the study typhoon events; and, Sections 5–7
present the clustering results, discussion, and summary and conclusions, respectively.

2. Ensemble Numerical Weather Prediction System in Taiwan

TTFRI-EPS, which is a collective effort among several academic institutes and government
agencies, is an ensemble numerical weather prediction system in Taiwan [13]. TTFRI-EPS started in
2010. To date, more than 20 ensemble members have been established for future weather forecasting.
These ensemble members are designed by using different numerical weather prediction models
with different model configurations. The Weather Research and Forecasting (WRF) Model [38], the
fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale
Model (MM5) [39], the Cloud Resolving Storm Simulator (CReSS) Model [40], and the Hurricane
Weather Research and Forecasting (HWRF) Model [41] are used. The WRF, MM5, and HWRF use
three nested domains with 45 km (the outermost), 15 km (the middle), and 5 km (the inner) horizontal
resolutions. The outermost domain (i.e., the main domain) covers most of Asia and the western North
Pacific Ocean, and the inner domain covers Taiwan, as well as the neighboring ocean. The CReSS
uses only one main domain with 5 km horizontal resolution. This domain size is similar to the inner
domain used in other models. In this study, the outputs of the inner domain (i.e., gridded data with
5 km horizontal resolution) are used. In vertical direction, a total of 45, 43, 35, and 40 vertical levels are
used for WRF, HWRF, MM5, and CReSS models, respectively. As to the temporal resolution, these
NWMs yield hourly weather predictions.

The initial condition perturbations mean the variations in the atmospheric first-guess states. Two
strategies, the cold-start and the partial-cycle, are adopted. Cold-start means the initial conditions
are obtained directly from the National Centers for Environmental Prediction Global Forecast System
(NCEP-GFS). Partial-cycle means that 12-h before NCEP-GFS analysis data are used first and then
two 6-h data assimilation cycles are performed to obtain the initial conditions at the analysis time.
That is, different times from the NCEP-GFS analysis data are used for forecast initialization. Besides,
the three-dimensional variational data assimilation system with two statistical background error
covariance matrices (CV3 and CV5), and the outer loop procedure are used to process these GFS
analysis data. Additionally, different physical parameterization schemes, such as cumulus schemes
and microphysics schemes, are adopted for model perturbations. Regarding cumulus schemes,
which represent sub-grid vertical fluxes and rainfall due to convective clouds, six schemes (the
Grell-Devenyi [42], the Grell 3D [42], the Betts-Miller-Janjic [43], the Kain-Fritsch [44], the Grell [45],
and the Simplified Arakawa and Schubert [46]) are adopted. As for microphysics schemes, which are
used in the domain with horizontal resolution less than 5 km, four schemes (the Goddard [47], the
WRF Single-Moment 5-class [48], the Cold rain [49], and the Ferrier [50]) are adopted. As last, three
planetary boundary layer schemes (the Yonsei University [51], the Medium-Range Forecast nonlocal
boundary layer [52], and the Mellor & Yamada [53]) are adopted. As to HWRF, the data provided
from the National Centers for Environmental Prediction (NCEP) GFS are used. The aforementioned
model configurations (summarized in Table 1) are designed based on the preliminary experiments in
2010. The detailed information of TTFRI-EPS and the ensemble members have been well introduced
in the literature. Please refer to the researches made by authors [6,13,54,55] for more details about
the TTFRI-EPS.

Nowadays, TTFRI-EPS operationally issued 24-, 48-, and 72-h typhoon track and rainfall forecasts
four times per day (initialized at 00, 06, 12, and 18 Coordinated Universal Time (UTC)). An example
of ensemble 24-h forecasts of typhoon track and rainfall issued at 18 UTC on 28 August during
Typhoon Kong-Rey in 2013 is presented in Figure 1 (the model initial time is 12 UTC on 28 August).
For typhoon track, gray and black lines display the ensemble forecasts and the simply mean of all
ensemble forecasts, respectively. As to rainfall, the star mark indicates the location of the maximum
24-h typhoon rainfall forecast of each ensemble member. The corresponding value is also provided. As
mentioned earlier, the ensemble members of TTFRI-EPS are designed by using different numerical
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weather prediction models with perturbations of the initial conditions and model configurations. Thus,
the differences among the resulting ensemble forecasts in Figure 1 are obvious. Despite this, these
ensemble forecasts still provide some useful information for hydrological modelling [13,20,55], such
as the probable track of typhoon and the main rainfall area. Hence, it is expected that the ensemble
forecasts from TTFRI-EPS have potential as valuable references for typhoon rainfall forecasting.

Table 1. Physical parameterization schemes of Taiwan Typhoon and Flood Research Institute
(TTFRI)-ensemble prediction system (EPS) ensemble members.

NWMs Cumulus Schemes Microphysics Schemes Planetary Boundary
Layer Schemes

WRF
Grell-Devenyi, Grell 3D,

Betts-Miller-Janjic,
Kain-Fritsch

Goddard Yonsei University

HWRF Simplified Arakawa &
Schubert Ferrier NCEP GFS

MM5 Grell WRF Single-Moment
5-class

Medium-Range Forecast
nonlocal boundary layer

CReSS —- Cold rain Mellor & Yamada

Note: CReSS does not need the cumulus scheme due to the use of only one high-resolution domain.

Figure 1. An example of ensemble 24-h typhoon track forecasts and 24-h rainfall forecasts (28 August
2013–29 August 2013) of TTFRI-EPS.

3. The Artificial Neural Network (ANN)-Based Integration Strategy

As mentioned in the previous section, the ensemble forecasts of typhoon rainfall from TTFRI-EPS
are useful information. But they are not easy to use directly in hydrological modeling without any
analysis or post-process due to the high variability in space and time. Hence, an ANN-based strategy
is proposed herein to analyze and properly integrate these ensemble forecasts. ANN is a kind of data
mining technology and is widely used as an information processing tool in various disciplines. Recently,
ANNs have been applied to the integration of ensemble forecasts (e.g., [25,30,56]). Krasnopolsky and
Lin [25] used ANNs for improving 24-h precipitation forecasts over the continental US. Their results
indicated ANNs significantly reduce the high bias at low precipitation levels and the low bias at high
precipitation levels. Kumar et al. [56] used ANNs to integrate the daily medium range (days 1–5)
precipitation forecasts during monsoon season in India and indicated that their model has a higher
skill than individual model forecasts and the simple ensemble mean in general. These researches
inspired us to develop an ANN-based strategy for TTFRI-EPS.
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In this paper, the self-organizing map (SOM), which is a special class of ANNs and is powerful
for data analysis and pattern recognition [57], is adopted. Studies have confirmed the potential of
SOM in clustering and classification (e.g., [58–60]). Recently, SOM has also been used to process data
from numerical meteorological models (e.g., [59,61]). In these studies, encouraging results have been
achieved in their experiments. Hence, SOM is used herein to analyze the ensemble rainfall forecasts
from TTFRI-EPS. Firstly, a SOM-based cluster analysis technique is presented. Then, based on the
clustering results that are obtained by the SOM-based cluster analysis technique, a novel strategy
is proposed for efficiently combining the ensemble numerical weather predictions. The SOM-based
cluster analysis technique and the proposed strategy are described as follows.

3.1. Self-Organizing Map-Based Cluster Analysis Technique

The self-organizing map proposed by Kohonen [57] is a special class of ANNs. SOM can map
high-dimensional input data onto a low-dimensional output space so as to allow the clusters to be
determined objectively by visual inspection. The architecture of a SOM network generally consists
of one input layer and one output layer with numerous neurons (i.e., the Kohonen layer). Each
neuron of the Kohonen layer involves a synaptic weight w having the same dimension as input data
x. In an unsupervised manner, the learning of SOM is to adjust the synaptic weights through the
competitive, cooperative, and adaptive processes sequentially. Firstly, in the competitive process,
all of the neurons compete among themselves to find out a neuron i whose synaptic weight wi has
the minimum Euclidean distance to a certain current input data xk. The particular neuron i is the
winning neuron of xk. Secondly, in the cooperative process, the influence of the winning neuron on its
neighboring neurons is calculated by the topological neighborhood function hj,i(x):

hj,i(x) = exp

(
−

dj,i
2

2σ2

)
(1)

where dj,i is the distance between the winning neuron i and its neighboring neuron j in the output
space, and σ is the effective width, which is set to a half of the used SOM dimension herein. Thirdly, in
the adaptive process, the synaptic weights of SOM are adjusted according to the input xk using the
formula defined as

wj(n + 1) = wj(n) + η(n)hj,i(x)
(
xk − wj(n)

)
(2)

where η(n) is the learning rate at the learning step n and wj(n + 1) is the synaptic weight of neuron j at
the learning step n + 1. The learning rate shrinks with the learning step as η(n) = η(0) exp(−n/1000),
in which η(0) is the initial learning rate and is set to 1 herein. These three processes are repeated until
the synaptic weights are unchanged. As shown in Figure 2, during the SOM learning, the synaptic
weights are ordered and are gradually descriptive of the distribution of input data [57]. This property
is helpful for users to reveal the grouping of input data.
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A SOM-based cluster analysis technique is applied herein. When the SOM learning is complete,
all original input data are fed into the well-trained SOM. If a neuron responds to a specific input data,
the neuron is the winner and is called the “image” of the specific input data. In other words, the
neuron is “imaged” by the specific input data. The location of a winning neuron in the output space
shows the topological location of the corresponding input data in the input space. If two input data
are similar in the input space, their images will be crowded in a certain place of the output space.
Finally, by labelling all of the winning neurons in the output space, the distribution of all input data is
revealed. Hence, based on the results provided by the SOM-based cluster analysis technique, it is easy
to objectively group input data into clusters. For more details about the SOM-based cluster analysis
technique, please refer to Lin and Wang [62] and Lin and Wu [63].

3.2. Strategy for Effective Combination of Ensemble Numerical Weather Predictions

In this subsection, on the basis of the SOM-based cluster analysis technique, a novel strategy is
proposed to effectively integrate the ensemble forecasts of TTFRI-EPS. The illustration of the proposed
ANN-based integration strategy is presented in Figure 3. Two steps are involved: the Past and the
Future steps. Firstly, in the Past step, the ensemble forecasts from TTFRI-EPS and the observation
during the near past time (the past 6 h herein) are all analyzed by the SOM-based cluster analysis
technique. By means of the SOM-based cluster analysis technique, the grouping of ensemble forecasts
and observation is revealed. It is helpful to detect the ensemble forecasts that are grouped into the
same cluster as the observation. That is, these ensemble forecasts and the observation have the same
“image”. This phenomenon means these the forecasts have similar features to the observation. In other
words, these forecasts captured the actual weather evolution during the near past time well. Hence,
the members who provided the forecasts having similar features with observation are selected. These
selected members are generally regarded as reliable and then used in the following time interval.

Figure 3. Illustration of the proposed artificial neural networks (ANN)-based strategy for effective use
of ensemble forecasts.

Secondly, in the Future step, the forecasts for the following 24 h provided by these selected
members are adopted. By calculating the ensemble mean of these selected forecasts, the forecasted
rainfall for the future time interval (i.e., the following 24 h) is obtained. In conclusion, the proposed
integration strategy is based on the assumption that if a member well capture the actual weather
evolution in the past, the member is expected to perform better in the future. The proposed ANN-based
integration strategy is a physically-based empirical real-time integration strategy. Hence, by means
of the ANN-based strategy, it is expected that the ensemble forecasts from TTFRI-EPS will be well
integrated for providing improved forecasts. It is noted that the 6-h and 24-h forecasted rainfall are
obtained by cumulating the hourly outputs of TTFRI-EPS.
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4. Study Cases

TTFRI-EPS was conducted in 2010 and reached maturity in 2012. Therefore, five typhoons, Saola
(2012), Kong-Rey (2013), Fung-Wong (2014), Soudelor (2015), and Megi (2016), which made landfall
and seriously affected Taiwan in the most recent five years, are used herein. When these typhoons
made landfall, almost the entire Taiwan suffered heavy rainfall. Detailed information of these five
typhoons is provided in Table 2. The rainfall period listed in this table is Coordinated Universal Time
(UTC). Among these five typhoons, Soudelor, which is classified as Category 5 in Saffir-Simpson
Hurricane Scale, is the strongest typhoon. The largest maximum 24-h rainfall (1042 mm) is also
observed during Soudelor.

Table 2. List of typhoons used in this study.

No. Rainfall Period
(yyyy/mm/dd/hh)

Maximum 24-h Rainfall
(mm) Remark

1 2012/08/01/00~2012/08/02/00 1024 Typhoon Saola
2 2013/08/28/18~2013/08/29/18 722 Typhoon Kong-Rey
3 2014/09/20/18~2014/09/21/18 761 Typhoon Fung-Wong
4 2015/08/07/12~2015/08/08/12 1042 Typhoon Soudelor
5 2016/09/26/18~2016/09/27/18 943 Typhoon Megi

The observed 24-h rainfall and typhoon tracks are presented in Figures 4 and 5, respectively.
In Figure 4, observed rainfall data from about 750 gauges are used. It is found that the patterns of
observed 24-h rainfall among the first three typhoons are mutually different. The main rainfall areas of
Saola, Kong-Rey, and Fung-Wong are located in northeastern Taiwan, in southwestern Taiwan, and in
southeastern Taiwan, respectively. As to Soudelor and Megi, the pattern of observed 24-h rainfall is
similar because of the approximately similar track (see Figure 5). These two typhoons both moved
from the southeast to the northwest and finally passed through Taiwan. The main rainfall areas are
located in northeastern and southwestern Taiwan. This phenomenon is due to the phase-lock effect,
which means a close relation between the typhoon position and rainfall [54].

The corresponding ensemble forecasted 24-h rainfall provided by TTFRI-EPS is also collected. For
Saola, Kong-Rey, Fung-Wong, Soudelor, and Megi, the ensemble forecasts initialized at 18 UTC on 31
July 2012, 12 UTC on 28 August 2013, 12 UTC on 20 September 2014, 06 UTC on 7 August 2015, and 12
UTC on 26 September 2016 are used, respectively. Using times 6 h earlier ensures that all forecasts
are available and avoids the numerical model spin-up issue. Additionally, it is worth noting that
the ensemble forecasts are gridded data at a spatial resolution of 5-km (i.e., the outputs of the inner
domain). Thus, the forecast of a certain gauge is obtained from the grid, which is nearest to this gauge.
These ensembles forecasted 24-h rainfall are then integrated by the proposed ANN-based strategy.

Water 2017, 9, 836  7 of 17 

 

Table 2. List of typhoons used in this study. 

No. Rainfall Period (yyyy/mm/dd/hh) Maximum 24-h Rainfall (mm) Remark 
1 2012/08/01/00~2012/08/02/00 1024 Typhoon Saola 
2 2013/08/28/18~2013/08/29/18 722 Typhoon Kong-Rey 
3 2014/09/20/18~2014/09/21/18 761 Typhoon Fung-Wong 
4 2015/08/07/12~2015/08/08/12 1042 Typhoon Soudelor 
5 2016/09/26/18~2016/09/27/18 943 Typhoon Megi 

The observed 24-h rainfall and typhoon tracks are presented in Figures 4 and 5, respectively. In 
Figure 4, observed rainfall data from about 750 gauges are used. It is found that the patterns of 
observed 24-h rainfall among the first three typhoons are mutually different. The main rainfall areas 
of Saola, Kong-Rey, and Fung-Wong are located in northeastern Taiwan, in southwestern Taiwan, 
and in southeastern Taiwan, respectively. As to Soudelor and Megi, the pattern of observed 24-h 
rainfall is similar because of the approximately similar track (see Figure 5). These two typhoons both 
moved from the southeast to the northwest and finally passed through Taiwan. The main rainfall 
areas are located in northeastern and southwestern Taiwan. This phenomenon is due to the 
phase-lock effect, which means a close relation between the typhoon position and rainfall [54].  

 

Figure 4. Observed 24-h rainfall of (a) Saola; (b) Kong-Rey; (c) Fung-Wong; (d) Soudelor; and, (e) Megi. 

 
Figure 5. Observed typhoon tracks of five typhoons used herein. 

The corresponding ensemble forecasted 24-h rainfall provided by TTFRI-EPS is also collected. For 
Saola, Kong-Rey, Fung-Wong, Soudelor, and Megi, the ensemble forecasts initialized at 18 UTC on 31 
July 2012, 12 UTC on 28 August 2013, 12 UTC on 20 September 2014, 06 UTC on 7 August 2015, and 12 
UTC on 26 September 2016 are used, respectively. Using times 6 h earlier ensures that all forecasts are 
available and avoids the numerical model spin-up issue. Additionally, it is worth noting that the 

Figure 4. Observed 24-h rainfall of (a) Saola; (b) Kong-Rey; (c) Fung-Wong; (d) Soudelor; and, (e) Megi.



Water 2017, 9, 836 8 of 17

Water 2017, 9, 836  7 of 17 

 

Table 2. List of typhoons used in this study. 

No. Rainfall Period (yyyy/mm/dd/hh) Maximum 24-h Rainfall (mm) Remark 
1 2012/08/01/00~2012/08/02/00 1024 Typhoon Saola 
2 2013/08/28/18~2013/08/29/18 722 Typhoon Kong-Rey 
3 2014/09/20/18~2014/09/21/18 761 Typhoon Fung-Wong 
4 2015/08/07/12~2015/08/08/12 1042 Typhoon Soudelor 
5 2016/09/26/18~2016/09/27/18 943 Typhoon Megi 

The observed 24-h rainfall and typhoon tracks are presented in Figures 4 and 5, respectively. In 
Figure 4, observed rainfall data from about 750 gauges are used. It is found that the patterns of 
observed 24-h rainfall among the first three typhoons are mutually different. The main rainfall areas 
of Saola, Kong-Rey, and Fung-Wong are located in northeastern Taiwan, in southwestern Taiwan, 
and in southeastern Taiwan, respectively. As to Soudelor and Megi, the pattern of observed 24-h 
rainfall is similar because of the approximately similar track (see Figure 5). These two typhoons both 
moved from the southeast to the northwest and finally passed through Taiwan. The main rainfall 
areas are located in northeastern and southwestern Taiwan. This phenomenon is due to the 
phase-lock effect, which means a close relation between the typhoon position and rainfall [54].  

 

Figure 4. Observed 24-h rainfall of (a) Saola; (b) Kong-Rey; (c) Fung-Wong; (d) Soudelor; and, (e) Megi. 

 
Figure 5. Observed typhoon tracks of five typhoons used herein. 

The corresponding ensemble forecasted 24-h rainfall provided by TTFRI-EPS is also collected. For 
Saola, Kong-Rey, Fung-Wong, Soudelor, and Megi, the ensemble forecasts initialized at 18 UTC on 31 
July 2012, 12 UTC on 28 August 2013, 12 UTC on 20 September 2014, 06 UTC on 7 August 2015, and 12 
UTC on 26 September 2016 are used, respectively. Using times 6 h earlier ensures that all forecasts are 
available and avoids the numerical model spin-up issue. Additionally, it is worth noting that the 

Figure 5. Observed typhoon tracks of five typhoons used herein.

5. Results of the SOM-Based Cluster Analysis Technique

In this section, the SOM-based cluster analysis technique in analyzing the ensemble forecasts
from TTFRI-EPS is examined. The ensemble forecasted 24-h rainfall of Typhoon Saola is taken as an
example and a SOM with dimension 1 × 4 is adopted herein. Figure 6 shows the clustering results
yielded by the SOM-based cluster analysis technique. The corresponding forecasted 24-h rainfall of
each ensemble member is also provided in this figure.

Figure 6. Results provided by the SOM-based cluster analysis technique (Typhoon Saola).

In Figure 6, the information about the members in each cluster is revealed. A total of 5, 8, 4, and 5
members are involved in Clusters I, II, III, and IV, respectively. Members that were grouped into the
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same cluster, such as M10 and M12 in Cluster IV, have similar rainfall forecasts with each other. On the
contrary, members grouped into different clusters, such as M10 (Cluster IV) and M01 (Cluster I), have
obviously different forecasts. It is also obvious that members with the smallest rainfall are grouped in
Cluster I, which is far away from Cluster IV containing members with the largest rainfall. That is, the
location of members in Figure 6 demonstrates the relative topological relationship of rainfall patterns.
For clusters with larger topological distance, more different rainfall patterns will be observed. For
example, the difference between M10 (Cluster IV) and M04 (Cluster III) is smaller than that between
M10 (Cluster IV) and M02 (Cluster I).

Besides, as shown in Figure 6, four clusters of TTFRI-EPS ensemble members are obtained due to
the use of the SOM with dimension 1 × 4 herein. Higher dimensions are acceptable but not common.
The dimension of SOM influences the clustering results. In general, a SOM with larger dimensions
shows more details of the topological relationships of input data, but it is more difficult to determine
the proper number of clusters than smaller ones. Therefore, in order to obtain a satisfactory clustering
result, the dimension of SOM is chosen depending on the requirement of users. In this study, the
clustering results will then be directly applied in the proposed ANN-based integration strategy. In view
of the requirement (i.e., quick application) and the number of ensemble members in TTFRI-EPS, a SOM
with smaller dimension is suggested herein. Hence, the SOM with dimension 1 × 4 is finally adopted
in this study. Additionally, further study on investigating the model configurations of members in
each cluster is required in future research for gaining more knowledge about TTFRI-EPS.

6. Results and Discussion

In this section, the potential of the ensemble mean corresponding to each cluster obtained by the
SOM-based cluster analysis technique is assessed. The performance of the forecasts provided by the
proposed strategy (i.e., the ensemble mean corresponding to the forecasts in the appropriate cluster) is
also evaluated. In order to reach just conclusions, the conventional strategy (i.e., the ensemble mean of
all forecasts) is also used herein for comparison with the proposed strategy.

6.1. Potential of the Ensemble Mean of Each Cluster

In this subsection, the performance of the ensemble mean corresponding to each cluster obtained
by the SOM-based cluster analysis technique is assessed. The ensemble mean of all members (i.e.,
the conventional strategy) is also used herein as the benchmark. Figure 7 shows the ensemble mean
of each cluster, as well as the ensemble mean of all members. The observation is also provided for
comparison. It is observed that for Typhoon Kong-Rey, the ensemble mean of each cluster differs from
each other. It is also detected that for some typhoons, such as Fung-Wong and Megi, the ensemble
mean of each cluster is alike. This phenomenon represents the ensemble forecasts for typhoons are
diverse (Kong-Rey), or similar (Fung-Wong and Megi). Additionally, it appears that the ensemble
mean of a certain cluster is more similar to the observation than that of all of the members. That is, the
ensemble mean of the forecasts in a certain cluster performs better than that of all forecasts.
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To quantitatively evaluate the performance of the ensemble means shown in Figure 7, four
measures that are commonly used in hydrology are employed herein. Firstly, the coefficient of
correlation (CC) is used to assess the correlation between the observed and forecasted rainfall. Higher
CC value means better correlation. The CC is written as:

CC =
∑N

n=1
(

Rn − R
)
(R̂n − R̂)√

∑N
n=1
(

Rn − R
)

∑N
n=1 (R̂n − R̂)

(3)

where Rn and R̂n are the observed and forecasted 24-h rainfall at a certain gauge n, respectively. R and
R̂ are the average of the observed and forecasted 24-h rainfall, respectively, and N is the total number
of gauges. Secondly, the root mean square error (RMSE) is used to measure the error between the
observed and forecasted 24-h rainfall and is written as:

RMSE =

√√√√ 1
N

N

∑
n=1

(Rn − R̂n)
2 (4)

Thirdly, the absolute percentage error of volume (AEV) is used to evaluate the error between the
total volume of observed and forecasted 24-h rainfall and is defined as:

AEV =
abs(∑N

n=1 (R̂n)− ∑N
n=1(Rn))

∑N
n=1(Rn)

× 100 (5)

where abs( ) means the absolute value. Fourthly, the absolute percentage error of peak (AEP) is used to
evaluate the error between the maximum observed and forecasted 24-h rainfall. The AEP is defined as:

AEP =
abs(max(R̂)− max(R))

max(R)
× 100 (6)

where max(R) means the peak value of 24-h rainfall. Therefore, based on the use of these four
measures, a just conclusion is expected to be reached.

Moreover, it is worth noting that these measures are calculated based on the rainfall data of all
gauges. The observed rainfall data are collected from 750 gauges in Taiwan. The forecasted rainfall
data of a certain gauge is obtained from the 5-km resolution gridded data (use the grid which is
nearest to this gauge). That is, these measures present the forecasting performance for point forecasts
at each gauge.

Performance measures of the ensemble mean corresponding to each cluster (black dash) and to all
of the members (red dot) are presented in Figure 8. As shown in Figure 8a, it is obvious that for most
of the five typhoons, the ensemble mean of a certain cluster has higher CC values with the observation
than that of all of the members does. That is, the forecasting performance of the ensemble mean of a
certain cluster is better than that of all the members. Similar results are also observed in Figure 8b–d
for the other three measures. Hence, based on the results in Figure 8, it is confirmed the better potential
of using the ensemble mean of a certain cluster instead of the ensemble mean of all members. It is
concluded that if the ensemble mean of an appropriate cluster is adopted, an improved forecasting
performance will then be obtained. That is, improved forecasts are obtained by using the SOM-based
cluster analysis technique to combine ensemble forecasts, rather than simply averaging all ensemble
forecasts together. In the following subsection, how to determine the appropriate cluster in advance
is discussed.
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6.2. Evaluation of the Performance of the Proposed ANN-Based Integration Strategy

In this subsection, the performance of the proposed ANN-based integration strategy is evaluated,
and the determination of the appropriate cluster is also discussed. As shown in Figure 3, two steps, the
Past and the Future steps, are involved in the proposed ANN-based integration strategy. In the Past
step, the ensemble forecasts from TTFRI-EPS and the observation during the past 6 h are all analyzed
by the SOM-based cluster analysis technique. Therefore, the cluster that involves the observation is
obtained and is adopted as the appropriate cluster hereafter. The ensemble forecasts grouped into
this appropriate cluster are also discovered. Grouping in the same cluster means these ensemble
forecasts have similar rainfall patterns to the observation. That is, these forecasts well captured the
actual weather evolution. Therefore, the ensemble members who provided these ensemble forecasts
are generally regarded as reliable and are adopted in the following step. Then, in the Future step, the
forecasts for the following 24 h provided by these selected members are used. The ensemble mean of
this forecasted 24-h rainfall is calculated afterwards. Finally, the obtained ensemble mean from the
proposed strategy is seen as the integrated typhoon rainfall forecasts for the following 24 h.

Performance measures of the rainfall forecasts from the proposed strategy (blue cross), as well as
those from the conventional strategy (red dot) are presented in Figure 9. As shown in Figure 9a, it is
obviously that the proposed strategy always yields higher CC values as compared to the conventional
strategy. As regards the other three measures in Figure 9b–d, the proposed strategy still yields lower
RMSE, AEV, and AEP values as compared to the conventional strategy. That is, the forecasting
performance of the proposed strategy (i.e., ensemble mean of the members in the appropriate cluster)
is better than that of the conventional strategy (i.e., ensemble mean of all members). Hence, based
on the results in Figure 9, it is confirmed that the improved forecasting performance is obtained
through the proposed ANN-based integration strategy. It is concluded that by means of the proposed
ANN-based integration strategy, the ensemble numerical weather predictions from TTFRI-EPS are
effectively combined to yield better typhoon rainfall forecasts.
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Moreover, the improvement in four performance measures due to the use of the proposed strategy
instead of the conventional strategy is presented in Table 3. For AEV, the mean values of 5 typhoons
corresponding to the conventional and the proposed strategies are 19.85 and 19.05, respectively.
The error decreases about 4.0% due to the use of the proposed strategy. Thus, the percentage of
improvement in AEV is 4.0%. In the same way, the percentage of improvement in AEP is 4.2%. As
for CC and RMSE, all rainfall data of five typhoons are strung together to calculate the values. Thus,
the percentages of improvement in CC and RMSE due to the use of the proposed strategy are 3.5%
and 4.3%, respectively. Hence, it is confirmed that the proposed strategy indeed provides improved
24-h rainfall forecasts, which are useful to support disaster warning systems and water resources
management systems during typhoons. Future study on introduction of a post-processing procedure
to integrate the members in the appropriate cluster, such as the non-equal weighting scheme, will be
investigated for further improving the forecasting performance.

Table 3. Improvement due to the use of the proposed strategy instead of the conventional one.

Measures
Performance Measures of 5 Typhoons Improvement
Conventional Proposed

CC 0.753 0.779 3.5%
RMSE (mm) 93.13 89.10 −4.3% *

AEV (%) 19.85 19.05 −4.0% *
AEP (%) 40.52 38.82 −4.2% *

Note: * Negative value means the error decreases due to the use of the proposed strategy.

In order to highlight the improvement in forecasting performance due to the use of the proposed
strategy, detailed comparisons between the proposed and the conventional strategies under different
levels of rainfall are focused. Hence, the extreme rainfall data (the highest 10%, 20%, 30%, 40%, and
50%) are used herein to evaluate the potential of the proposed strategy for disaster warning. The
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comparison results are presented in Table 4. It is obviously that the proposed strategy yields higher
CC and lower RMSE values as compared to the conventional strategy. With the use of more extreme
rainfall data, the improvements of CC and RMSE are more significant. Hence, based on the results
in Table 4, it is again confirmed that the proposed strategy indeed provides improved 24-h rainfall
forecasts, especially for the extreme rainfall. Future study on the use of more events to examine the
proposed methodology will be required for further reaching more just conclusions. The results based
on more events are also useful for further studies, such as the probabilistic quality of each cluster, or
the variations of model configurations of the members in the appropriate cluster among events.

Table 4. Comparison between the proposed and the conventional strategies under different levels
of rainfall.

Data Used
CC RMSE (mm)

Conventional Proposed Improvement Conventional Proposed Improvement

10% 0.375 0.441 17.5% 202.451 191.900 −5.2%
20% 0.433 0.488 12.8% 160.195 152.293 −4.9%
30% 0.513 0.557 8.7% 138.016 131.581 −4.7%
40% 0.573 0.614 7.0% 123.026 117.294 −4.7%
50% 0.605 0.645 6.5% 114.129 108.869 −4.6%

Note: 10% means the highest 10% rainfall data are used to calculate the CC and RMSE values.

7. Summary and Conclusions

Accurate typhoon rainfall forecasts are always desired for water resources managers and disaster
warning systems. In this study, the rainfall forecasts from an ensemble numerical weather prediction
system in Taiwan (i.e., TTFRI-EPS) are used. To further integrate these ensemble forecasts, an
ANN-based integration strategy is proposed. Firstly, a SOM-based cluster analysis technique is
applied to analyze the ensemble forecasts and the observation during the past 6 h. The ensemble
forecasts grouped into the same cluster with the observation (i.e., the appropriate cluster) are revealed
and that means these ensemble forecasts have similar rainfall pattern to the observation. Hence,
the following 24 h forecasts corresponding to the ensemble members in the appropriate cluster are
calculated afterwards. The ensemble mean of this forecasted 24-h rainfall is finally adopted as the
integrated typhoon rainfall forecasts for the following 24 h. That is, the novelty of this study is the use
of the SOM-based cluster analysis technique to post-process the TTFRI-EPS ensemble forecasts. The
rainfall forecasts are obtained by using the SOM-based cluster analysis technique to combine these
ensemble forecasts, rather than simply averaging all ensemble forecasts together.

To clearly demonstrate the advantage of the proposed strategy, actual application is conducted
during five typhoon events. Firstly, the results indicate that by means of the SOM-based cluster
analysis technique, the ensemble 24-h rainfall forecasts from TTFRI-EPS are well categorized. The
clustering result is helpful for users to quickly detect the features of all ensemble forecasts. Besides,
the clustering results indicate that the members in the appropriate cluster vary from event to event.
That somewhat explains why the ensemble prediction system is increasingly used to capture the
uncertainty of weather predictions, rather than the use of a single deterministic prediction. However,
this evidence is not solid yet because only five events are analyzed. More events are required to
reach a just conclusion. Then, it is also confirmed that the better forecasting potential of using the
ensemble mean of a certain cluster as compared to that of all members. Moreover, the integrated
24-h typhoon rainfall forecasts resulting from the proposed strategy is more accurate than those from
the conventional one (i.e., the ensemble mean of all members), especially for the extreme rainfall. In
conclusion, the proposed strategy effectively integrates the ensemble forecasts and indeed provides
improved forecasts of 24-h typhoon rainfall. The improved rainfall forecasts are expected to be useful
to support disaster warning systems and water resources management systems during typhoons.
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