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Abstract: In Central Asia, agriculture, notably irrigated agriculture, is the largest water consumer.
Currently, flood and furrow irrigation are the dominant irrigation methods in Central Asia, in particular
in the post-Soviet countries. Against the background of current and increasing competition for
water—e.g., through reduced river runoffs in the course of climate change—water consumption of
agriculture needs to be reduced. On the field plot level, improved irrigation technologies, like drip
irrigation or plastic mulch, can reduce water consumption substantially. Alternatively, tree lines as wind
breaks (shelterbelts) also can reduce crop water consumption, as shown by research from many drylands
around the world. As previous research has concentrated on crop water consumption and not on tree
water consumption, this paper brings the two together, in order to approach a more holistic picture, in
how far shelterbelt systems, including the trees, may have the potential to save water or not. Crop water
consumption was assessed through the Penman–Monteith approach for corn, wheat, potato, barley,
and pear under open field conditions and under an assumed influence of a tree shelterbelt. Tree water
consumption was investigated through sap flow measurements. Crop water consumption was reduced
by 10–12% under influence of a shelterbelt compared to open field conditions. When water consumption
of shelterbelts was added, a slight reduction of water consumption of the whole crop-shelterbelt system
was found for corn, potato, and pear under the assumption 25 ha (500 × 500 m) field sizes. Under an
assumption of 4 ha (200 × 200 m) field size, water consumption of the whole crop-shelterbelt system
was higher for all crops investigated except for pear. The results suggest that shelterbelts may play a role
in improving water resource management in Central Asia in the context of water demanding crops, like
corn or cotton. In further research, other effects of shelterbelts, like increased crop yields and additional
income from trees, need to be investigated.

Keywords: agroforestry; poplar; sap flow; evapo-transpiration; irrigated agriculture;
Kyrgyzstan; Kazakhstan

1. Introduction

Central Asia, which extends from the Caspian Sea into Mongolia, is largely dominated by drylands
and mountains [1]. Furthermore, Central Asia is the region with the worldwide highest number of
endorheic or closed river basins, i.e., rivers that do not drain into the sea, but in an end-lake or inland
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delta [2]. The most well-known end-lake was the Aral Sea [3]. The desiccation of the Aral Sea—mostly
due to irrigation water withdrawals—is known as one of the worst man-made environmental disasters;
and scientists have warned that the “Aral Sea Syndrome” could repeat in other parts of the region [4].
Agriculture is concentrated along the rivers, e.g., along the Amu Darya, Syr Darya, Chui, or Talas and
their tributaries as well as in the forelands of the mountain ranges, e.g., along the northern slopes of
the Tianshan. Agriculture depends on irrigation due to the semi-arid to arid climate of the agricultural
areas of the region. Agriculture also is the major water consumer all over Central Asia, which causes
conflicts over water and competition for water between water users, like irrigated agriculture and
natural ecosystems [5]. It is expected that water shortages and competition will be aggravated in the
future in the course of climate change [6].

Currently, flood and furrow irrigation are the dominant irrigation methods in Central Asia,
in particular in the post-Soviet countries. Against the background of current and increasing
competition for water, water consumption of agriculture needs to be reduced. On field plot level,
improved irrigation technologies, like drip irrigation or plastic mulch, can reduce water consumption
substantially, as shown in Xinjiang, China [7,8].

Next to sheer technology driven approaches, sound crop selection and agroforestry systems also
may help to reduce water consumption or improve water productivity in irrigated agriculture. Systems
of tree lines along field plots, i.e., tree shelterbelt systems, are the most prominent agroforestry system
in the irrigated agriculture of Central Asia. Such shelterbelts were promoted during Soviet Union
times. After the collapse of the Soviet Union, shelterbelts were largely cut down, as people urgently
needed fuel wood to compensate for the collapse of regular energy supplies.

Shelterbelts were widely reported to reduce water consumption (evapo-transpiration) of crops,
help to increase crop yields, and help to increase soil moisture, as they trap snow [9,10]. Crop water
consumption is reduced mainly as shelterbelts substantially reduce wind speed and to a minor extent
as inside a shelterbelt system air temperature is lower and air humidity is higher than outside a
shelterbelt system [11,12]. Shelterbelts reduced wind speed on the leeward side to almost zero within a
distance of five times the shelterbelt tree height. Moving away from shelterbelt, wind speed increased
to half and 70% of the open field wind speed at a distance of 15 to 20 times shelterbelt tree height and
25 to 30 times shelterbelt tree height, respectively [10]. In contrast, after [11] in a distance of 25 times
shelterbelt height wind speed was only reduced by 10% compared to open field conditions. An overall
wind speed reduction in shelterbelt systems of 36% and a reduction of crop water consumption by
15 to 30% compared to non-shelterbelt conditions, respectively were proposed by [10,13], while [9]
only proposed a reduction of crop water consumption by 15–20%. Reduction of wind speed by 30–40%
and a decrease of air temperature by 1 ◦C through the impact of shelterbelts was published by [14].
Reduction of evapotranspiration of 35–45% compared to open field conditions on the windward side of
shelterbelts in the vicinity of less than 50 m from the shelterbelt was reported by [15]. On the leeward
side, a noticeable reduction of evapotranspiration was found as far as 300 m at a tree height of 8–10 m.
In addition, shelterbelts trapped snow so that 70–90 mm of soil moisture was added from snow melt
compared to open field conditions [9,15].

Apple yields increased by 50% within a distance of five times the shelterbelt tree height [10].
Wheat yields and potato yields increased by 20–30% and 37%, respectively, in a shelterbelt system in
the Kazakh steppe compared to open field conditions [15]. Wheat yield increases of 15% in shelterbelt
systems in Kazakhstan were found by [16]. In general, crop yields increased between 5 times to 15
times the shelterbelt tree height leeward of the given shelterbelt [9].

These agroforestry systems could help to reduce water that is consumed by agriculture and thus
contribute to a more sustainable and climate change resilient water resource management in Central
Asia and beyond.

However, literature so far has concentrated on reduction of water consumption of the crops, while
water consumption of the shelterbelt trees has been neglected. Therefore, the general objective of this
paper is to help clarify if shelterbelt systems can play a role to improve water resource management
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in Central Asia in the future. To accomplish that objective, we present a holistic approach to water
consumption of shelterbelt systems based upon the integrated analyses of shelterbelt tree water
consumption data and crop water consumption data.

2. Materials and Methods

2.1. Study Region

The study was carried out in the village Karasay Batyr, Korday County, in the upper Chui Valley
in south-eastern Kazakhstan in 2016. The geographical position is 42.38◦ N and 75.66◦ E. The elevation
is 1095 m above sea level. The upper Chui Valley stretches from the villages of Karasay Batyr and
Kemin, about 100 km east of Bishkek, to Bishkek, the capital of Kyrgyzstan.

During Soviet Union times, Karasay Batyr was a Kolhoz, which was specialized on fruit
production, mainly apple and pear. Field plots were of an average size of 250 × 250 m bordered
by shelterbelts of poplars (Populus alba and P. nigra) on all four sides. Thus, the agricultural land in
Karasay Batyr was structured by a 250 × 250 m grid of shelterbelts.

Today, most of the field plots are grown with grassy vegetation and are cut once or twice a year
for hay-making. The field plots, which are under cultivation, are planted with potato or corn. The field
plot and shelterbelt structure of today is illustrated in Figure 1.
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potato, corn, fodder plants, and on smaller areas fruit trees and barley 
(http://www.fao.org/ag/agp/agpc/doc/counprof/kyrgi.htm). Shelterbelt trees are poplars (Populus 

Figure 1. Field structure of Karasay Batyr as of 2016 (Google Earth).

The climate is continental and semi-arid with a rainy season in spring and hot, dry summers.
The closest climate station is Tokmok (Table 1), which is 34 km from Karasy Batyr.

Table 1. Climatic features of Tokmok (https://rp5.ru/Wetterarchiv_in_Tokmok). Data range from 2005
to 2016.

Climatic Feature Tokmok Data

Geographical position 42.51◦ N, 75.18◦ E
Elevation [m a.s.l.] 824

Annual average temperature [◦C] 11.6
January average temperature [◦C] −2.7

July average temperature [◦C] 24.8
Annual precipitation [mm] 522

Average wind speed in 10 m height [m/s] 1.2

In the whole Chui Valley, in Kazakhstan and Kyrgyzstan, the major crops today are wheat, potato,
corn, fodder plants, and on smaller areas fruit trees and barley (http://www.fao.org/ag/agp/agpc/

https://rp5.ru/Wetterarchiv_in_Tokmok
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doc/counprof/kyrgi.htm). Shelterbelt trees are poplars (Populus alba and P. nigra) in the more rainy
and more intensively irrigated parts, while elm (mostly Ulmus minor) and Acacia species dominate on
drier and less irrigated sites (own field observations and [17]).

2.2. Water Consumption of Shelterbelt System vs. Non Shelterbelt System

The methodological approach of this study was to assess water consumption of major crops
of the Chui Valley under open field conditions with no shelterbelts present versus conditions as
inside a shelterbelt system. These results are combined with water consumption of the trees of
those shelterbelts, in order to obtain the water consumption of crops without shelterbelts versus
corresponding crop-shelterbelt systems. Crop water consumption was assessed on the basis of climate
data after [18], while tree water consumption was measured through sap flow measurements.

Karasy Batyr was taken as an example to represent the climate, crops, and water consumption
conditions of the upper Chui Valley shared by Kyrgyzstan and Kazakhstan. In Karasay Batyr,
a shelterbelt was chosen, which still was in good conditions, i.e., dominated by poplars (P. alba)
instead of having a mix of tree species, trees of uniform height, not interrupted by gaps between trees,
and continuous water supply to the trees (Figure 2).
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Figure 2. Shelterbelt in Karasay Batyr, where sap flow was measured during 2016, with neighboring
potato field (photo Niels Thevs, April 2016).

From this shelterbelt, three representative poplars (P. alba) were chosen (Table 2) for the sap flow
measurements [19]. Sap flow was measured through the method of heat dissipation using the system
PROSALOG by UP GmbH from Germany [20]. Thereby, a pair of sensor needles (2 cm long) was
fixed into each tree at 140 cm and 150 cm tree height, respectively. The top needle released heat
pulses into the sapwood every ten minutes. After each heat pulse, the temperature difference between
both needles was measured. These temperature differences were calculated into sap flow density as
follows [19]

u = 0.714 ((dT/dTmax) − 1)1.231 (1)
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u—sap flow density (mL cm−2 min−1)
dT—temperature difference between the two needles of one needle pair
dTmax—maximal dT, i.e., dT at zero sap flow
dTmax was chosen as the average temperature difference at the lowest water vapor pressure deficit

over two-week periods. The average temperature difference was calculated from the temperature
differences 20 min before to 20 min after the lowest water vapor pressure deficit of a given two-week
time periods.

Sap flow density was calculated into sap flow by using the equation

ϕ = u SA (2)

ϕ—sap flow (mL min−1)
u—sap flow density (mL cm−2 min−1)
SA—sap wood area (cm2)
The xylem thickness, from which sap wood area was calculated, was determined visually from

tree cores. On each tree two perpendicular cores were taken with a tree corer of 5 mm diameter from
Suunto, Finland. Sap flow was recorded from 15 June until 3 August 2016.

Table 2. Data of the three sensor trees.

No. of Sensor Tree Diameter at Breast
Height (DBH) (cm) Tree Height (m) Age (a) Average Xylem

Thickness (cm) Sapwood Area (cm2)

1 42.6 16 27 8.07 875
2 19.2 16.4 14 3.8 183
3 31.5 15.2 19 7.3 554

Leafs started to emerge beginning of April and were fully developed by mid-April. Leafs turned
yellow during October and fell completely down by 24 October. Therefore, the growing season for this
study was defined as 1 April until 24 October.

Reference and crop evapo-transpiration (ETo and ETc) for conditions with and without shelterbelt
were calculated after [18] for this growing season. Thereby, ETc was calculated for wheat, corn, potato,
barley, and fruit trees (pear).

Outside of the reach of shelterbelts, a climate station was operated during parts of the growing
season, in order not to conflict with farm operations. The climate station was equipped with the
following sensors, all from Decagon Devices, USA: Sensor for air temperature and humidity (VP-4),
radiation, and wind speed (DS-2 Anemometer). Data were logged by an EM-50 data logger. Climate
data were recorded every minute and aggregated to daily values. Data gaps were filled by establishing
relationships between air temperature, humidity, and wind speed between data measured at Tomok
(https://rp5.ru/Wetterarchiv_in_Tokmok) and Karasay Batyr. Radiation for the data gaps was
calculated as suggested by [18]. These filled daily climate data finally yielded ETo and ETc under
conditions not influenced by any shelterbelt (open field conditions).

ETo and ETc of the above referred crops, under the influence of a shelterbelt, were assessed under
the following assumptions:

Assumption I: Shelterbelts reduce wind speed by 20% of open field conditions.
Assumption II: Shelterbelts reduce wind speed by 35% of open field conditions, decrease mean

air temperature by 1 ◦C, and increase air humidity by 0.05 compared to open field conditions.
Thereby, assumption I is a conservative assumption, which reflects the lower boundary of impacts

by shelterbelts on wind speed (cf. [9–11,13,14]). Assumption II reflects the average of the impacts by
shelterbelts on climatic features taken from [9,10,13,14].

To estimate the water consumption for the shelterbelt systems versus open field conditions, first
ETo and ETc was expressed as evapo-transpiration for a 4 ha (200 × 200 m) and a 25 ha (500 × 500 m)
field plot under open field conditions, under assumption I, and under assumption II, respectively.

https://rp5.ru/Wetterarchiv_in_Tokmok
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The sap flow results were upscaled to 25 m of homogenous shelterbelt. In these 25 m, all trees
were mapped and their DBH was recorded. Xylem thickness and sapwood area were determined from
25 trees which were selected randomly. DBH and sapwood area yielded the relationship

Xylem area = 0.4301 DBH2 + 0.235 DBH, R2 = 0.94

This relationship was used to assess the sapwood area of all trees in the mapped shelterbelt.
The sap flow of those 25 m shelterbelt was calculated in 10 min time steps from the average sap
flow density of the three sensor trees. Finally, these sap flow values were summed up to daily sap
flow values for hose 25 m shelterbelt. Based on the sap flow of those 25 m shelterbelt and on ETo,
an average crop coefficient (Kc) was calculated, which was used to assess the water consumption of
the shelterbelt during the whole growing season. Under the assumption of square shaped fields, as
they were common in Soviet Union shelterbelt systems, there are 800 m and 2000 m of shelterbelt that
border the 4 ha and 25 ha field, respectively.

3. Results

Climate data as used for the ETo and further ETc calculations are shown in Table 3.

Table 3. Climate data and ETo in Karasy Batyr, monthly averages during the growing season 2016.

Month Temperature (◦C) Relative Air Humidity (%) Wind Speed (m/s) ETo (mm/d)

4 12.7 60 2.0 3.5
5 16.5 55 2.0 4.6
6 21.3 49 1.9 5.9
7 22.0 49 2.0 5.3
8 21.2 43 2.2 5.4
9 19.9 40 2.3 4.4

10 8.7 56 2.3 2.2

ETo and ETc, for corn as an example, in the course of the growing season are shown in Figure 3
for open field conditions and for the two sets of assumption regarding the impact of shelterbelts on
climate data.
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Figure 3. ETo (left) and ETc of corn (right) under open field conditions (in red), under the assumption
of reduction of wind speed by 20% (in green), and under the set of assumptions of reduction of wind
speed by 35%, temperature reduction by 1 ◦C, and increase of air humidity by 0.05 (in blue). DOY
refers to nth day of the year, i.e., data on the x-axis start on 1 April (DOY 92) and end on 24 October.

ETo reaches its maximum in June (7–13 June) with over 7 mm/d. During these days, air humidity
within a given day ranges between 0.18 and 0.6, which is substantially lower than before and after
with values between 0.3 and 0.8. ETc of corn peaks in July with around 9 mm/d, when ETo is high and
corn is it its mid development stage.
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Regarding ETc over the whole growing season, corn consumes most water (815.1 mm under open
field conditions) followed by potato, wheat, and barley (Table 4). Only pears consume more water
than corn, 1093 mm over the growing season under open field conditions (Table 4).

Table 4. ETo and ETc of relevant crops under open field conditions and two scenarios on impact of
shelterbelts on micro climate for one growing season each. First scenario: leeward of shelterbelt wind
speed is reduced by 20% compared to open field conditions. Second scenario: leeward of shelterbelt
wind speed is reduced by 35%, maximum temperature is decreased by 1 ◦C, and minimum air humidity
is increased by 0.05 compared to open field conditions.

ETo and Crops ETo and ETc under
Open Field Conditions

ETO and ETc under
Shelterbelt Assumptions

Difference of ETo and ETc between
Open Field and Assumption

I II I II

ET (mm)
ETo 938.9 893.2 847.3 45.7 91.6

Wheat 611.2 586.2 561 25 50.2
Corn 815.1 764 717.1 51.1 98

Potato 660.7 632.2 603.6 28.5 57.1
Barley 584.7 561.4 537.2 23.3 47.5

Fruit trees (pear) 1093.3 1025.3 962.4 68 130.9

ET for 4 ha field (m3)
Eto 37,555 35,272 33,890 1828 3664

Wheat 24,446 23,448 22,439 999 2007
Corn 32,604 30,560 28,683 2044 3921

Potato 26,427 25,288 24,145 1139 2238
Barley 23,388 22,456 21,486 931 1901

Fruit trees (pear) 43,732 41,012 38,494 2720 5237

ET for 25 ha field (m3)
Eto 234,717 223,291 211,816 11,426 22,901

Wheat 152,790 146,547 140,246 6243 12,544
Corn 203,778 191,001 179,269 12,777 24,509

Potato 165,172 158,052 150,906 7120 14,266
Barley 146,172 140,353 134,289 5819 11,883

Fruit trees (pear) 273,324 256,325 240,590 16,999 32,734

The most pronounced reduction of water consumption through the effect of shelterbelts was observed
for pear and corn with a reduction by 12% and 6% under the assumption II and assumption I, respectively.
As for barley, there is only a reduction of crop water consumption by 8% under assumption II.

Tree water consumption, as measured from the sap flow sensor trees, is highest for sensor tree 1,
which has the highest DBH (46.2 cm), followed by sensor tree 3, and 2 (Figure 4). Sensor tree 2 has
the lowest DBH with 19.2 cm (Table 2). Water consumption follows a very similar trend for all trees,
despite the huge differences in absolute values of daily water consumption.
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I, respectively. As for barley, there is only a reduction of crop water consumption by 8% under 
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Also ETo and water consumption of the shelterbelt, as shown in Figure 5, follow a similar trend,
with water consumption of the shelterbelt mostly being higher than ETo. From the water consumption
of the shelterbelt and ETo an average Kc value of 1.43 was obtained. This Kc value was used, in order to
calculate the water consumption of the shelterbelt for the whole growing season. Water consumption
per 100 m shelterbelt was 1297 m3 for the whole growing season.
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A square shaped 25 ha field (500 × 500 m) is bordered by 2000 m of shelterbelt, which would
consume 25,940 m3 per growing season. As shelterbelts are shared by neighboring fields, for such a 25 ha
field a tree shelterbelt water consumption of 12,970 m3 was considered for the growing season. Only
corn and pear showed a substantial reduction of water consumption, which overcompensated the tree
shelterbelts’ water consumption (Table 5), so that a shelterbelt system of corn and pear on 25 ha field plots,
respectively, with poplar shelterbelts consumes less water than corn and pear without a shelterbelt system.

Table 5. Water consumption of open field conditions (crop without any shelterbelt) and shelterbelt
system (crops and trees) for 4 ha and 25 ha field plot, respectively. Negative differences indicate that
the whole shelterbelt system consumes less water than the crop without shelterbelt.

Crop Water Consumption of Difference between

Open Field Shelterbelt System Including
Trees, Assumptions

Shelterbelt System and Open
Field, Assumptions

I II I II

Water consumption for 4 ha field
(m3)
ETo 37,555 40,460 39,078 2905 1523

Wheat 24,446 28,636 27,627 4190 3181
Corn 32,604 35,748 33,871 3144 1267

Potato 26,427 30,476 29,333 4049 2906
Barley 23,388 27,644 26,674 4256 3286

Fruit trees (pear) 43,732 46,200 43,682 2468 −50

Water consumption for 25 ha field
(m3)
ETo 234,717 236,261 224,786 1544 −9931

Wheat 152,790 159,517 153,216 6727 426
Corn 203,778 203,971 192,239 193 −11,539

Potato 165,172 171,022 163,879 5850 −1293
Barley 146,172 153,323 147,259 7151 1087

Fruit trees (pear) 273,324 269,295 253,560 −4029 −19,764

A square shaped field of 4 ha (200 × 200 m) is surrounded by 800 m of shelterbelt. 800 m of
shelterbelt would consume 10,376 m3 of water. Analogous to the 25 ha field, a water consumption of
5188 m3 for the growing season is considered, as shelterbelts are shared by neighboring fields. As for
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the 4 ha field plot, the shelterbelt system with crops and trees consumes more water than the crops
without shelterbelts, except for pears under the set of assumptions II (Table 5).

4. Discussion

Tree water consumption was in the same range as values published by [21] for Poplars in NW
China, ranging from 20.1 to 161.4 kg water per day and per tree. Water consumption of sensor tree
no. 1 in this study was higher than values of [21]. This difference can be explained by the bigger DBH
and sap wood area of sensor tree no. 1 compared to trees from [21]. ETc values of this study are in
the range of other studies, e.g., water consumption of corn with values between 741 mm and 841 mm
measured in Texas with a lysimeter under sprinkler irrigation [22]. Wheat ETc calculated from climate
data from Almaty [23] was the same as wheat ETc under open field conditions of this study. Annual
corn water consumption of 668 mm was found in the Heihe Basin in NW China [24]. This value is
lower than ETc of corn under all assumptions in this study, because corn in the Heihe Basin was grown
under plastic mulch, which considerably reduced evaporation from the soil surface during the initial
crop development stage.

Under the calculations for a hypothetical 4 ha (200 × 200 m) field, all crops-shelterbelt systems
(except pear) consumed more water than the respective crop without the shelterbelt (Table 4). Only under
calculation for the 25 ha (500 × 500 m) field plot did corn, potato, and pear show a reduction of water
consumption when combined with a shelterbelt. This difference is due to the relatively shorter shelterbelt
compared to field area for the 25 ha field plot (2000 m shelterbelt) versus 800 m shelterbelt around the
4 ha field plot. On the other hand, field plots must not be too large, as the effect of the shelterbelts on
wind speed decreases with distance from the shelterbelts and thus decreases with field plot size.

Reduction of ETc under shelterbelts in this study was about 10% (maximum reduction of ETc was
12% with pear, cf. Table 3). These values are well below the reduction of crop water consumption as
suggested by the literature from Soviet Union times [9,10,12,14], but in the range of [11]. This difference
might be explained by rather conservative assumptions with respect to the impact of shelterbelts on
the micro climate of adjacent field plots. Additionally, some investigations cited here were undertaken
in areas that are windier compared to the study site of this paper so that a wind speed reduction has a
greater effect on crop water consumption.

With respect to only the water consumption, shelterbelt systems reduce water consumption of
corn, potato, and pear, which are crops with a high crop water demand, under the conditions of a
square shaped 25 ha field. Under the conditions of a 4 ha field, all crop-shelterbelt systems consume
more water (except for pear) than the crop without shelterbelts. So, it can be concluded that shelterbelts
around large field plots may play a role to improve water resource management in the context of crops
with a high crop water demand, like corn or cotton. In this study, other effects of shelterbelts, like
increases of crop yields and additional income from timber and fuel wood, have not been considered.
So, if water productivity, which is total income by total water consumption, was compared of the
whole crop-shelterbelt system versus crops without shelterbelt, then again a different picture, a more
substantial contribution of shelterbelts to improved water resource management, might turn out.
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