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Abstract: Nitrogen removal efficiency in constructed wetlands (CW) is influenced by multiple
environmental factors. However, little is known about the role of cyanobacterial nitrogen fixation in
affecting nitrogen removal efficiency. This study investigated how cyanobacterial nitrogen fixation
affects the efficiency, at which a CW removes nitrogen from an associated artificial lake (AL) in Beijing.
For this purpose, we measured cell densities of N-fixing and non-N-fixing cyanobacteria, the aquatic
nitrogen fixation rate (RNfix), and the concentration of various nitrogen fractions over the growing
season (April–November) of 2014 in both AL and CW. We found that the removal of particulate
organic nitrogen (PON) contributed to >90% of the total nitrogen removal in the CW. The removal
efficiency of PON was lower during August–October (55.45 ± 27.49%) than during April–July
(68.86± 8.83%). Phytoplankton proliferation in summer, as one of the main sources of PON, may have
exceeded the capacity of the CW and led to declines in PON removal efficiency. RNfix peaked in
July–October (3–169 ng N·L−1·h−1) and was positively correlated with both PON concentration and
the cell density of N-fixing Anabaena sp. over the growing season, suggesting that aquatic nitrogen
fixation (primarily in the AL) may increase PON and thereby reduce the its removal efficiency in
the CW.
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1. Introduction

Constructed wetlands (‘CW’, hereafter) are effective in reducing biological and chemical oxygen
consumption, suspended matter, and pollution-related bacteria in waste waters. However, the removal
efficiency of nitrogen is usually low (<50%) and variable in CW [1,2]. The nitrogen removal in CW
involves complex processes and is influenced by many factors [3]. Total nitrogen (TN) in aquatic
systems can be divided into particulate organic nitrogen (PON) and total dissolved nitrogen (TDN).
PON mainly consists of bacteria, phytoplankton, sediments, and plant litter [4], while TDN is
mainly comprised of dissolved organic nitrogen (DON), ammonia (NH4

+-N), and nitrate and nitrite
(NOX-N) [5]. PON is an important nitrogen component in aquatic systems, accounting for more
than 50% of TN in domestic wastewater, aquaculture wastewater, stormwater, and other sewage
sources [5–7]. Most constructed wetlands have been designed for removing TDN from sewage through
creating conditions for mineralization, nitrification, and denitrification in different segments [8].
Few studies have addressed PON, because it was usually classified into particulate organic matter
which can be removed through sedimentation or biofilm adsorption [9]. However, organic nitrogen
can transform between particulate and dissolved forms in the flow from sewage sources to CWs,
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and factors influencing the transformation are still not clear. It is thus necessary to investigate the PON
removal in CW for improving the efficiency at which TN is removed.

Some genera of filamentous cyanobacteria are capable of fixing nitrogen by transforming N2

into bioavailable forms, thereby adding new nitrogen into aquatic systems. Cyanobacterial nitrogen
fixation is a high-energy-consuming process, and occurs only when bioavailable nitrogen cannot meet
the demand by phytoplankton [10]. Most previous studies on cyanobacterial nitrogen fixation have
focused on natural ecosystems, some of which were oligotrophic or mesotrophic [11]. The nitrogen
fixation in CWs has long been overlooked due to previous findings that cyanobacterial nitrogen
fixation is not active in eutrophic waters [1], excepting their symbiosis with Azolla in freshwater
ponds and paddy fields [12]. However, abundant Anabaena sp. (a genus of N-fixing cyanobacteria)
has been observed in an artificial lake (‘AL’, hereafter) constructed for waterfowl inhabitation and
an associated CW in the Beijing Wildlife Rescue and Rehabilitation Center (40◦06′ N, 116◦43′ E).
Therefore, we hypothesized that cyanobacterial nitrogen fixation may play a role in affecting nitrogen
removal at this site.

The objective of this study was to investigate how cyanobacterial nitrogen fixation affects the
efficiency at which the CW removes nitrogen from the associated AL at the study site. For this purpose,
we measured the contents of multiple nitrogen fractions (i.e., PON, DON, NH4

+-N, and NOX-N) and
their removal efficiencies during the growing season (April–November) of 2014. We also examined
the dynamics of nitrogen fixation rate (RNfix) and cell density of both N-fixing and non-N-fixing
cyanobacteria. We analyzed the relationships among N-fixing cyanobacteria, RNfix, and the removal
efficiency of various nitrogen fractions. This study will demonstrate the effects of nitrogen fixation on
nitrogen removal in the CW, and will help improve our understanding of the mechanisms underlying
nitrogen removal in wetlands.

2. Materials and Methods

2.1. Study Site

This study was carried out in the Beijing Wildlife Rescue and Rehabilitation Center, where an
AL was constructed for waterfowl inhabitation and an associated CW was constructed for purifying
the wastewater from the AL. The AL covers an area of about 1 ha. The water input to the AL is from
the Chaobai River basin. The AL cannot itself maintain a good water quality due to the input of
food detritus and feces of the waterfowl. Thus, a CW with a total area of 2400 m2 was established
adjacent to the AL in order to assist in water purification (Figure 1). Water from the AL was pumped
into the CW at a flow rate of 300 m3·d−1, and the average hydraulic retention time was 24 h (see the
design of the constructed wetland in Cui [13]). The inflow to the AL was characterized by a total
phosphorous (TP) of 0.10–1.98 mg·L−1, a TN of 1.15–19.70 mg·L−1, a TDN of 0.04–0.62 mg·L−1, a DON
of 0.72–16.23 mg·L−1, and a pH of 8.04–9.36. The CW has been running well since 2008 [14].

2.2. Sampling

From May to November 2014, four replicated water samples were collected monthly from each of
the AL and CW at 0.1 m depth below the water surface for monitoring water quality. For each sample,
a volume of 250 mL of water was filtered through a φ25 mm pre-combusted Whatman GF/F filter
(450 ◦C, 5 h). The filters were stored at −20 ◦C until determination of the accumulated PON.
The filtrates were stored at 4 ◦C, and then used for determining the NH4

+-N and NOX-N within
a week of sampling. Another sample of 500 mL water was brought back to the laboratory on the same
day for immediate determination of RNfix using the 15N2 stable isotope gas tracer method described
below. Water samples were also taken biweekly for phytoplankton analysis. A volume of 2 L water was
stained in situ with 20 mL Lugol’s reagent and then settled for 48 h, before finally being concentrated
into 40 mL solutions. The cell numbers of phytoplankton were counted with an optical microscope at
200× or 400×magnifications. The phytoplankton composition was identified to genus according to
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Hu [15]. The in situ water temperature was determined using YSI 6820 Multiparameter Instrument
(Xylem Inc., White Plains, NY, USA), and the air temperature data was obtained from the China
Meteorological Data Network [16].
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2.3. Concentration of Nitrogen Fractions

The aquatic PON concentration (ρ(PON)) was determined on the accumulated particulates on
the filters. The refrigerant filters were dried at 50 ◦C for 48 h, and nitrogen content (WN) of the filter
was determined using the Flash EA 1112 (Thermo Fisher Scientific Inc., Waltham, USA). The ρ(PON)
(mg·L−1) was calculated as

ρ(PON) = W1·
WN
100
·A0

A1
· 1
Vf
·1000 (1)

where W1 is the weight (mg) of filter combusted in the Flash element analyzer , WN the nitrogen
content (%) of the combusted filter, A0 the total area of the accumulated particulates on the filters (cm2),
A1 the tested area of filters (cm2) which was combusted, and Vf the water volume (mL) filtered.
The coefficient 1000 transforms the unit mg·mL−1 into mg·L−1.

The aquatic TDN concentration (ρ(TDN)) was determined on the filtrates using the Multi N/C
3100 Analyzer (Analytik Jena AG, Jena, Germany). The concentration of NH4

+-N (ρ(NH4
+-N)) and

NOX-N (ρ(NOX-N)) were determined on the filtrates using the SmartChem® 200 Discrete Analyzer
(WESTCO Scientific Instruments Inc., Brookfield, CT, USA). The aquatic DON concentration (ρ(DON))
was calculated as the difference between TDN and inorganic nitrogen (i.e., NH4

+-N + NOX-N).
The removal efficiency of a nitrogen component r(N) (%) was calculated as

r(N) =
ρ(N)AL − ρ(N)CW

ρ(N)AL
·100% (2)

where ρ(N)CW is the mean nitrogen content in CW and ρ(N)AL the mean nitrogen content in AL.

2.4. Nitrogen Fixation Rate

The RNfix was determined using the 15N2 stable isotope gas tracer method [15]. For each sample,
two 250 mL serum bottles were filled with water samples to overflow, and then were sealed with
rubber caps. Afterwards, 0.5 mL of 15N2 gas (99.9%) was injected into one bottle, and the bottles were
shaken for 1 h to make sure that 15N2 was well dissolved in water. The labeled bottles and control
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bottles were incubated at 25 ◦C for 24 h with 12 h:12 h, light:dark. When the incubation was completed,
water in the bottles were filtered through a φ25 mm pre-combusted Whatman GF/F filter (450 ◦C, 5 h),
and the filters were stored at −20 ◦C for subsequent measurements. The refrigerant filters were dried
at 50 ◦C for 48 h before 15N abundance was determined using Finnigan DELTAplus XP (Thermo
Fisher Scientific Inc., Waltham, MA, USA ). The RNfix (ng N·L−1·h−1) was estimated according to
Montoya [17]

RNfix =

(
1

∆t

)
·
(APN f − APN0

AN2 − APN0

)
·
(

ρ(PON)0 + ρ(PON) f

2

)
(3)

where ∆t is the incubation time (h), APNf the 15N enrichment of particulate N at the end of incubation,
APN0 the 15N enrichment of particulate N at the start of incubation, and AN2 the 15N enrichment of
the N2 available for fixation, ρ(PON)0 and ρ(PON)f the initial and final of PON concentration of the
solution(ng N·L−1).

2.5. Statistical Analysis

All data were presented as mean ± standard deviation (mean ± SD). Variables were compared
between the AL and CW with paired t-test. The effects of months and sites (AL vs. CW) on the aquatic
nitrogen fixation were tested using two-way analysis of variance (ANOVA). Pearson correlation
coefficient was used to investigate the relationship between nitrogen fixation rates and water
chemistry parameters. The concentration of nitrogen fractions and cell densities of phytoplankton were
log transformed, and the RNfix were sine transfromed to meet the requirements of these parametric tests.
All data analysis was performed using R 3.2.2 [18].

3. Results

3.1. Concentration of Nitrogen Forms

The concentrations of TN (ρ(TN)) and PON in AL were significantly higher than those in the CW
(TN: n = 32, t = 6.19, p < 0.001, Figure 2a; PON: n = 32, t = 9.75, p < 0.001, Figure 2b). During April–July,
PON accounted for 47.83 ± 0.10% and 20.92 ± 8.30% of TN in the AL and CW, respectively (S1).
During August–November, ρ(PON) in the AL and CW increased and achieved the highest values in
September (Figure 2b), accounting for 86.93 ± 7.71% and 65.82 ± 15.92% of TN in the AL and CW,
respectively (S1). Conversely, the concentration of ρ(TDN) was higher in the CW than that in the AL
(n = 32, t = −2.90, p < 0.01, Figure 2c). The ρ(TDN) was higher during April–June, and decreased
during July–October in both AL and CW. The ρ(TN) was positively correlated with ρ(PON) (n = 64,
r = 0.94, p < 0.001), but was not correlated with ρ(TDN) (n = 64, r = −0.06, p > 0.05).

Among the fractions of TDN, the ρ(NH4
+-N) was higher in the AL than that in the CW

(n = 32, t = −3.00, p < 0.01, Figure 2e), but there was no significant difference of ρ(DON) and ρ(NOX-N)
between the AL and CW (DON: n = 32, t = −1.09, p > 0.05, Figure 2d; NOX-N: n = 32, t = 0.56,
p > 0.05, Figure 2f). The ρ(NOX-N) was two to six times higher than ρ(NH4

+-N). During April–July,
DON accounted for 28.46 ± 11.19% and 54.47 ± 10.74% of TN in the AL and CW (S1). The proportions
of DON in TN decreased during August–October, accounting for 5.21 ± 2.08% and 17.38 ± 14.28% of
TN in the AL and CW, respectively (S1).
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Figure 2. Concentration of nitrogen fractions in in the artificial lake (AL) and the adjacent constructed
wetland (CW). (a) Total nitrogen (TN); (b) particulate organic nitrogen (PON); (c) total dissolved
nitrogen (TDN); (d) dissolved organic nitrogen (DON); (e) NH4

+-N; and (f) NOX-N. All data were
presented as mean ± standard deviation (mean ± SD).

3.2. Nitrogen Removal Efficiency by CW

The average removal efficiency of TN by the CW was 35.22 ± 21.18% during the study
period (Figure 3a). The removal efficiency of PON by the CW was 60.22 ± 97.97% during
the study period, being higher during April–July (68.86 ± 8.83%) than during August–October
(55.45 ± 27.49%) (Figure 3a). The CW led to a reduction of ρ(PON) in the AL by 0.04–5.19 mg·L−1,
accounting for more than 90% of the decrease in ρ(TN) (0.07–4.19 mg·L−1).

The removal efficiency of PON was significantly higher than that of TDN (n = 8, t = 5.63,
p < 0.001, Figure 3a). The CW did not efficiently remove TDN, as indicated by the average change
in TDN of −16.40 ± 27.88% from the AL to CW during the study period (Figure 3b). Among of
the fractions of TDN, the removal efficiency of DON and NOX-N fluctuated in the range of
−102.40%–66.87%, and did not significantly differ from 0 (DON: n = 8, t = −1.38, p = 0.209; NOX-N:
n = 8, t = 0.47, p = 0.650). Meanwhile, the removal of NH4

+-N varied widely over a range of −699–50%,
which was significantly negative (n = 8, t = −1.96, p < 0.05), and dropped to the lowest value in
September (Figure 3b). The water temperature and the daily maximum air temperature (S2) were
negatively correlated with the PON removal efficiency, but not with the other nitrogen fractions (S4).
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3.3. Cell Density of N-Fixing and Non-Nitrogen Fixing Cyanobacteria

The cell density of phytoplankton in the AL was 3–300 times higher than that in the CW (Figure 4a).
Cyanophyta was the most dominant class, accounting for 56.88 ± 36.24% and 29.84 ± 36.62%
of the total phytoplankton cells in the AL and CW, respectively. N-fixing Anabeana sp. and
non-N-fixing Microcystis sp. were the dominant genera of Cyanophyta, accounting for 52.3 ± 46.7%
and 42.3 ± 45.5% of Cyanophyta. Other observed classes of phytoplankton included Chlorophyta,
Bacillariophyta, and Pyrrophyta (S3).

The average cell densities of Anabaena sp. and Microcystis sp. in the CW were lower than those
in AL (Anabaena sp.: n = 32, t = 4.09, p < 0.01; Microcystis sp.: n = 32, t = 9.85, p < 0.001, Figure 4b,c).
The dynamics of Anabaena sp. and Microcystis sp. showed periodic fluctuations in both AL and
CW (Figure 4b,c). The density of Anabaena sp. in the AL achieved peaks in May and September,
fluctuating in the range 1.41 × 107–86.76 × 107 cells·L−1 during April–September, and accounting
for 6.4–98.5% of total phytoplankton cells (S3). The density of Microcystis sp. during June–August
(0.38 × 108–3.29 × 108 cells·L−1) was higher than that in other months in the AL, accounting for
31.8–89.9% of total phytoplankton cells.

The ρ(PON) and ρ(DON) were positively correlated with the cell density of total phytoplankton
and of Anabaena sp. in both AL and CW, but were not correlated with the cell density of
Microcystis sp. (S5). The ρ(NH4

+-N) showed negative correlations with the cell density of total
phytoplankton and of Anabaena sp. in the AL, but these relationships turned positive in the CW
(S5). The daily maximum and minimum air temperature showed positively correlation with the cell
density of Microcystis sp. in the CW, but neither with the Anabaena sp. nor total phytoplanktons (S4).
Furthermore, no significant relationship was observed between the cell density of phytoplankton and
the removal efficiency of nitrogen fractions, except for the negative correlation between the removal
efficiency of PON and the cell density of Microcystis sp. in the AL (S6).
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3.4. Nitrogen Fixation Rate

The RNfix in water varied over the growing season and between sites (site: F1,48 = 8.62, p < 0.01;
month: F7,48 = 4.41, p < 0.001; site × month: F7,48 = 8.98, p < 0.001). The RNfix in the AL reached
the highest value of 169.00 ± 65.98 ng N·L−1·h−1 in September, and maintained a high level
(1.74–8.92 ng N·L−1·h−1) from August to October (Figure 5). However, RNfix in AL were lower than
0.30 ng N·L−1·h−1 in other months. RNfix in the CW was lower than 0.20 ng N·L−1·h−1 during
April–July, and plateaued at a high average rate of 5.93± 4.89 ng N·L−1·h−1 during August–November
(Figure 5). The highest rate of RNfix in CW (12.14 ± 8.60 ng N·L−1·h−1) occurred in September. RNfix
was positively correlated with ρ(PON), ρ(DON), and the cell density of Anabaena sp. in both AL
and CW (Table 1). Moreover, RNfix in the CW was positively correlated with ρ(NH4

+-N) and total
phytoplankton (Table 1).
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Statistical tests were performed using two-way analysis of variance.

Table 1. Pearson correlation coefficients between RNfix and water parameters (*** p < 0.001; ** p < 0.01;
* p < 0.05; n = 32). AL represents the artificial lake, CW represents the constructed wetland.

ρ(PON) ρ(DON) ρ(NH4
+-N) ρ(NOX-N) Total Phytoplankton Anabaena sp. Microcystis sp.

RNfix in AL 0.648 *** 0.662 *** −0.078 −0.244 0.309 0.467 ** −0.259
RNfix in CW 0.739 *** 0.618 *** 0.417 * −0.107 0.489 ** 0.533 ** −0.223

4. Discussion

4.1. Dynamics of Nitrogen Removal Efficiency

In this study, the removal of TN by the CW was primarily due to the decreases in PON,
which accounted for more than 90% of TN removal (Figure 3a). The PON in the AL was primarily
composed of food debris and excreta produced by birds, plant litter, algae, and other microorganisms [4].
These sources of PON are usually higher in aquaculture wastewater, domestic wastewater,
and storm runoff [5]. The removal efficiency of PON was lower during August–October than during
April–July (Figure 3a). The key factor limiting the PON removal efficiency was the capacity of the
CW during April–July, but turned into the cell density of phytoplankton in both the AL and CW
during August–October. As one of the main sources of PON in wastewater, phytoplankton may have
proliferated in the summer in the AL to a point beyond the capacity of the CW. This can lead to declines
in PON removal efficiency. Particulate matter, whose concentration is generally reduced through
sedimentation and adsorption, can be removed more efficiently with a longer hydraulic retention time
(generally longer than 3–5 days [6]). However, the methods promoting sedimentation and adsorption
may not be effective in removing PON in the studied system, especially in removing phytoplankton.
A longer hydraulic retention time may even increase the phytoplankton cell densities, because the
phytoplankton could actively grow in the CW during the summer.
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The removal of TDN by CW was not as efficient as the removal of PON (Figure 3a). Among the
fractions of TDN, DON and its proportion in TDN showed a decreasing trend from spring to summer
(Figure 2d; S1). DON was probably rapidly decomposed under rising temperature and microbial
activities [19], thereby leading to increases in ρ(NH4

+-N) and ρ(NOX-N) during the wastewater
flowing through the CW (Figure 2e,f). Therefore, in the studied system the transformation from DON
to inorganic nitrogen may cause declines in the removal efficiency of TDN (Figure 3b), as inorganic
nitrogen was known as the most difficult form of nitrogen to remove from the CW [1].

4.2. Dynamics of N-Fixing and Non-N-Fixing Cyanobacteria

The Anabaena sp. and Microcystis sp. bloomed alternately (>2 × 107 cells·L−1) in both AL and
CW (Figure 4b,c). Similar dynamics were observed in natural lakes, such as the Iron Gate and Copco
reservoirs in California [20] and the Mendota Lake in Wisconsin [21]. In those aquatic systems,
Microcystis spp. broke out following the bloom of Aphanizomenon spp., which is an N-fixing genus
of Cyanobacteria. Generally, N-fixing cyanobacteria usually proliferated in early spring and
autumn [22,23]. The optimal temperature of N-fixing cyanobacteria (20–25 ◦C, e.g., Anabaena spp. and
Aphanizomenon spp.) is generally lower than that of Microcystis spp. (25–30 ◦C) [24,25]. Such differences
in optimal temperature may result in their alternate proliferation. For example, the alternately
blooming of N-fixing and non-N-fixing cyanobacteria has been reported for Dianchi Lake [26] and
Erhai Lake [27] in China, where suitable temperatures last long enough for the proliferation of N-fixing
cyanobacteria. However, blooms of N-fixing cyanobacteria have barely been observed in East China,
where temperatures usually increase rapidly in the spring and Microcystis populations develop in
aquatic systems over a short time [28].

The site of this study was located in the north China, where so far no N-fixing cyanobacteria
blooms had been reported. The daily average air temperature of the study site remained between
17.1 ◦C and 25.1 ◦C between April and June in 2014 [S2], which might be a suitable period for
Anabaena sp. proliferation. The daily average air temperature increased to above 25 ◦C during
July–August, when the cell density of Microcystis sp. increased (Figure 4b). When the air temperature
decreased to ~20 ◦C in September, the cell density of Anabaena sp. increased again and reached
the highest points in both AL and CW (Figure 4b,c). The cell density of phytoplankton in the AL
was correlated with neither air nor water temperature (S4). Therefore, the growth of Anabaena sp.
and Microcystis sp. may be activated when temperature rises above a threshold [29], but may not
be so when continued warming occurs. However, the air temperature was positively correlated
with the density of Microcystis sp. in the CW, and was negatively correlated with the PON removal
efficiency (S4). This implied that high air temperature may facilitate the proliferation of Microcystis sp.
in the CW, and thereby reduce the PON removal efficiency. Therefore, fluctuations in the cell densities
of Anabaena sp. and Microcystis sp. were largely driven by temperature at the study site.

4.3. Relationships among Nitrogen Fixation, N-Fixing Cyanobacteria, and PON Removal

Our finding is consistent with Patoine [30] showing that nitrogen fixation increased PON in
aquatic ecosystems in the Canadian Great Plains. RNfix at our site averaged 12.14 ± 8.60 ng N·L−1·h−1

during August–November, and the highest RNfix in AL was 169.00 ± 65.98 ng N·L−1·h−1. This value is
close to the RNfix in the Baltic Sea and Pacific Ocean, where N2 was the primary nitrogen source [31,32].
The observed positive RNfix–ρ(PON), RNfix–Anabaena sp., and RNfix–phytoplankton relationships
(Table 1) suggested that the new nitrogen fixed by Anabaena sp. contributed a large proportion of PON
in the study site.

The nitrogen added by the Anabaena sp. could promote the proliferation of Microcystis sp. [22,33].
Since Anabaena sp. showed a positive correlation with ρ(DON) (S3), the proliferated Anabaena sp. in the
early-growing season was probably decomposed into dissolved nitrogen in the summer, and supplied
available nitrogen for the subsequent bloom of Microcystis sp. in the AL. Furthermore, Microcystis sp.
in the AL was negatively correlated with the removal efficiency of PON (S6), suggesting that
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Microcystis sp. may have exceeded the capacity of the CW and led to a lower PON removal efficiency
in summer (Figure 3a). Therefore, we speculated that the nitrogen fixation by N-fixing Cyanobacteria
may reduce the PON removal in the CW in summer, through supplying available nitrogen for
non-N-fixing phytoplankton.

5. Conclusions

In this study, the PON was a major fraction of the total nitrogen in the AL, and the
cyanobacteria, which may be toxic for other aquatic organisms, was an important component of PON.
Therefore, PON removal should be considered a priority. Our results showed that the PON contributed
to more than 90% of the removal of TN in the study site. The removal efficiency of PON was lower in the
summer than in the spring. Phytoplankton proliferation in summer, as one of the main sources of PON,
may have exceeded the capacity of the CW and led to declines in PON removal efficiency. The nitrogen
fixed by Anabaena sp. was likely used by Microcystis sp., promoting the summer Microcystis sp. blooms
in AL. Such blooms increased ρ(PON) in wastewater, and thus reduced the PON removal efficiency of
the CW. Therefore, we concluded that the nitrogen fixation by cyanobacteria could reduce the nitrogen
removal efficiency in the CW in the summer. Studies on phytoplankton management will greatly
assist in the removal of TN in the CW, especially in the culture ponds and paddy fields with abundant
N-fixing cyanobacteria.
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(CW), Figure S2: The (a) water temperature and (b) air temperature in the study site. Figure S3: Relative
abundance of phytoplankton classes in (a) the artificial lake (AL) and (b) the constructed wetland (CW), Table S4:
Pearson correlation coefficients between temperature and the cell densities and nitrogen removal efficiency,
Table S5: Pearson correlation coefficients between cell densities of phytoplankton and nitrogen forms in the
artificial lake (AL) and the constructed wetland (CW), Table S6: Pearson correlation coefficients between cell
densities of phytoplankton and removal efficiency of nitrogen forms in the artificial lake (AL) and the constructed
wetland (CW).
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