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Abstract: The scarcity and uneven distribution of precipitation stations in the inland river basins of
the Northeastern Tibetan Plateau restrict the application of the distributed hydrological model and
spatial analysis of water balance component characteristics. This study used the upper Heihe River
Basin as a case study, and daily gridded precipitation data with 3 km resolution based on the spatial
interpolation of gauged stations and a regional climate model were used to construct a soil and water
assessment tool (SWAT) model. The aim was to validate the precision of high-resolution gridded
precipitation for hydrological simulation in data-scarce regions; a scale transformation method was
proposed by building virtual stations and calculating the lapse rate to overcome the defects of the
SWAT model using traditional precipitation station data. The gridded precipitation was upscaled from
the grid to the sub-basin scale to accurately represent sub-basin precipitation input data. A satisfactory
runoff simulation was achieved, and the spatial variability of water balance components was
analysed. Results show that the precipitation lapse rate ranges from 40 mm/km to 235 mm/km and
decreases from the southeastern to the northwestern areas. The SWAT model achieves monthly runoff
simulation compared with gauged runoff from 2000 to 2014; the determination coefficients are higher
than 0.71, the Nash–Sutcliffe efficiencies are higher than 0.76, and the percentage bias is controlled
within ±15%. Meadow and sparse vegetation are the major water yield landscapes, and the elevation
band from 3500 m to 4500 m is the major water yield area. Precipitation and evapotranspiration
present a slightly increasing trend, whereas water yield and soil water content present a slightly
decreasing trend. This finding indicates that the high-resolution gridded precipitation data fully
depict its spatial heterogeneity, and scale transformation significantly promotes the application of
the distributed hydrological model in inland river basins. The spatial variability of water balance
components can be quantified to provide references for the integrated assessment and management
of basin water resources in data-scarce regions.

Keywords: Heihe River Basin; SWAT model; gridded precipitation; water balance components;
runoff simulation
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1. Introduction

Changes in global climate and frequent harmful human activities have caused water shortage, which
restricts the midstream social development and leads to downstream eco-environment degradation in
inland river basins of Northwest China [1,2]. Runoff is generated mainly from cold mountainous regions,
which significantly affects the midstream and downstream areas [3,4]. Hydrological models are widely
used for the integrated assessment and management of basin water resources. Precipitation is an important
input for accurate hydrological simulation, and its numerical accuracy and detailed spatial distribution
are necessary [5,6]. However, precipitation gauge stations are scarce and unevenly distributed in the
cold mountainous regions of Northwest China because of economy, terrain, transport, and technology
limitations [7]. Thus, these gauge stations barely represent the spatial heterogeneity of regional precipitation,
therefore leading to high uncertainty in hydrological simulation and analysis. Alternatively, this data-scarce
situation can be addressed by using high-resolution gridded precipitation.

Gridded precipitation based on gauge stations has been widely investigated and used to establish
hydrological models. Version 6 of the global precipitation product developed by the Global Precipitation
Climatology Centre has monthly resolutions of 0.5◦ from 1901 to 2010 [8]. Li et al. [9] and Huang et al. [10]
used the spline interpolation and trend surface methods to determine gridded precipitation in China.
Yang et al. [11] evaluated different gridded precipitations to establish a hydrological model of the
Three Gorges Reservoir. Fuka et al. [12] used National Centrer for Environmental Prediction Climate
Forecast System Reanalysis data to construct a hydrological model for validating the accuracy of gridded
precipitation. Previous studies also used sparse meteorological stations to construct gridded precipitation in
China; these stations poorly represent the amount and spatial distribution of precipitation [13]. By contrast,
hydrological stations can provide gauged precipitation to complete precipitation data; the regional climate
model (RCM) can also supply information on spatial distribution to correct gridded precipitation [14].
Gridded precipitation data with daily resolutions of 3 km have been developed for the Heihe River Basin
(HRB) through spatial interpolation of meteorological station, hydrological station, and Regional Integrated
Environmental Model System (RIEMS) RCM simulation. This high-resolution gridded precipitation can
fully depict spatial heterogeneity, which is preferred for hydrological simulation and analysis [15,16].
This gridded precipitation exhibits certain credibility, but few researchers use it to analyse the climate and
hydrology characteristics in the upper HRB.

The hydrological model has been increasingly used to analyse the hydrological process in the HRB;
water shortage problems are typical of the inland river basins of Northwest China. Soil and water
assessment tool (SWAT) is a physical, semi-distributed hydrological model that has a few advantages
in predicting climate change effects on water-related and hydrological processes over a continuous
time [17]. The performance of this model relies on precipitation input parameters, namely accuracy
and spatial distribution [18]. So, many researchers have selected grid precipitation to drive hydrological
models. Evans et al. [19] used four RCMs coupled with a CMD-IHACRES hydrological model to compare
the different results. Lakhatkia et al. [20] coupled MM5 with a THM hydrological model to study
water resources and hydrological process response to climate change scenarios. Zou et al. [21] used
RIEMS simulation as driving data for a SWAT model to improve monthly runoff simulation in the
upper HRB. Most studies that directly input grid data into the hydrological model cannot maximise
the precision of high-resolution data because most grids are ignored [22]. The SWAT model employs
precipitation data from only one station closest to the centroid of each sub-basin, which can be corrected by
elevation band and lapse rate; thus, the current method of representing precipitation in the SWAT model
is simple. Accordingly, sub-basin precipitation input data are inaccurately represented [23]. The SWAT
model applied to the upper HRB focuses on model modification and hydrological process responses
to climate and land use change; thus far, few studies have optimised precipitation input parameters
using gridded data [24–28]. Therefore, a reasonable scale transformation from the grid to the sub-basin
must be developed to maximise the precision of high-resolution gridded data. By this method one
can overcome the model structure defects and improve model input parameters. The suitability of the
hydrological model in data-scarce regions can be improved by scale transformation of high-resolution
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gridded precipitation. Moreover, the water balance components should be accurately described to provide
a reference scheme for similar hydrological models when using high-resolution gridded climate data in
data scarce regions. The spatial variability of water balance components can be quantified to assess and
manage water resources in the upper HRB [29]. Water balance components cannot be directly measured but
can be calculated by the SWAT model. The SWAT model can simulate water balance components with high
accuracy and detailed spatial distribution depending on the inputs of high-resolution gridded precipitation.
Currently, water balance components are estimated at different scales, namely, global, regional, watershed,
and ecosystem levels [30–33]. Thus, the spatial distribution, change trends, and internal relationship
of water balance components across different scales can further strengthen the understanding of the
hydrological processes.

This study regarded the upper HRB as a case study, and gridded precipitation with 3 km resolutions
was used to construct a SWAT model. A scale transformation method was proposed to overcome the
structure defects of the SWAT. The gridded precipitation was upscaled from the grid to the sub-basin
scale to accurately represent sub-basin precipitation input data. The spatial distribution, change trends,
and internal relationship of water balance components across different scales were analysed based on the
model simulation. The main content includes: (1) assessing the quality of gridded precipitation data in
the upper HRB; (2) conducting scale transformation by building virtual precipitation stations to transfer
gridded data into a sub-basin average and calculating precipitation lapses rates on the sub-basin scale,
thereby optimising the input parameters of precipitation; (3) assessing the performance of the SWAT model
by comparing the monthly runoff simulation with observed data; and (4) analysing the spatial variability
and change trend of water balance components on the sub-basin, landscape, and elevation band scales on
the basis of the simulation results.

2. Study Area and Data Availability

2.1. Study Area

The HRB is the second largest inland river basin in Northwest China, originates from the Qilian
Mountains in the Northeastern Tibetan Plateau and flows through the middle of the Hexi Corridor, which
was an important district of the ancient Silk Road [34]. The upper HRB generates approximately 70% of
the river flows of the entire basin, which supports the social development of the midstream and maintains
the eco-environment balance of the downstream [1]. This study focused on the upper HRB with a drainage
area of approximately 10,009 km2 and covered by mountainous terrain (Figure 1). The elevation of the
study area ranges from 1667 m to 5008 m, with a mean elevation of 3737 m. The basin outlet is monitored
by the Yingluoxia hydrological station. Hydrological stations in Qilian and Zhamashike are situated in
the east and west tributaries of the upper HRB, respectively [35]. The flow of the two tributaries joins
the mainstream at the Huangzangsi and enters the basin outlet. The basin comprises three subregions,
namely, the east tributary, west tributary, and mainstream. The study area, which is a typical inland region
with large spatiotemporal variability, experiences a dry and cold climate in winter and a moist and hot
climate in summer. The mean annual precipitation varies from 200 mm to 700 mm, decreases from the
southeast to the northwest, and increases along with elevation; approximately 60% of the precipitation
occurs in the summer. The mean annual temperature in this region ranges from −5 ◦C to 4 ◦C [27,36].
The glacier area is approximately 34.8 km2, which accounts for 0.35% of the basin area and contributes
3% of the runoff [37]. The landscape follows a distinct vertical zonation and comprises the desert, steppe,
shrub, coniferous forest, meadow, sparse vegetation, snow, and glaciers, which vary from low to high
elevations. The major soil types in the basin are felty, chestnut, and alpine frost soils [38].

2.2. Data Availability

The data used in this study were categorised into data on geospatial information and climate forcing
for the SWAT model setup and data on gridded precipitation assessment and data on SWAT model
validation. The meteorological data were daily temperature, sunshine hour, wind speed, and relative
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humidity, which served as climate forcing data. These data were downloaded from the National
Meteorological Stations of China Meteorological Administration (CMA). Gridded precipitation data
with daily resolutions of 3 km were used as precipitation forcing data downloaded from the Heihe Plan
Science Data Centre (HPSD), which was developed by Wang et al. [15]. A digital elevation model with
90 m resolution was downloaded from the SRTM database [39]. The soil map of the upper HRB was
derived from the Second National Soil Survey of China. The vegetation map, with a measuring scale of
1:100,000, was obtained from the HPSD; the vegetation pattern boundary was adjusted relative to that
of the previous version (Figure 2). The gauged precipitation data, including two experimental stations,
four meteorological stations, and 13 hydrological stations, were obtained from CMA and HPSD and used to
evaluate gridded precipitation (Figure 1). The daily gauged runoff data were obtained from the Hydrology
and Water Resources Bureau of Gansu Province and used to validate the SWAT model.  4 of 23 

 

 

Figure 1. Upper Heihe River Basin. 

2.2. Data Availability 

The data used in this study were categorised into data on geospatial information and climate 

forcing for the SWAT model setup and data on gridded precipitation assessment and data on SWAT 

model validation. The meteorological data were daily temperature, sunshine hour, wind speed, and 

relative  humidity, which  served  as  climate  forcing data. These data were downloaded  from  the 

National  Meteorological  Stations  of  China  Meteorological  Administration  (CMA).  Gridded 

precipitation data with daily resolutions of 3 km were used as precipitation forcing data downloaded 

from the Heihe Plan Science Data Centre (HPSD), which was developed by Wang et al. [15]. A digital 

elevation model with 90 m resolution was downloaded from the SRTM database [39]. The soil map 

of the upper HRB was derived from the Second National Soil Survey of China. The vegetation map, 

with a measuring scale of 1:100,000, was obtained from the HPSD; the vegetation pattern boundary 

was  adjusted  relative  to  that  of  the  previous  version  (Figure  2).  The  gauged  precipitation  data, 

including two experimental stations, four meteorological stations, and 13 hydrological stations, were 

obtained  from CMA and HPSD and used  to evaluate gridded precipitation  (Figure 1). The daily 

gauged  runoff  data were  obtained  from  the Hydrology  and Water  Resources  Bureau  of Gansu 

Province and used to validate the SWAT model. 

Figure 1. Upper Heihe River Basin.  5 of 23 

 

 

Figure 2. Vegetation map of the upper Heihe River Basin. 

3. Methods 

3.1. SWAT Model 

The SWAT model  is a physical, semi‐distributed hydrological model  that can operate under 

different climate conditions and  land use change scenarios. The model  is widely used to simulate 

long‐term yields in  large watersheds for the assessment and management of water resources [17]. 

The  runoff  transport process  considered  in  the SWAT model  includes watershed  land areas  that 

transport water to the channels and through the stream network to the watershed outlet [40]. The 

basin is divided into hydrologic response units (HRUs) that integrate unique land use, soil type, and 

slope,  which  are  the  basic  elements  of  hydrological  calculation.  The  HRUs  of  water  balance 

components, such as precipitation, evapotranspiration, water yield, surface flow,  lateral flow, and 

groundwater flow, were calculated [41]. The hydrological processes simulated by the SWAT model 

are based on the following water balance equation: 





t

i

igwiseepiaisurfidayiit QWEQQSWSW
1

,,,,,,0, )( ,  (1)

where SWt,i is the final soil water content (mm H2O), SW0,i is the initial soil water content on day i 

(mm H2O), t is the time (days), Qday,i is the amount of precipitation on day i (mm H2O), Qsurf,i is the 

surface runoff amount on day  i (mm H2O), Ea,i  is the amount of evapotranspiration on day  i (mm 

H2O), Wseep,i is the amount of water that enters the vadose zone from the soil profile on day i (mm 

H2O), and Qgw,i is the return flow amount on day i (mm H2O). 

3.2. Gridded Precipitation 

The gridded precipitation data were spatially interpolated using the method developed by Shen 

and Xiong [13]. Firstly, a gridded analysis of daily precipitation climatology was built on the basis of 

the inverse distance weighting interpolation method and mean daily gauged precipitation data from 

1960 to 2014. The gauged precipitation, including meteorological stations and hydrological stations 

of  the  entire  HRB,  was  smoothed  by  Fourier  transformation  to  remove  high‐frequency  noise 

precipitation caused by insufficient sampling, real extreme events, and random measurement errors. 

Secondly, the RIEMS RCM provided the spatial distribution of the precipitation lapse rate [14]. RCM 

simulation was used to correct the precipitation lapse rate of daily precipitation climatology. Thirdly, 

Optimal Interpolation (OI) was employed to create the gridded ratio field, which is the ratio of the 

Figure 2. Vegetation map of the upper Heihe River Basin.



Water 2017, 9, 866 5 of 22

3. Methods

3.1. SWAT Model

The SWAT model is a physical, semi-distributed hydrological model that can operate under
different climate conditions and land use change scenarios. The model is widely used to simulate
long-term yields in large watersheds for the assessment and management of water resources [17].
The runoff transport process considered in the SWAT model includes watershed land areas that
transport water to the channels and through the stream network to the watershed outlet [40]. The basin
is divided into hydrologic response units (HRUs) that integrate unique land use, soil type, and slope,
which are the basic elements of hydrological calculation. The HRUs of water balance components,
such as precipitation, evapotranspiration, water yield, surface flow, lateral flow, and groundwater
flow, were calculated [41]. The hydrological processes simulated by the SWAT model are based on the
following water balance equation:

SWt, i = SW0, i +
t

∑
i=1

(Qday, i − Qsur f , i − Ea, i − Wseep, i − Qgw, i), (1)

where SWt,i is the final soil water content (mm H2O), SW0,i is the initial soil water content on day i
(mm H2O), t is the time (days), Qday,i is the amount of precipitation on day i (mm H2O), Qsurf,i is the
surface runoff amount on day i (mm H2O), Ea,i is the amount of evapotranspiration on day i (mm H2O),
Wseep,i is the amount of water that enters the vadose zone from the soil profile on day i (mm H2O),
and Qgw,i is the return flow amount on day i (mm H2O).

3.2. Gridded Precipitation

The gridded precipitation data were spatially interpolated using the method developed by
Shen and Xiong [13]. Firstly, a gridded analysis of daily precipitation climatology was built on the
basis of the inverse distance weighting interpolation method and mean daily gauged precipitation
data from 1960 to 2014. The gauged precipitation, including meteorological stations and hydrological
stations of the entire HRB, was smoothed by Fourier transformation to remove high-frequency
noise precipitation caused by insufficient sampling, real extreme events, and random measurement
errors. Secondly, the RIEMS RCM provided the spatial distribution of the precipitation lapse rate [14].
RCM simulation was used to correct the precipitation lapse rate of daily precipitation climatology.
Thirdly, Optimal Interpolation (OI) was employed to create the gridded ratio field, which is the
ratio of the daily gauged precipitation to daily precipitation climatology [42]. Finally, the gridded
precipitation was calculated by multiplying the daily gridded precipitation climatology by the daily
gridded precipitation ratio. Gridded precipitation data with daily resolutions of 3 km for a time
series were generated over the HRB [2,4,15,16].

3.3. Virtual Precipitation Station

The precipitation data are inputted to the SWAT model in the form of station data, and then the
precipitation station data are discretised to sub-basin scale and can be corrected by the elevation
band and lapse rate [17]. Thus, the grids of gridded precipitation data are treated as a virtual
precipitation station, and a virtual station is a common method that grids data input to the SWAT
model [21,22,43,44]. However, the SWAT model only uses station data closest to the centroid of
each sub-basin. High-resolution gridded data are converted into abundant virtual stations, bu the
quantity of the sub-basin cannot be fully matched with the resolution of gridded precipitation.
The abundant virtual stations are directly inputted to the SWAT model, which leads to the inaccurate
representation of the sub-basin precipitation input data because most virtual stations are ignored [45].
Hence, the current method of representing precipitation in the SWAT model cannot fully reflect the
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high-resolution superiority of gridded data. Therefore, a reasonable method of building virtual stations
must be developed.

In this study, virtual precipitation stations were built for each sub-basin that adopts the mean
precipitation of the grid within each sub-basin; all grid data could be utilised to build virtual
stations on a sub-basin scale. Precipitation was transferred from grid into a sub-basin average
by building virtual station and then into SWAT. Thus, the precision of gridded data in horizontal
distribution can be maximised, and the representation of sub-basin precipitation input data can be
improved. The virtual precipitation stations were built through the following steps: (1) the spatial
distribution of the sub-basin was pre-divided, and a grid-sized buffer of the sub-basin boundary
was set; (2) the grid precipitation data were converted into point data with the grid centre as the
spatial position; (3) the mean precipitation of all points within the boundary of each sub-basin was
calculated and used as values for the virtual precipitation station; and (4) the longitude and latitude of
the sub-basin centroid used directly used as the spatial position of the virtual precipitation station to
ensure that each sub-basin reads only one specified station. The virtual station elevation was calculated
by the mean elevation of all points within the boundary of the sub-basin.

3.4. Precipitation Lapse Rate

Precipitation significantly varies with elevation because of the relatively complicated terrain in
the mountainous region. The SWAT model allows the division of the sub-basin into the elevation
bands and sets the precipitation lapse rate to correct the vertical precipitation variability to represent
the precipitation variability caused by elevation changes [46]. Previous studies usually regarded
the precipitation lapse rate as a calibrated parameter, thereby leading to low spatial heterogeneity
and high precipitation uncertainty. High-resolution gridded precipitation with detailed and accurate
information of vertical distribution requires the calculation of precipitation lapse rate on the sub-basin
scale. In this study, the lapse rate for each sub-basin was calculated; the lapse rate served as input
parameters for the SWAT model. The precision of the gridded precipitation in vertical distribution
can be maximised using this method, and the precipitation input parameters for the SWAT model can
be optimised.

Several studies used linear regression models to analyse the precipitation variability with elevation
in the upper HRB [47,48]. Linear regression functions were used to calculate the precipitation lapse rate
on the sub-basin and mean annual scale. The linear regression function is shown in Equations (2) and (3):

If:
P = plr × H − a (2)

then:
plr = (P + a)/H, (3)

where plr is the precipitation lapse rate (mm/km), P is the precipitation at different grids, a is the
precipitation at the base location of sub-basin, and H is the elevation at different grids.

4. Results

4.1. Assessing Gridded Precipitation

The upper HRB is located in the inland and alpine cold mountainous region, where precipitation is
influenced mainly by westerlies and the Pacific monsoon. Precipitation in the upper HRB also exhibits
large spatiotemporal variability because of convection in mountainous terrain [49,50]. Given the
complicated mountainous terrain, the quality of gridded precipitation in the upper HRB was
assessed. Gridded precipitation was assessed at time series accuracy and spatial description capability.
Gauged precipitation of the Hulugou and Arou sunny slope experimental stations was selected to
compare with the gridded data, which have not been used in the interpolation. The two stations
are located in the east and west tributaries of the basin, which ensures high representativeness.
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Precipitation gauged by four meteorological stations and 13 hydrological stations was also used to
evaluate the vertical distribution of precipitation.

4.1.1. Assessing Gridded Precipitation

Time series accuracy was evaluated by comparing gauged precipitation with the nearest pixel of
gridded precipitation in a time series to assess the performance of the gridded data during the period
from 2011 to 2014. Figures 3 and 4 show the daily and monthly comparison results in the Hulugou
and Arou sunny slope stations, respectively. In the scatter diagram, no precipitation days are ruled
out. The points are symmetrically distributed on both sides of the 1:1 lines. The point distribution is
scattered, and the correlation is high. The comparison of the monthly results indicates that the monthly
gridded precipitation is close to the gauged precipitation, and their change trends are consistent.
However, the Arou sunny slope station lacks snowfall observation, and thus, the bias is large before
April and after September [15].

Figure 3. Scatter diagram of daily gauge precipitation and daily gridded precipitation in Hulugou (a)
and Arou sunny slope (b) (red line, trend line; blue line, 1:1 line).  8 of 23 
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Arou sunny slope (b).

In this study, determination coefficients (R2), root-mean-square error (RMSE), and percent bias
(PBIAS) were used to assess the quality of the gridded precipitation data [51–53]. Table 1 shows
the criteria used to evaluate gridded data in Hulugou and Arou sunny slope. At the yearly scale,
the mean annual gridded precipitation is slightly lower than Hulugou and obviously larger than
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Arou sunny slope. The R2 values of Hulugou and Arou sunny slope at the daily scale reached
0.67 and 0.65, respectively; the R2 values at the monthly scale reached 0.95 and 0.96, respectively,
indicating a strong correlation. The daily and monthly scales of PBIAS are controlled within ±20%.
The RMSE values are approximately 3 mm at the daily scale and 17 mm at the monthly scale; the error
is low. The Arou sunny slope lacks snowfall observation and, thus, the bias is large. In summary,
the gridded precipitation data exhibit satisfactory performance in terms of time series accuracy.

Table 1. Simulated evaluation of temperature, specific humidity, and wind speed.

Station

Yearly Scale Daily Scale Monthly Scale

Gauge Data
(mm)

Gridded Data
(mm) R2 RMSE

(mm)
PBIAS

(%) R2 RMSE
(mm) PBIAS (%)

Hulugou 474.3 439.6 0.67 1.78 7.31 0.95 10.78 7.31
Arou sunny slope 639.4 766.4 0.65 2.57 −19.87 0.96 16.12 −19.87

4.1.2. Spatial Description Capability

The precision of high-resolution gridded precipitation is attributed to its spatial description
capability; thus, the spatial distribution of precipitation must be assessed. Figure 5 shows the mean
annual precipitation distribution of the gridded data during the period from 2000 to 2014. The mean
annual gridded precipitation values in the entire basin, the east tributary, the west tributary, and the
mainstream are 513, 589, 505, and 422 mm, respectively. In the basin, precipitation decreases from
the southeast to the northwest, and precipitation from the south face is higher than that from the
north face. The high precipitation zone occurs in the northern east tributary, and the low precipitation
zone occurs in the basin outlet. The elevation band of the high precipitation occurred from 4300 m
to 4800 m. A previous study reported that the location of the high precipitation band is related
to the degree of dryness and wetness. In the middle of the north face of the Qilian Mountains,
the maximum wetness degree elevation is 4600 m; the high precipitation band ranges from 4500 m
to 4700 m [50,54,55]. These conclusions are consistent with those for the gridded precipitation
distribution. However, gridded precipitation is overestimated in high-altitude areas compared with
previous studies [27,56].

  9 of 23 

 

 

Figure 5. Distribution of the average annual gridded precipitation. 

The spatial precipitation distribution is strongly correlated with elevation (Figure 5). Apparently, 

the mean annual gridded precipitation is high in the high‐altitude area and low in the river valley 

area. Figure 6 shows the scatter diagram of the mean annual gridded precipitation and its elevation. 

For  the east  tributary and mainstream,  the R2 values  reach 0.89 and 0.74,  respectively,  indicating 

apparent strong correlations. The precipitation lapse rate of the east tributary and the mainstream is 

165 mm/km, which is close to the precipitation lapse rate from the observation data (171 mm/km). 

Notably, the R2 value of the west tributary is the lowest (0.16), and its precipitation lapse rate is 84 

mm/km. The R2 value of the entire basin is 0.37, and its precipitation lapse rate is 120 mm/km. The 

east tributary and the mainstream are stronger than the west tributary in terms of precipitation lapse 

rate. The spatial precipitation lapse rate distribution is consistent with the findings of Chen and Liu 

[47,48]. The precipitation  lapse  rate of  the west  tributary  is  lower  than  that of  the  east  tributary, 

mainstream  and  entire basin. Most of  the gauged  stations  are  located  in  the valley  and  shallow 

mountainous areas, with elevations all lower than 3500 m. Most stations are near the east tributary 

and mainstream  areas.  Thus,  the  gauge  stations  lack  representativeness  for  the west  tributary. 

Nevertheless,  the  spatial  precipitation  lapse  rate  distribution  has  a  certain  reference  value.  In 

summary, gridded precipitation and elevation exhibit an obvious linear regression relationship; that 

is,  precipitation  increases with  elevation.  In  addition,  gridded  data  can  be  used  to  describe  the 

horizontal and vertical precipitation distribution in the study area. 

Figure 5. Distribution of the average annual gridded precipitation.

The spatial precipitation distribution is strongly correlated with elevation (Figure 5).
Apparently, the mean annual gridded precipitation is high in the high-altitude area and low in the
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river valley area. Figure 6 shows the scatter diagram of the mean annual gridded precipitation and
its elevation. For the east tributary and mainstream, the R2 values reach 0.89 and 0.74, respectively,
indicating apparent strong correlations. The precipitation lapse rate of the east tributary and the
mainstream is 165 mm/km, which is close to the precipitation lapse rate from the observation data
(171 mm/km). Notably, the R2 value of the west tributary is the lowest (0.16), and its precipitation
lapse rate is 84 mm/km. The R2 value of the entire basin is 0.37, and its precipitation lapse rate is
120 mm/km. The east tributary and the mainstream are stronger than the west tributary in terms of
precipitation lapse rate. The spatial precipitation lapse rate distribution is consistent with the findings
of Chen and Liu [47,48]. The precipitation lapse rate of the west tributary is lower than that of the
east tributary, mainstream and entire basin. Most of the gauged stations are located in the valley
and shallow mountainous areas, with elevations all lower than 3500 m. Most stations are near the
east tributary and mainstream areas. Thus, the gauge stations lack representativeness for the west
tributary. Nevertheless, the spatial precipitation lapse rate distribution has a certain reference value.
In summary, gridded precipitation and elevation exhibit an obvious linear regression relationship;
that is, precipitation increases with elevation. In addition, gridded data can be used to describe the
horizontal and vertical precipitation distribution in the study area.

Water 2017, 9, 866 9 of 23 

 

 
Figure 5. Distribution of the average annual gridded precipitation. 

The spatial precipitation distribution is strongly correlated with elevation (Figure 5). 
Apparently, the mean annual gridded precipitation is high in the high-altitude area and low in the 
river valley area. Figure 6 shows the scatter diagram of the mean annual gridded precipitation and 
its elevation. For the east tributary and mainstream, the R2 values reach 0.89 and 0.74, respectively, 
indicating apparent strong correlations. The precipitation lapse rate of the east tributary and the 
mainstream is 165 mm/km, which is close to the precipitation lapse rate from the observation data 
(171 mm/km). Notably, the R2 value of the west tributary is the lowest (0.16), and its precipitation 
lapse rate is 84 mm/km. The R2 value of the entire basin is 0.37, and its precipitation lapse rate is 120 
mm/km. The east tributary and the mainstream are stronger than the west tributary in terms of 
precipitation lapse rate. The spatial precipitation lapse rate distribution is consistent with the findings 
of Chen and Liu [47,48]. The precipitation lapse rate of the west tributary is lower than that of the 
east tributary, mainstream and entire basin. Most of the gauged stations are located in the valley and 
shallow mountainous areas, with elevations all lower than 3500 m. Most stations are near the east 
tributary and mainstream areas. Thus, the gauge stations lack representativeness for the west 
tributary. Nevertheless, the spatial precipitation lapse rate distribution has a certain reference value. 
In summary, gridded precipitation and elevation exhibit an obvious linear regression relationship; 
that is, precipitation increases with elevation. In addition, gridded data can be used to describe the 
horizontal and vertical precipitation distribution in the study area. 

 
Water 2017, 9, 866 10 of 23 

 

 

Figure 6. Scatter diagram of the gridded precipitation and its elevation in the east tributary (a), west 
tributary (b), mainstream (c), entire basin (d), and observations (e). 

4.2. Distribution of Virtual Stations 

The spatial discretisation scheme of the SWAT model for precipitation is classified as a lumped 
type and uses data from the grid closest to the centroid of each sub-basin. The distribution and 
numbers of the sub-basin can be used to determine where and how many grids can be introduced 
into the SWAT model. The total number of grid data within the upper HRB reaches 1113 if direct 
input gridded precipitation rendering most grids is ignored. Scale transformation by building virtual 
precipitation stations is important for grid upscale to sub-basin scale. Thus, the drainage area 
threshold of the sub-basin division is critical for scale transformation, which determines the 
distribution and number of the sub-basin. The setting of drainage area threshold considers regional 
climate and terrain features, which influence the hydrological processes. The SWAT model can 
generate a large number of sub-basins and independent geographical area. In accordance with 
studies on the optimal drainage area threshold for the upper HRB, the drainage area threshold was 
set at 50 km2 [35]. The SWAT model generates 97 sub-basins. The centroid of each sub-basin was 
considered a virtual precipitation station that adopts the mean precipitation of the grid within each 
sub-basin. From the distribution and number of sub-basins, 97 virtual precipitation stations of time-
series were built to transfer gridded data into a sub-basin average (Figure 7). By this method, the 
SWAT model can reasonably discretise sub-basin precipitation input data. Scale transformation can 
effectively maximise the precision of the gridded precipitation in horizontal distribution and 
optimise the precipitation inputs for the SWAT model. 

Figure 6. Scatter diagram of the gridded precipitation and its elevation in the east tributary (a), west
tributary (b), mainstream (c), entire basin (d), and observations (e).



Water 2017, 9, 866 10 of 22

4.2. Distribution of Virtual Stations

The spatial discretisation scheme of the SWAT model for precipitation is classified as a lumped
type and uses data from the grid closest to the centroid of each sub-basin. The distribution and
numbers of the sub-basin can be used to determine where and how many grids can be introduced
into the SWAT model. The total number of grid data within the upper HRB reaches 1113 if direct
input gridded precipitation rendering most grids is ignored. Scale transformation by building virtual
precipitation stations is important for grid upscale to sub-basin scale. Thus, the drainage area threshold
of the sub-basin division is critical for scale transformation, which determines the distribution and
number of the sub-basin. The setting of drainage area threshold considers regional climate and terrain
features, which influence the hydrological processes. The SWAT model can generate a large number of
sub-basins and independent geographical area. In accordance with studies on the optimal drainage
area threshold for the upper HRB, the drainage area threshold was set at 50 km2 [35]. The SWAT model
generates 97 sub-basins. The centroid of each sub-basin was considered a virtual precipitation station
that adopts the mean precipitation of the grid within each sub-basin. From the distribution and number
of sub-basins, 97 virtual precipitation stations of time-series were built to transfer gridded data into
a sub-basin average (Figure 7). By this method, the SWAT model can reasonably discretise sub-basin
precipitation input data. Scale transformation can effectively maximise the precision of the gridded
precipitation in horizontal distribution and optimise the precipitation inputs for the SWAT model.Water 2017, 9, 866 11 of 23 
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4.3. Distribution of Precipitation Lapse Rate

Precipitation and elevation exhibit a linear regression relationship in the upper HRB; thus, linear
regression functions are widely used to compute precipitation lapse rate [48]. The linear regression functions
of the mean annual gridded precipitation and elevation were established to calculate the precipitation lapse
rate at the sub-basin scale. Finally, the precipitation lapse rates of 97 sub-basins were obtained (Figure 8).
A total of 500 m interval was used to divide the elevation bands for the sub-basin. The precipitation
lapse rate and elevation bands were combined to correct the vertical distribution of precipitation, thereby
maximising the precision of the high-resolution gridded precipitation.

Figure 8 shows the decreasing trend of the precipitation lapse rate from the southeastern to the
northwestern areas; the change trends and spatial distribution are consistent with those of precipitation.
The precipitation lapse rate ranges from 40 to 235 mm/km and decreases from southwest to northwest.
The mean precipitation lapse rates are 120 and 165 mm/km in the entire basin and in the east tributary and
mainstream, respectively. The precipitation lapse rate of the west tributary is 84 mm/km. In summary, the
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distribution of the precipitation lapse rate is consistent with the previously reported precipitation lapse rate
in the upper HRB [47,49]. Thus, a linear regression function of precipitation and elevation is appropriate
for calculating the precipitation lapse rates.
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4.4. Model Calibration and Performance

The applications of the SWAT model on the large-scale and long-term series simulations are
concentrated mainly on the monthly scale, and most hydrological models have simulated monthly
runoff in the upper HRB [4,57–59]. This study simulated monthly runoff and evaluated on the basis
of monthly scale, and the hydrological process was analysed from the monthly simulation results.
The SWAT simulation results can be compared with similar hydrological models in this study area.
The SWAT model was used to simulate the monthly runoff from January 2000 to December 2014.
The model was calibrated for the period from January 2003 to December 2008 and validated for the
period from January 2009 to December 2014; the period from January 2000 to December 2002 was
regarded as the warm-up period. The hydrologic calibration followed multi-temporal, multi-variable,
multi-site principles and used the observed data, hydrological characteristics, and expert knowledge
of the basin to improve the accuracy of the runoff simulation [60]. Parameter sensitivity was analysed
by SWAT-CUP in the upper HRB. The 10 most sensitive parameters in the three sub-regions were
manually calibrated and validated on the basis of expert knowledge. Table 2 shows the most sensitive
parameters and their fitted values.

The SWAT model used the observed and simulated monthly runoff statistics at three hydrological
stations (Qilian, Zhamashike, and Yingluoxia). Three goodness-of-fit measures, namely, R2, Percentage
bias (PBIAS) and Nash–Sutcliffe efficiencies (NS), were used [51–53,61]. The runoff simulated by the
SWAT model was compared with the observed runoff at the three hydrological stations. The seasonal
dynamics of the simulated runoff in the hydrographs are consistent with the observed runoff, except for
Qilian and Zhamashike, which exhibit poor performance at the peak value in some years (Figure 9).
Statistical analyses of the calibration and validation periods show that the R2 values range from 0.76 to
0.93, indicating that the simulation exhibits a strong correlation with the observation findings. The NS
values range from 0.71 to 0.92, exhibiting the high credibility of the simulation. The PBIAS values
range from −14.02% to 11.51%, indicating that the model overestimates the runoff in the calibration
period and underestimates the runoff in the validation. However, the PBIAS values are still within
a reasonable range. In general, the model performance in the validation period is better than the model
performance in the calibration period.
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Table 2. Most sensitive parameters.

Parameter Description Range Value Sensitivity

Ch_K2 Effective hydraulic conductivity in
main channel alluvium (mm/h) 0–500 8–15 1

Cn2 Initial SCS runoff curve number for
moisture condition II 35–98 43–95 2

Plaps Precipitation lapse rate (mm/km) −1000–1000 40–235 3

Esco Soil evaporation compensation factor 0–1 0.83–0.90 4

Alpha_Bf Base flow alpha factor (days) 0–1 0.06–0.072 5

Smfmn Melt factor on 21 December
(mm H2O/◦C day) 0–20 1 6

Sol_Awc Available water capacity of the soil
layer (mm H2O/mm soil) 0–1 0.1–0.22 7

Tlaps Temperature lapse rate (◦C/km) −10–10 −5 8

Gw_Delay Groundwater delay time (days) 0–500 31 9

Smfmx Melt factor on 21 June (mm H2O/◦C day) 0–20 2.5 10
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The daily runoff simulation and previous studies on regional meteorological and hydrological
characteristics can also provide references to validate the SWAT model application better.
Considering the daily time step with a high uncertainty, the daily runoff simulated by the SWAT model
was compared with the observed runoff at the Yingluoxia station in 2007 and 2013 (Figure 10). The two
years are typical normal and high flow year and exhibit high representativeness. The daily dynamics
of the simulated runoff in the hydrographs are consistent with the observed runoff. The R2 values are
higher than 0.60, the NS values are higher than 0.70 and the PBIAS values are controlled within ±10%,
indicating that the model exhibits satisfactory performance on the daily scale. The base flow coefficient
based on the model simulation is 0.46, which is close to the result in the base flow separation (0.44) [62].
The hydrographs show that the model performs well during the snowmelt period (April to May).
Furthermore, the hydrographs indicate that the snowmelt runoff simulation is reasonable. The actual
evapotranspiration is 318 mm, which is close to the remote sensing data (306 mm) [63]. The potential
evapotranspiration estimated by the SWAT model is 575.3 mm, which is higher than the potential
evapotranspiration estimated by HBV runoff model simulation (500.4 mm) [37].
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In summary, the simulation results exhibit good and very good performance that satisfies the
accuracy and reliability requirements of the SWAT model, respectively [64]. The simulation with the
SWAT model used high-resolution gridded precipitation and comprised building virtual stations and
calculating lapse rates to optimise the precipitation input parameters and improve the hydrological
simulation. After using high-resolution gridded precipitation, the model can simulate accurate and
detailed spatial distribution of water balance components, thereby improving the understanding of
the regional hydrological processes.

4.5. Water Balance Component Characteristics

Water balance components, including precipitation (PREC), evapotranspiration (ET), water yield
(WYLD) and soil water content (SW), which is a mean value at annual scale during the period of
2003–2014, were considered in this study. Table 3 shows the mean annual values of the water
balance components from 2003 to 2014 in different regions. The precipitation, evapotranspiration
and water yield for the entire basin are 525.5, 318.1 and 194.4 mm·year−1, respectively, indicating
that the water balance components are relatively balanced. The mean annual precipitation is close
to the original gridded precipitation (513 mm·year−1), indicating that the scale transformation and
precipitation lapse rate calculation are reasonable. The evapotranspiration is similar to the remote
sensing data (306 mm·year−1) [63]. The differences of water balance components in different regions
were determined by precipitation. The runoff coefficients in different regions are similar, and the
coefficient of the entire basin is 0.37.
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Table 3. Water balance components for different regions.

Region Area
(km2)

PREC
(mm)

ET
(mm)

WYLD
(mm)

SW
(mm)

Runoff
Coefficient

Runoff
Contribution (%)

East Tributary 2504 609.8 364.4 229.9 63.5 0.37 29
West Tributary 5032 522.8 310.3 199.5 58.5 0.38 52
Main Stream 2482 446.2 287.4 148.3 27.7 0.33 19
Entire Basin 10018 525.5 318.1 194.4 52.1 0.37 100

4.5.1. Spatial Variability of Water Balance Components at the Landscape Scale

Figure 11 shows the percentage, runoff contribution and runoff coefficient of water balance
components on the landscape scale. The meadow is the dominant vegetation type, which accounts for
43.8% of the basin area and contributes 44.8% of the runoff. The runoff coefficient of the meadow is
0.37, which is equal to that of the entire basin. The area of sparse vegetation accounts for 19.6% of the
basin area and contributes 23.6% of the runoff. The runoff coefficient of sparse vegetation is the highest
(0.42) at all of the landscapes. The sparse vegetation is generally distributed at high-altitude areas
with low temperatures, high precipitation and alpine cold desert. Thus, the evapotranspiration and
soil water content in this area are low, and the runoff coefficient is high. The shrub accounts for 16.8%
of the basin area and contributes to 17.2% of the runoff. The meadow, sparse vegetation and shrub
account for 79.4% of the basin area and contribute 85.6% of the runoff, and they are the main water
yield landscapes. Steppe and coniferous forests account for 17.2% of the basin area and contribute
12.2% of the runoff. However, their runoff coefficients are low because of the interception of the canopy
and roots. Thus far, whether the forests in the alpine cold mountain region generate runoff remains
unclear. The forest in the study area includes coniferous forest and shrub, which contribute 4.5% and
17.2% of the total runoff, respectively. These results are similar to the findings of the small catchment
experiment and hydrological simulation in the upper HRB [29,65]. The water body includes river,
snow and glacier, and the runoff coefficient is high. The desert and crop areas are lower and contribute
only 0.6% of the total runoff.
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4.5.2. Spatial Variability of Water Balance Components at the Elevation Band Scale

Elevation significantly affects the hydrological processes in alpine cold mountainous regions.
The landscape follows a distinct vertical elevation band, but the elevation band presents obvious
boundaries that may be composed of different landscape. The spatial variability of water balance
components on elevation band scale differs and should be analysed.

According to the vertical distribution of vegetation, the basin was divided into five elevation
bands, namely 1667–2800, 2800–3500, 3500–4000, 4000–4500, and 4500–5008 m. Figure 12 shows
the percentage, runoff contribution and runoff coefficient of water balance components on the
elevation band scale. The largest area is the elevation band at 3500–4000 m, which accounts for
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40.1% of the basin area and contributes 42.2% of the runoff. The runoff coefficient is 0.38, which is
close to the runoff coefficient of the entire basin. The elevation band at 4000–4500 m accounts for
25.5% of the basin area and contributes 29.3% of the runoff. This area is featured as cold and wet;
thus, the evapotranspiration percentage and soil water content are low, and the runoff coefficient
is high. The elevation band at 3500–4500 m accounts for 65.6% of the basin area and contributes
71.5% of the total runoff. Thus, the basin runoff is derived mainly from the high-altitude regions.
The elevation band at 2800–3500 m is characterised as warm and dry; thus, precipitation is consumed
mainly by evapotranspiration and stored in soil, and the runoff coefficient is low. The elevation band
at 4500–5008 m contains a large area of snow and glacier, which exhibits the highest runoff coefficient
(0.44) because of snow melting. The elevation band at 1667–2800 m is desert and steppe, and all of the
water balance components are low. In summary, climate variability with elevation significantly affects
the distribution of water balance components.
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4.5.3. Spatial Variability of Water Balance Components at the Sub-Basin Scale

Changes in precipitation are the dominant factor that induces changes in water balance
components [38]. Figure 13 shows the spatial variability of the mean annual value of water balance
components on the sub-basin scale. The precipitation over the basin ranges from 231 to 670 mm and
decreases from the southeast to the northwest. The precipitation of the east tributary is higher than
that of the west tributary, and that of the mainstream is the lowest. Evapotranspiration ranges from
220 mm to 560 mm, and the mean value of the entire basin is 306 mm. The water yield ranges from
13 mm to 376 mm and is less than 60 mm in the basin outlet covered by desert. Thus, the underlying
surface significantly affects the water yield capacity of the sub-basin. Evapotranspiration exhibits
distributions that are similar to those of precipitation. However, the pattern of soil water content
varies. The soil water distribution of the east tributary is similar to that of the west tributary because of
elevation and landscape, and that of the mainstream is low. The soil water content ranges from 5 mm
to 150 mm, and the average value of the entire basin is 52 mm.

The change trend of water balance components can significantly explain the response of
hydrological process to climate change. Figure 14 shows the long-term mean annual change trends
of water balance components on the sub-basin scale from 2003 to 2014. The precipitation change rate
in the entire basin is 0.18 mm·year−1, which indicates a slightly increasing trend. The precipitation
increase rate decreases from the southwest to the northwest and varies from −7.4 mm·year−1 to
3.55 mm·year−1. The large precipitation increase rate is concentrated in the western basin, and only
four sub-basins present a decreasing trend. The increasing evapotranspiration rate decreases from the
southeast to the northwest, ranging from −2.51 mm·year−1 to 3.6 mm·year−1, with an average value
of 0.78 mm·year−1. The water yield decreases in the entire basin (−1.29 mm·year−1), ranging from
−11.75 mm·year−1 to 2.93 mm·year−1. The spatial distribution of the water yield change rate is
consistent with that of precipitation; the increasing trend in the western basin is more obvious than
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that in the other regions. The soil water content decreases in the entire basin (−1.18 mm·year−1),
ranging from −3.35 mm·year−1 to 0.46 mm·year−1 at the sub-basin scale.Water 2017, 9, 866 17 of 23 
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5. Discussion

This study aimed to optimise the input parameters for hydrological simulation using
high-resolution gridded precipitation and provide reference for water resource assessment and
management in data-scarce regions. The hydrological simulation presents some uncertainties due to
uncertainties in input data, model structure, model parameter, and validation data.

Precipitation is an important input for accurate hydrological simulation, and its numerical
accuracy and detailed spatial distribution are necessary. The evaluation of gridded precipitation in
time series accuracy is used only for two experimental stations and with a short time series (2011–2014).
The evaluation of description capability is concentrated on the overall change trend. This data presents
high spatial heterogeneity when compared with RIEMS RCM simulation and China National gridded
product with a 3 km and 0.25◦ resolutions, respectively [15]. The description capability of the gridded
data is highly reliable. However, these evaluations are insufficient in demonstrating the precision
of gridded precipitation because of lack of validation data. Scale transformation is proposed by
building virtual precipitation stations and calculating precipitation lapse rate at sub-basin scale,
thereby upscaling the gridded data from the grid to sub-basin scale. To some extent, these methods can
be used to optimise the precipitation input parameters for the SWAT model effectively and maximise
the horizontal and vertical distribution precisions of the high-resolution gridded precipitation.
However, the 1113 grids were converted into 97 virtual stations at the sub-basin scale to simplify the
spatial distribution of precipitation. Thus, the setting of sub-basin drainage threshold area is significant
to scale transformation. The optimal sub-basin drainage threshold area of the sub-basin division
based on basin climate and terrain, the division into the sub-basin with a larger number and the
building of virtual station with high density are necessary. Previous studies showed that precipitation
and elevation can be best described by log-linear or exponential functions [66]. In the present study,
linear regression functions were selected because their precipitation lapse rate was considered the
mean annual value on the sub-basin scale in the SWAT model. Although this method simplifies the
vertical variability of precipitation with elevation, a linear regression function is suitable for calculating
the precipitation lapse rate for the SWAT model. For model climate forcing, only precipitation inputs
use high-resolution gridded data; the temperature, wind speed, solar ration and relative humidity
still use gauged data, which are scarce and unevenly distributed. The high-resolution gridded data of
other climate elements should be applied in the SWAT model.

The upper HRB is a typical high cold mountainous region. The process of glacier and permafrost
are not considered by the SWAT model. This situation will increase the uncertainty of hydrological
simulation. Considering that the glacier area and runoff contribution are low and the glacier area
slightly changed in recent years [67], the uncertainty of ignoring the glacier melting runoff have
controlled within a reasonable range. In the gentle-elevation catchment, climate uncertainty is relatively
low and probably few gauged stations can give reasonable model performance [68]. Precipitation in
the upper HRB exhibits a large spatiotemporal variability because of convection in mountainous
terrain [50]. Given the complicated mountainous terrain, the high-resolution gridded precipitation is
selected for hydrological simulation and analysis; the gridded precipitation was upscaled from the
grid to the sub-basin scale. Especially in high mountain regions, this scale transformation method can
improve the representation of sub-basin precipitation input data and reducing uncertainty.

After the analysis of parameter sensitivity by SWAT-CUP, the 10 most sensitive parameters
were achieved. Furthermore, the parameters with high sensitivity were adjusted to achieve optimal
simulation results. The range of parameter calibration was controlled within in ±20%. The daily
precipitation event has great uncertainty and randomness. This study concentrated on monthly runoff
simulation and annual scale analysis to reduce the uncertainty caused by daily precipitation. The SWAT
model achieves excellent monthly runoff simulation on the large-scale and long-term series, which is
sufficient to support the study on the water balance component characteristics on the mean annual
scale. This result can provide a credible reference for basin water resource assessment and management.
Moreover, most hydrological models are simulated monthly runoff in this study area. The current
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research can be compared with the previous study. However, the monthly simulation barely reflects the
superiority of the gridded precipitation in time series and spatial distribution. Thus, the water balance
component characteristics on the daily and small catchment scale should be further investigated.

The SWAT model is widely used in the upper HRB to study hydrological processes, in which
NS are usually higher than 0.85 at the monthly scale [7,24–26]. Compared with previous studies that
used gauged precipitation, the monthly simulation accuracy derived in the present study has yet to be
improved. However, the daily simulation is improved significantly. The dynamic change process of
daily runoff response to precipitation events is more obvious. Considering the daily precipitation with
a high uncertainty, the daily runoff simulation was assessed in typical normal and high flow year and
exhibit high representativeness. Daily simulation is slightly better than monthly simulation based on
the model results. Yin et al. [29] and Zou et al. [21] directly inputted gauged precipitation and grid
precipitation, respectively, into the SWAT model in the upper HRB. This study used high-resolution
gridded precipitation and conducted a scale transformation, which are significantly superior to a few
gauged stations and directly input grid data. The precision of model simulation is significantly
improved when compared with using grid precipitation as driving data (NS: 0.73). After input
precipitation parameters with a high spatial heterogeneity and spatial representation, the spatial
distribution of water balance components is more detailed and reasonable and its spatial continuity is
better compared with the hydrological simulation based on gauged data and directly input grid data.
The model calibration not only relies on hydrographs but also refers to basin features, such as base flow
coefficient, evapotranspiration and snow melting runoff. Although the statistical evaluation criteria
of simulation are not perfect, the hydrological process and distribution of water balance components
are reasonable.

The 15-year simulation present a certain limitation in analysing the change trend of water balance
components. In this region, the meteorology and hydrology studies are plentiful and mature in
the historical period. On the basis of previous studies [27,34,35], water balance components were
analysed on the period of recent years; such study is uncommon. The underlying surface data used
by the SWAT model are released in recent years; thus, these data are credible for meteorology and
hydrology changing trend analysis in recent years. The precipitation lapse rate, water yield, soil water
content and evapotranspiration for data validation lack gauged data that match with the resolution of
simulation; thus, the superiority of this study is uncertain. These factors influence the accuracy of the
model simulation.

In summary, the uncertainty of scale transformation, model parameter and validation data
increase the uncertainty of hydrological simulation. Future studies should focus on these limitations in
investigating the SWAT model driven by high-resolution gridded data and in reducing the uncertainty
of hydrological simulation.

6. Conclusions

This study considered the upper HRB as a case study, and daily gridded precipitation data with
3 km resolution were selected as forcing data for the SWAT model. Gridded precipitation was subjected
to quality assessment and exhibited high time series accuracy and spatial description capability.
The scale transformation of gridded precipitation was proposed by building virtual precipitation and
calculating precipitation lapse rate on the sub-basin scale. The precision of gridded precipitation in
spatial distributions is maximised, and the input precipitation parameters of the SWAT model are
optimised. The SWAT model exhibits a good monthly runoff simulation compared with the observed
data from 2000 to 2014. The statistical analyses show that the R2 is higher than 0.71, NS is higher than
0.76, and PBIAS is controlled within ±15%. The base flow coefficient, snow melt runoff, and potential
evapotranspiration simulated by the model are consistent with those of previous studies.

The spatial variability of water balance components was analysed on sub-basin, elevation band
and landscape scales. The landscape of meadow and sparse vegetation and the band of 3500–4500 m
are major water yield region. At the sub-basin scale, the spatial distributions of the water yield
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and evapotranspiration are consistent with that of precipitation and decrease from the southeastern
to the northwestern areas; the spatial distribution of soil water content is similar to that of the
western and eastern areas because of the landscape and elevation band effect; the precipitation and
evapotranspiration in the entire basin present a slightly increasing trend, whereas the water yield
and soil water content present a slightly decreasing trend. The spatial distribution, change trend,
and internal relationship of water balance components across different scales can further strengthen
the understanding of the hydrological processes and provide references for the assessment and
management of water resources in data-scarce regions.
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