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Abstract: Taiwan average annual rainfall is approximately 2500 mm. In particular, 80% of the rainfall
occurs in summer, and most of the heavy rainfall is caused by typhoons. The situation is worsening
as climate change results in uneven rainfall, both in spatial and temporal terms. Moreover, climate
change has resulted the variations in the seasonal rainfall pattern of Taiwan, thereby aggravating
the problem of drought and flooding. The irrigation water distribution system is mostly manually
operated, which produces difficulty with regard to the accurate calculation of conveyance losses
of channels and fields. Therefore, making agricultural water usage more efficient in the fields and
increasing operational accuracy by using modern irrigation systems can ensure appropriate irrigation
and sufficient yield during droughts. If agricultural water, which accounts for 70% of the nation’s
total water usage, can be allocated more precisely and efficiently, it can improve the efficacy of
water resource allocation. In this study, a system dynamic model was used to establish an irrigation
water management model for a companion and intercropping field in Central Taiwan. Rainfall and
irrigation water were considered for the water supply, and the model simulated two scenarios by
reducing 30% and 50% of the planned irrigation water in year 2015. Results indicated that the field
storage in the end block of the study area was lower than the wilting point under the 50% reduced
irrigation water scenario. The original irrigation plan can be reduced to be more efficient in water
usage, and a 50% reduction of irrigation can be applied as a solution of water shortage when drought
occurs. However, every block should be irrigated in rotation, by adjusting all water gates more
frequently to ensure that the downstream blocks can receive the allocated water to get through the
drought event.
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1. Introduction

Taiwan is under the influence of climate change and, according to Climate Change in Taiwan:
Scientific Report 2011, the warming rate was 0.14 ◦C every 10 years between 1911 and 2009 [1].
This worsened the uneven spatio-temporal rainfall distribution. Spatially, there is maximum rainfall
in mountain regions (>8000 mm) and minimum in plain regions (<1200 mm) annually. While on
temporal scale, the difference between dry and wet season is greater than 2000 mm. Moreover,
due to climate change the rainy and dry season ratio in Northern Taiwan is 6:4, while it is 9:1 in
Southern Taiwan. This dramatic distribution difference makes it extremely difficult to store and utilize
water resources effectively. Consequently, several drought events occurred in 2002, 2003, 2006, 2011,
and 2014. The dry year in 2014 became the cause of most severe drought in 2015 over the past 67 years.
It caused approximately 43,000 acres of paddy fields to stop irrigation, a 10% supply reduction for large
industries, and phase-three water rationing for domestic use, that is, a two-day cut-off after a five-day
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supply. These events indicate that the effects of droughts may show in meteorological, hydrological,
agricultural, and socioeconomic aspects [2].

Drought is a kind of water stress [3,4] and has a direct impact on agriculture [5], whereas
global climate changes continue to worsen the current shortage situation and present unprecedented
challenges to Taiwan’s water system. During the drought period, some of the allocated agricultural
water transferred to the domestic and industrial sector, resulting in a lack of irrigation water for farmers.
Smart irrigation management plays an important role for effectively and efficiently use of water to
enhance water use efficiency (WUE) under a limited water environment. WUE or water productivity
(crop yield per unit of water used) emerged from the idea of drought tolerance and resistance [6],
defined for the first time in agronomy in the 1860s [7].

Enhancing water use efficiency (WUE), particularly that of agricultural water resources, to cope
with climate change is a major concern worldwide. Simulation or optimization approaches are mostly
used for water distribution system [8]. Precision irrigation by using a smart simulation system is
a possible approach of enhancing WUE and maintaining crop growth conditions to ensure productivity.
In this study a simulation approach, the system dynamic program VENSIM [9] was used to establish
a smart irrigation water management system and investigate the effect of water reduction in irrigation
field. Compared with other conventional methods, the smart system exhibited excellent performance
with its reliable digital technology [10].

System dynamics firstly developed by Jay W. Forrester, used to analyze the modeling system
changes and dynamic behavior based on the linkage and response mechanism among models [11]. It is
a computer-aided approach to evaluating the interrelationships of components and activities within
complex systems [12]. It is based on systematic thinking, an object-oriented simple tool which is very
useful in management and planning. The stock-flow diagram in the system dynamics is the key to
showing the problem structure and internal process of the system for making the transparent modeling
process. Water resources system modeling, management and planning has been done recently and
over the years the approach of system dynamics has been used as a productive and common method.
For example, water resources management, planning, policy and sustainability analysis [13–16],
in environmental planning and management [17], decision support systems for management of
floods [18], hydrological systems [19], water accounting systems for water management [20], and
a decision support system for water management [21]. Wu et al. applied the VENSIM model to
a paddy rice field in Central Taiwan [22]. Elmahdi et al. presented a new approach for optimizing the
irrigation demand management by composing systems dynamics model (VENSIM software, Ventana
Systems Inc, Salisbury, Wiltshire, UK) with optimization approaches [23]. Luo et al. applied system
dynamic model for time varying water balance in aerobic paddy fields [24].

The VENSIM system dynamic tool was considered appropriate for modelling and simulation
due to it taking into account large number of components, feedback mechanism and behavioral
response of water balance system, and has been shown to be an adequate tool to depict system
dynamics [25,26]. The main objective of this study is to design and develop a smart irrigation system
using the water balance method with the help of the system dynamic approach, the VENSIM simulation
tool, in Central Taiwan.

2. Methodology

First, the water balance model is conceptualized based on the availability of integration and
analysis of existing data on hydrological and hydraulic processes occurring in mixed cropping
field. The VENSIM simulation tool was formulated for time variant field water balance analysis
using mathematical governing equations. Various water balance components were analyzed and
simulated on a daily basis using feedback relations in the model such as actual crop evapotranspiration,
percolation, and field surface runoff. The simulated results were validated with the observed
discharge data.
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2.1. Field Water Balance Method

Water balance method is water accounting procedure deals with water supplies, storage change
and water destinations for proper management of water resources. The basic concept of field water
balance is an account of all water quantities added to, subtracted from, and stored within a given
volume of soil during a given period of time in a given field [27]. Many research studies have
been conducted on paddy field water balance method [24,28–30]. Agrawal et al. developed a field
water balance model to simulate various water balance components such as crop evapotranspiration,
irrigation water supplied, seepage, percolation, ponding depth and surface runoff in the field on a daily
basis, and the results were validated with observed experimental data [31].

A water balance method was applied in a control volume under the condition of mass conservation
to evaluate the overflow discharge from paddy fields. From a three-dimensional microcosmic view
(Figure 1), the porosity medium flow condition can be given as in Equation (1):

qin − qout =
ds
dt

(1)

where qin is inflow, qout is outflow, ds is the change in storage of control volume with in a time t.
The Conceptual model (Figure 2) of field water balance was formulated by considering the field as
a linear reservoir; where, qin as a summation of the rainfall and irrigation; qout as a summation of
crop evapotranspiration, surface runoff, shallow ground water outflow and infiltration; and ds as a
summation of field ponding depth and shallow water content in the soil. The parameters, rainfall
and irrigation, decrease the depletion in root zone by adding water, while the increase in depletion is
received by removing water in root zones by the components such as crop evapotranspiration, surface
runoff and percolation [32].
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Assuming that the paddy field is under cultivation and the plow pan exists, the water balance
method is given by Equation (2). The decision criteria whether to irrigate or not is represented by
Equations (3) and (4).

Si = Si−1 + Pi + Chi − ETi −DRi −DFi − Rhi,

If Si−1 + Pi < Ni, then IRi > 0

If Si−1 + Pi ≥ Ni, then IRi = 0

(2)

Ni = ETi + DFi + Rhi

If Rii ≥ IRi, then Chi = IRi

If Rii < IRi, then Chi = Rii

(3)

IRi = Sti − (Si−1 + Pi) + Ni (4)

where the suffixes i and i− 1 represent the time period. Si is field storage, Si−1 is previous field storage,
P is rainfall, Ch is channel irrigation water applied, ET is actual crop evapotranspiration, DR is surface
runoff/overflow from field, DF is vertical percolation, and Rh lateral seepage inflow.

N represents the field losses from the system, IR is the irrigation water requirement Ri is channel
water volume. The target depth of storage (St) equals the summation of ponding depth and soil
saturation depth. All the components have same units (in terms of volume of water per unit area,
or equivalent depth units).

The soil water content depends on the soil type. In the study area, soil type is sandy loam with
average soil porosity of 43% and a coefficient of conductivity of 0.01158 (d−1). The other characteristics
include field capacity (14%) and wilting point (6 mm).

2.2. Crop Evapotranspiration

Crop water requirement and crop evapotranspiration are identical because during plant growth,
the consumptive use of water is considered small and neglected while most of the water is lost via
transpiration from the stomata. In a cropping field, transpiration from plants and evaporation from
soil surface occurs at the same time and is not easy to measure separately. The combined term of
evaporation and transpiration is called crop evapotranspiration, ETc (mm·d−1). ETc can be determined
by direct measurement or indirect calculations, while the direct measurement method is expensive due
to morphological limitations. Therefore, indirect calculation method is used under standard conditions
as given in Equation (5):

ETc = Kc × ET0 (5)

where Kc is a single crop coefficient, ET0 is the reference crop evapotranspiration. In general, the crop
coefficient is approximately 0.95–1.35 for paddy rice, while FAO (Food and Agriculture Organization),
also recommended the Kc value for the 1st and 2nd crop period [32]. In this study the Kc values were
used from Yao et al., listed in Table 1 because of avoiding climate change due to regional differences,
and also the availability of corresponding crop coefficient with different crop growth stages of paddy
rice from experiments [33].

The Penman-Monteith equation is a suitable and recommended method for estimating the ET0

by Allen et al., and the details are available in FAO irrigation and drainage paper No. 56 [32].
According to Smith et al., ET0 estimation results are more consistent with the Penman-Monteith
method and performance is better than other ET0 methods when compared with lysimeter data [34].
The Penman-Monteith equation is given in Equation (6)

ET0 =
0.408∆(Rn −G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(6)

where ET0 is the reference crop evapotranspiration (mm·d−1); Rn is the net radiation at the crop surface
(MJ·m−2·d−1); G is the heat flux of soil (MJ·m−2·d−1); T is the mean daily temperature at 2-m height
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(◦C); U2 is the measured wind velocity at 2 m height (m·s−1); es is the saturation vapor pressure (kPa);
ea is the actual vapor pressure (kPa); es − ea is the vapor pressure deficit (kPa); ∆ is the gradient of
saturated vapor pressure (kPa·◦C−1); γ is psychrometric the constant of humidity (kPa·◦C−1).

Table 1. Paddy rice crop coefficient (Kc) for each growth stage adopted from Yao et al. [33].

Growth Days Growth Stage Growth Degree
Crop Season

1st Crop 2nd Crop

— Ground — — —
1~15 Seedling 185 0.92 1.01
16~30 Early tillering 381 1.00 1.11
31~45 End of tillering 589 1.00 1.11
46~60 Early flowering 808 1.13 1.23
61~75 End of flowering 1032 1.13 1.23
76~90 Early ripening 1259 0.89 0.93

91~105 Middle of ripening 1487 0.89 0.93
106~120 End of ripening 1715 0.89 0.93

When the value of Kc is determined according to the crop type and the growth stage, wilting point
(Wp) plays a key role in determining the occurrence of evapotranspiration. It implies that the plant
cannot absorb any more water from its root. Thus, the crop evapotranspiration can be represented
using the conditions of Equations (7) and (8).

ETi =

{
KC × ET0 if Si−1 > Wp

0 if Si−1 < Wp
(7)

Wp = Soil depth × Wilting point (8)

where Wp denotes the depth of wilting point (mm).

2.3. Irrigation Water Demand

The irrigation water requirement varies with the growth of the paddy crop, and the irrigation water
is controlled with an adjustment mechanism of the field water gates. During the time of irrigation,
the field conveyance and channel conveyance losses should be considered in the amount of irrigation
water required. This can be regarded as the difference between the amount of ponding depth and the
summation of previous field storage after deduction losses and precipitation of the day. Considering the
conveyance loss during the time of irrigation, the actual irrigation water amount is the summation of
irrigation water demand and the conveyance loss, which can be described as in Equations (9) and (10).

Water Conveyance loss =
Irrigation water demand

(1−Water conveyance loss rate)
− Irrigation water demand (9)

Actual irrigation water = Irrigation water demand + Water conveyance loss (10)

The conveyance loss is calculated by considering the length of each channel from the intake gate
to each sub-block (the detail is given in Section 3.1), and the loss rate of 10% for every kilometer was
considered as the conveyance loss, as shown in Table 2.



Water 2017, 9, 885 6 of 23

Table 2. Water conveyance loss calculation from the intake gate to each sub-block (unit: %).

Sub-Block
Conveyance Loss (%)

Block 1 Block 2 Block 3 Block 4 Block 5

No. 1 8.15 13.15 20.23 21.16 28.5
No. 2 8.15 13.15 20.23 24.93 28.5
No. 3 10.45 11.9 22.01 24.93 29.33
No. 4 10.45 11.9 22.01 33.33 29.33
No. 5 11.71 19.08 22.85 — 30.38
No. 6 11.71 19.08 — — 30.38
No. 7 12.74 21 — — —
No. 8 12.74 21 — — —

2.4. Percolation Calculation

Percolation is the downward movement of water towards the horizontal hydraulic gradient and
the vertical direction through porous media up to the groundwater table [27]. It is a complex process
in a paddy field and is influenced by factors such as soil texture, ponding depth, depth to ground
water level, water temperature, terrain slope, crop root zone depth, presence of plow pan or hard layer
below surface, and subsoil hydraulic conductivity. It is the summation of vertical percolation and
lateral seepage, which are described below.

2.4.1. Vertical Percolation

Experimental results under different irrigation conditions indicated that the plow pan leads to
a decrease in the vertical and lateral percolation [35,36]. Vertical percolation is the deep percolation in
which water, after passing through the plow pan, subsides to ground water table. The quantification of
deep percolation from paddy field can be done under three different stages, as shown in Figure 3 [37].
The procedure for estimation of deep percolation for different phases is different such as in the ponding
phase, the steady state flow equation is considered, while for saturation phase of crop, the calculations
can be done using the method of Khepar et al. [38]. In the depletion phase the loss of deep percolation is
assumed to be negligible [37]. Darcy Law is used for calculation of vertical percolation. The occurrence
of vertical percolation depends on the comparison of field capacity (FC) and the previous field storage,
as given in Equations (11)–(13). Let Cp = kp/lp; then, Pt can be obtained as in Equation (14):

DFi =

{
Pt if Si−1 > FC
0 if Si−1 ≤ FC

(11)

FC = Soil depth × Field Capacity (12)

Pt = kp ×
ht + lm

lp
(13)

Pt = Cp × (ht + lm) (14)

where Pt is the percolation (mm·d−1); FC is the depth of Field Capacity (mm); Kp is the coefficient of
hydraulic conductivity (mm·d−1); ht is the previous ponding depth (mm); lp denotes the thickness
of plow pan (mm), which set as 7.5 cm [37]; lm denotes the thickness of muddy layer (mm); and Cp

denotes the coefficient of conductivity (d−1) (Table 1).
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2.4.2. Lateral Seepage

Lateral seepage flow occurs in a two ways through the paddy field bund/ridge, namely,
(i) horizontal flow type, and (ii) downward flow type, and it is 10 times the vertical percolation.
The lateral seepage should be considered with saturated and unsaturated field soil [35]. It is the
horizontal loss sideways into the bunds or field boundaries which changes with the length of the
bund, the area of the paddy field, and the initial soil water content. Lateral seepage/percolation is
considered as additional field loss because under the bund of field there is no continuous plow pan
layer, consequently, the water movement is easy into and down through the bund to underlying water
table. Several past studies showed the way of measuring lateral seepage using ponding tests and other
water balance experiments such as [35,39–43].

This study assumes that the lateral seepage occurs under saturated conditions, and the terminal of
seepage should be the groundwater level. The schematic of ridge lateral seepage is shown in Figure 4.
The transmission mechanism derived from the Dupuit equation, as shown in Equation (15):

Lt =
lg
A
× kL ×

(
h2

t − h2
0

)
2L

(15)

where lg is the length of the ridge near a drainage (m) and is set as the side length of each paddy block in
this study; A denotes the area of the paddy field (m2); KL denotes the hydraulic conductivity of the ridge(

mm·d−1
)

, set as five times Kp; ht is the ponding depth (mm); h0 denotes the water level of the irrigation
channel (mm), set as 0 cm; and L denotes the width of the ridge (mm), set as 50 cm. Field capacity (FC)
plays an important role in the calculation of lateral seepage, as the condition criteria is in Equation (16).

Rhi =

{
Lt if Si−1 > FC
0 if Si−1 ≤ FC

(16)

where Rh denotes the lateral seepage of the ridge
(

mm·d−1
)

and Lt denotes the lateral infiltration

(mm·d−1).
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2.5. Field Surface Runoff Calculation

The ponding depth required for paddy rice must be adjusted suitably during different growth
stages, and it is controlled by the height of outfall on the ridge. The height of the ridge and outfall are
the average elevation difference between the elevation of the ridge and outfall, respectively, and the
height of the outfall determines the magnitude of field storage. After saturation condition, the inflow
(irrigation and rain water) behaves as a field surface runoff and it overflows the ridge to the drainage
when the ponding depth is higher than the outfall or ridge, as shown in Figure 5. The surface runoff is
a function of rainfall having a positive correlation [44], while it is reduced by carefully maintaining
the ridge up to certain height for proper ponding. The hydrological simulation model developed by
Ray-Shyan Wu et al., for rice paddy fields indicated that surface runoff may occur when the depth
of rainwater exceeds the height of ridge, and it was analyzed that the amount of surface runoff from
paddy field is about 27% of the amount of rainfall [45].
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The height of the outfall depends on the paddy rice cultivation in different stages of the first crop
season in Taiwan, as given in Table 3 [35]. The outflow of the field runoff can be represented as in
Equations (17)–(19).

DRi = Si−1 + Pi + Chi − ETi −DFi − Rhi −Vfi

if Si−1 + Pi + Chi − ETi −DFi − Rhi > Vfi
(17)

DRi = 0, if Si−1 + Pi + Chi − ETi −DFi − Rhi ≤ Vfi (18)

Vf = (h + Soil depth×ϕ) (19)

where Vf is the depth of field storage (mm), which is the total height of water in soil saturation and outfall;
DR is the outflow of the field runoff (mm); h is the height of outfall (mm); andϕ is soil porosity (%).
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Table 3. Ponding depth during the first crop season of paddy rice in Taiwan.

G
row

th
Stages

Seedling

Startof
Tillering

End
of

Tillering

Young
PanicleD

ifferentiation

Young
Panicle

Form
ation

B
ooting

Stage

H
eading

M
ilk

R
ipe

M
ature

R
eaping

The day after transplanting 1 16 25 30 48 50 65 77 92 107 120 130
Date 3/4 3/19 3/28 4/2 4/20 4/22 5/7 5/19 6/3 6/18 7/1 7/11

Ponding depth (cm) 5 5 5 5 5 5 10 10 10 3 3 0

For the extended duration of rain, the depth of storage may be higher than the height of the
outfall, and the maximum outflow of the ridge should be computed to avoid any effect on the growth
of the crop roots. The factors related with the outflow include the rainfall, area, crop soaking time, and
the period of drainage. The average overflow discharge can be calculated using Equations (20)–(23).

Qi =
C× RD

1000×D
if Pi > Qi + ETi + DFi + Rhi (20)

DRi = Si−1 + Pi + Chi − ETi −DFi − Rhi −V′fi
if Si−1 + Pi + Chi − ETi −DFi − Rhi > V′fi

(21)

DRi = min[Qi; Si−1 + Pi + Chi − ETi −DFi − Rhi −Vfi]

if Si−1 + Pi + Chi − ETi −DFi − Rhi ≤ V′fi
(22)

V′f = (H + Soil depth×ϕ) (23)

where Vf′ is the maximum depth of field storage (mm), which is the total height of water in soil
saturation and ridge; Q is the outflow in unit area (mm); D is the crop soaking time (d), set as three
days in this study; C is the runoff coefficient (C = 0.6); RD is continuous rainfall in D days (mm),
according to the Xi-Zhou rainfall station with a 10-year return period, which is 294.5 mm·d−1; and H
is the height of the ridge (mm).

3. System Dynamic Model: VENSIM

The calculation of irrigation and drainage discharge are the prerequisite for the verification of the
water balance approach of any irrigation canal command area, and it must have separate canal and
drainage systems. The experimental study area has the same aforementioned elements, like irrigation
channels to irrigate and to drain channels to drain overflow from each paddy field. In addition, a main
drainage passes through the middle and accommodates surplus water from every drain, which is
helpful for calculating the total drainage discharge. When the amount of rainfall or irrigation water
is less than the crop water requirement, there is no overflow due to height of the ridge. However,
during heavy rainfall paddy fields, drains the extra water through the outfall on the ridge to drain
channels. A system dynamic VENSIM model was established and used to simulate the water demand
and consumption of an experimental site in Central Taiwan. The description of study area and model
setup are explained herein.

3.1. Study Area Overview

The study area is located in Chang-Hua County in Central Taiwan and has the Zhou-Shui-Xi River
as its main water resource. For achieving precision irrigation, the study considers the irrigated area of
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the Shin-Yong-Chi channel, which receives water from the second restricted gate of the Tzu-Tsai-Pi
channel. For controlling the quantity of irrigation, we selected a small area of 215 ha under the
San-Tiao-Zun channel irrigation region, which belongs to the Shin-Yong-Chi main channel irrigation
system. There are five supplement ditches in the area, corresponding to blocks 1 through 5, respectively.
The soil type of the study region is sandy loam. There are six field monitoring stations for water level
monitoring that correspond to blocks 1 through 5. The block 2 equipped has two stations for data
monitoring. The stations in the field were powered by solar panel, the sensors detect water level and
the recorder transfers water level information to data center every 10 min. After obtaining field water
level information, the field water demand model calculates the target flow for the San-Tiao-Zun inflow
station and operates the gate to meet the target flow. The layout of the experimental site is shown in
Figure 6.
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3.2. Model Establishment

The system dynamic program, VENSIM, combines the theories of cybernetics, system theory,
information theory, decision theory, and computer simulation. There are four main components to
be used in description of the dynamic change in the system; the relation between each component is
linked by an arrow line. These components are explained as follows.

• Level: Also called accumulated amount, the accumulation of flow inside the system, which
indicates the variable’s situation in a moment, for example, field storage; integral calculus
in mathematics.

• Rate: Also called rate amount, which implies the in or out storage flow. The value is obtained by
function calculation; differential calculus in mathematics.

• Auxiliary: Its main function is to describe the relation between Level and Rate, and makes the
system structure more clear. Another function is that of test value or test function.

• Arrow: It is used to connect auxiliary and flow formula.

The relation between each component is shown in Figure 7, and the variable-type mapping to
components is listed in Table 4. After inputting every component and parameter, the system dynamic
model can run under different scenarios.
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The procedure of field water demand model is represented in Figure 11. In addition to the basic
soil texture established in the model, rainfall, irrigation water, and field ponding depth were obtained
from the monitoring system. There are field monitoring stations set on the end of each block as shown
in Figure 12. The sensors in the monitoring stations detect water level then record and transfer the
information to the data center every 10 min. The field water demand model obtains field data from the
data center, and computes the field overflow, infiltration, and evapotranspiration to estimate the flow
of irrigation demand, which is transported to the data center within a cycle of two hours. The field
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ponding depth is simultaneously compared with the target depth. If the depth does not reach the target
value in any one of the five blocks, the model calculates the difference in terms of water volume of that
block and transmits the signal to the data center. The main inflow gate station, located at the upstream
of the study area, equipped with an advanced programmable logic controller which downloads the
required target flow from the data center every 10 min through the network, and the water gate is auto
fine-tuned to attain the target flow.
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3.3. Model Verification

To verify the model, the coefficient of correlation (R2) was used as a criterion. Based on the field
station setting limitations, the discharge data was available during the experimental period ranges
from 17 April 2015 to 6 May 2015. The discharge of the observed and simulated shows good fit in
similarity with the coefficient of correlation R2 equals 0.83 (Figure 13).
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4. Results and Discussion

In times of a drought event, if the water allocated to agriculture must be reduced, the irrigation
manager would reduce the irrigation water for each block depending on the growth stage and the
drought tolerance of paddy rice. In principle, the management method includes stopping the supply
of water in case of rainfall, or reducing irrigation to get through the drought event. Under this premise,
the study investigated the water accessing relationship for each block under different reduction
in irrigation. Two scenarios, 30% reduction and 50% reduction, were adopted to demonstrate the
application of the model suggested and identify the consequences in such operation.

4.1. Scenario 1: 30% Reduction of Planned Irrigation Water

Scenario 1 assumes 30% of water reduction from the original irrigation plan during the first crop
season. The simulation results are shown in Figure 14. It was depicted that, on 44th day the model
stops irrigation due to 150 mm rainfall that produced maximum drainage discharge. From the 55th to
the 63rd day, the irrigation meets the basic crop water requirement without producing any drainage
discharge. There was continuous rainfall higher than 50 mm during the 80th to 100th day, which
produce surface runoff, and the excess water was drained out. Until the 107th day, the target ponding
depth changes to only 3 cm, and the model discharge surplus water even with a rainfall of 25 mm.Water 2017, 9, 885  14 of 21 
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The simulation results of blocks 1–4 indicated that the target ponding depth with sufficient inflow
of irrigation water was achieved within five days. The relative water distribution of blocks 1–4 is
shown in Figures 15–18. However, block 5 suffers up to the 9th day to meet the allocated water and is
still not able to reach the target depth. The period from the 39th to 56th day is the rice booting, heading
and milk ripe stage, which required more ponding depth, as shown in Figure 19. However, block 5 did
not obtain sufficient water in this duration, which may lead to decline in rice productivity.
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Figure 19. Simulation of block 5 under 30% reduction of planned irrigation water during the first crop season.

Although block 5 did not have sufficient irrigation water to satisfy the target ponding depth of
every growth stage and the field storage curve remains away from its field capacity indicating that
during the drought event, the 30% reduction does not affect the growth of paddy rice. Thus, it should
be applied as a basic adjustment strategy. The simulated irrigation, discharge water, infiltration,
and crop evapotranspiration of each block are listed in Table 5. Under 30% reduction of planned
irrigation water, every block in the region has a discharge of 1.127–1.374 times the total irrigation water,
indicating that much stricter polices may be considered.
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Table 5. Simulation result of 30% reduction of planned irrigation water depth (mm) during the first
crop season.

B
lock

30%
D

iscountof
Planned

Irrigation
W

ater

TotalIrrigated
W

ater

R
ainfall

Infiltration

D
ischarge

C
rop

Evapotranspiration

D
ischarge

R
ainfall

D
ischarge

( Irrigated
w

ater)

1

1003.2

762.1 675 537.2

858.8

336.3

1.272

1.127
2 756.6 675 535.9 336.3 1.135
3 732.7 675 533.5 336.3 1.172
4 704.5 675 528.4 336.3 1.219
5 624.7 675 513.4 336.3 1.374

4.2. Scenario 2: 50% Discount of Planned Irrigation Water

The second scenario simulates a drought period where it received 50% of the planned irrigation
water. The drainage discharge decrease from the field due to less volume of water until rainfall
occurrence on the 44th day, as shown in Figure 20. The simulation results according to block are
described herein:

1. The target ponding depth is 5 cm for the 1st day to 20th day cropping period. Blocks 1–3 reach this
depth within 11 days, while block 4 reaches the target depth on the 34th day. The irrigation started
in a sequence from upstream to downstream and reduces the issue of lack of water. The upstream
fields receive the targeted depth irrigation and then transfer the water to downstream fields.
The simulation results of targeted water depth of blocks 1–4 are shown in Figures 21 and 23–25.

2. The water depth of block 5 dropped below the saturated soil moisture curve on the 6th day due
to lack of water. On the 21st day, the field storage turns lower than field capacity and the vertical
percolation stopped. Up to the 29th day, the decrease in field storage continued and reached to
the wilting point, also stopping the evapotranspiration, as shown in Figure 22.
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Figure 20. Irrigation, discharge, and rainfall simulation result for 50% reduction of the planned 
irrigation water during first crop season. 
Figure 20. Irrigation, discharge, and rainfall simulation result for 50% reduction of the planned
irrigation water during first crop season.
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The simulation results of scenario 2 indicated that only the block 5 could not obtain water and
reached to wilting point. The possible strategy to pass through drought period and to supply required
irrigation to all blocks, irrigate each block in rotation by adjusting all the gates and keep closing the
gates of upstream blocks when there is no need of irrigation. In this way the downstream blocks may
be ensured to receive the allocated irrigation water.

For the reduction of 50% water of the irrigation plan, the discharge of blocks 1–5 becomes
0.678–1.408 times the total irrigation water, as given in Table 6 However, the 5th block discharges extra
water due to the rainfall and before rainfall, and the rice plant may not survive.
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Table 6. Simulation of 50% reduction of planned irrigation water depth (mm) during the first
crop season.

B
lock

50%
D

iscountof
Planned

Irrigation
W

ater

TotalIrrigated
W

ater

R
ainfall

Infiltration

D
ischarge

C
rop

Evapotranspiration

D
ischarge

R
ainfall

D
ischarge

Irrigated
w

ater

1

716.6

761.5 675 537.3

516.0

336.3

0.764

0.678
2 740.7 675 534.7 336.3 0.697
3 703.7 675 528.3 336.3 0.733
4 558.0 675 498.4 336.3 0.925
5 366.6 675 420.4 325.5 1.408

5. Conclusions

This study applied the water balance method to establish water demand and a consumption
model of an experimental site, and carried out the analysis of minimum irrigation water requirement.
It achieves the coupling of field water monitoring system, the water demand estimation program and
IoT (Internet of Things) technology. Wireless communication and systematized field water requirement
models enabled this smart irrigation management to operate the field system through automatically
identifying the field irrigation water depth and delivering the target flow by controlling field water
gates through IoT.

The main crop in the study region was paddy rice, although approximately 30% of the area was
cultivated with upland crops. Due to the fact that farmers are free to alter crops season to season,
this irrigation management model is flexible enough to account for such changes. Scenario 1 analysis
with 30% reduction of irrigation water indicated that the soil water content was less affected, which
suggested such reduction can be the first step of policy implementation at the initiation of the drought
event. Scenario 2 analysis with a 50% reduction in irrigation water can be applied as a solution of
water shortage when the drought situation turns stricter. The results show that soil water content
reached wilting point only occurred in the last block 5, which should be irrigated to avoid reaching
the permanent wilting point before the 21st day. To achieve this, every block should be irrigated in
rotation, by adjusting all gates more frequently to ensure that the downstream blocks can receive the
allocated irrigation water.

In the future, innovative model and technology like this study should be applied to enhance
irrigation water management. However, such approach requires further investigation on the crop
types and associated water requirement parameters, as well as an irrigation water conveyance system
with control gates. In this case, the parameters for upland crop water requirement should be further
investigated to enhance the model adaptation for different types of upland crops. Furthermore,
a complete smart irrigation system should consider the influence of temperature, weather forecast
data, and the irrigation methods to enhance the effectiveness of the actual irrigation system.
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