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Abstract: In this paper, a novel meshless method for the transient modeling of subsurface flow in
unsaturated soils was developed. A linearization process for the nonlinear Richards equation using
the Gardner exponential model to analyze the transient flow in the unsaturated zone was adopted.
For the transient modeling, we proposed a pioneering work using the collocation Trefftz method
and utilized the coordinate system in Minkowski spacetime instead of that in the original Euclidean
space. The initial value problem for transient modeling of subsurface flow in unsaturated soils can
then be transformed into the inverse boundary value problem. A numerical solution obtained in the
spacetime coordinate system was approximated by superpositioning Trefftz basis functions satisfying
the governing equation for boundary collocation points on partial problem domain boundary in the
spacetime coordinate system. As a result, the transient problems can be solved without using the
traditional time-marching scheme. The validity of the proposed method is established for several
test problems. Numerical results demonstrate that the proposed method is highly accurate and
computationally efficient. The results also reveal that it has great numerical stability for the transient
modeling of subsurface flow in unsaturated soils.

Keywords: unsaturated soil; Richards equation; the Trefftz method; transient; the meshless method

1. Introduction

Increasing interest has been shown in recent years in understanding the behavior of unsaturated
soils. The prediction of moisture flow under transient conditions is important in engineering practice
when considering such practical problems as the design of shallow foundations, pavements, and
the stability of unsaturated soil slopes [1–4]. As a result, unsaturated flow has become one of the
most important and active topics of research. A complete theory of subsurface flow when rainfall
infiltrates unsaturated zones can be described using either the variably saturated flow equation or the
generalized Richards equation [5]. The Richards equation is a highly nonlinear equation governed by
nonlinear physical relationships. Nonlinear physical relationships can be described using soil–water
characteristic curves [6–8]. Since the Richards equation is highly nonlinear and cannot directly provide
an analytical solution, modeling flow process in unsaturated soils is usually based on the numerical
solutions of the Richards equation [9–15].

Numerical approaches to the simulation of the Richards equation using the mesh-based methods,
such as the finite difference method [16–19] or the finite element method [20–23], are well documented
in the past. Despite the great success of the mesh-based methods as effective numerical tools for the
solution of problems on complex domains, there is still growing interest in the development of new
advanced computational methods [24–26]. Meshless methods emerge as a competitive alternative to
discretization methods. Differing from conventional mesh-based methods, the meshless method has
the advantages that it does not need the mesh generation [27]. Problems involving regions of irregular
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geometry are generally intractable analytically [28]. For such problems, the use of numerical methods,
especially the boundary-type meshless method, to obtain approximate solutions is advantageous [29].
A significant number of such methods have been proposed, such as the Trefftz method [30,31], the
method of fundamental solution [32,33], the element-free Galerkin method [34], the reproducing kernel
particle method [35], and the meshless local Petrov–Galerkin approach [36].

The Trefftz method is probably one of the most popular boundary-type meshless methods for
solving boundary value problems where approximate solutions are expressed as a linear combination of
functions automatically satisfying governing equations [37,38]. Li et al. [39] provided a comprehensive
comparison of the Trefftz method, collocation, and other boundary methods, concluding that the
collocation Trefftz method (CTM) is the simplest algorithm and provides the most accurate solutions
with optimal numerical stability. Because the Trefftz method is originally developed to deal with
the boundary value problems in Euclidean space, the application the Trefftz method for solving
time-dependent problems is hardly found.

In this paper, we proposed a pioneering work using the CTM for transient modeling of subsurface
flow in unsaturated soils. Since the Richards equation is highly nonlinear, we first proposed a
linearization process for the nonlinear Richards equation using the Gardner exponential model [40,41].
To deal with the transient modeling, we adopted the coordinate system in Minkowski spacetime
instead of that in the original Euclidean space [42,43]. Based on Minkowski spacetime, we assume
that time is an absolute physical quantity that plays the role of the independent variable such that the
spacetime coordinate system is a mathematically (n + 1)-dimensional system including n-dimensional
space and one-dimensional of time [44]. In the spacetime coordinate system, both the initial and
boundary conditions can be treated as boundary conditions on the spacetime domain boundary.
Since the solution of final time on the other boundary of the domain is unknown, it becomes an
inverse boundary value problem which is to seek an unknown boundary function on boundaries
inaccessible for data measurement with the over specified boundary data on boundaries accessible for
data measurement. The initial value problem for transient modeling of subsurface flow in unsaturated
soils can then be transformed into the inverse boundary value problem.

A numerical solution obtained in the spacetime coordinate system was approximated by
superpositioning Trefftz basis functions satisfying the governing equation for boundary collocation
points on partial domain boundary in the spacetime coordinate system. As a result, the transient
problems can be solved without using the traditional time-marching scheme. The validity of
the proposed method is established for several test problems, including the investigation of the
accuracy and the comparison of the numerical with analytical solutions. Application examples of
the steady-state, the one-dimensional and two-dimensional transient problems of subsurface flow in
unsaturated soils were carried out.

2. Trefftz Method for Modeling Subsurface Flow in Unsaturated Soils

2.1. The Linearized Richards Equation

For modeling subsurface flow in unsaturated soil, the Richards equation is commonly used and it
may be written in three different forms such as the h-based form, the θ-based form, and the mixed
form. In this study, the h-based form is adopted. A complete three-dimensional Richards equation [5]
can be expressed as

∂

∂x

(
Kx(h)

∂h
∂x

)
+

∂

∂y

(
Ky(h)

∂h
∂y

)
+

∂

∂z

(
Kz(h)

∂h
∂z

)
+

∂Kz(h)
∂z

= C(h)
∂h
∂t

(1)

where h is the pressure head, t is time, x points down the ground surface, y points to the tangent of the
topographic contour passing through the origin, z is the vertical coordinate, normal to the xy plane,
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Kx(h), Ky(h), and Kz(h) are the unsaturated hydraulic conductivity functions in lateral directions and
the vertical direction, respectively, and C(h) is the specific moisture capacity function defined by

C(h) =
∂θm

∂h
(2)

where θm is the moisture content. The Richards equation, as shown in Equation (1), is highly nonlinear
because Kx(h), Ky(h), Kz(h) and C(h) are functions of h. To solve the Richards equation, three
characteristic functions are required and they are the unsaturated hydraulic conductivity function, the
soil–water characteristic curve, and the specific moisture capacity function [19]. Assuming that the
unsaturated soils are homogeneous and isotropic, the Richards equation governing two-dimensional
flow in unsaturated soils can be obtained as

∂

∂x

(
K

∂h
∂x

)
+

∂

∂z

(
K

∂h
∂z

+ 1
)
=

∂θm

∂t
(3)

It is common to normalize the hydraulic conductivity of unsaturated soil with respect to their
maximum value. The normalized value can be expressed as

Kr =
K
Ks

(4)

where Ks is the saturated hydraulic conductivity, and Kr is the relative hydraulic conductivity which is
a function of the pressure head. The governing equation can be obtained by substituting Equation (4)
into Equation (3),

∂

∂x

(
Kr

∂h
∂x

)
+

∂

∂z

(
Kr

∂h
∂z

)
+

∂Kr

∂z
=

1
Ks

∂θm

∂t
(5)

The above equation is the two-dimensional Richards equation. Gardner (1958) [40] proposed a
simple one-parameter exponential model as

Se = eαgh (6)

where αg is the parameter which is related to the pore size distribution of soil, and Se is the effective
saturation defined by normalizing volumetric water content with its saturated and residual values as

Se =
(θm − θr)

(θs − θr)
(7)

where θr represents the residual water content, and θs represents the saturated water content.
Substituting Equation (7) into Equation (6), we have,

θm = θr + (θs − θr)eαgh (8)

Therefore, the relative hydraulic conductivity is modeled by Gardner exponential model [40,45] as

Kr = eαgh (9)

Using the Gardner exponential model, the linearized Richards equation for two-dimensional
transient, two-dimensional steady-state and one-dimensional transient Richards equations can be
derived [46] as follows, respectively.

∂2h
∂x2 +

∂2h
∂z2 + αg

∂h
∂z

= c
∂h
∂t

(10)
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∂2h
∂x2 +

∂2h
∂z2 + αg

∂h
∂z

= 0 (11)

∂2h
∂z2 + αg

∂h
∂z

= c
∂h
∂t

(12)

where c = αg(θs−θr)
Ks

, h is the pressure head of the linearized Richards equation which can be defined as
h = eαgh − eαghd , and hd is the pressure head when the soil is dry.

2.2. The Trefftz Method in Euclidean Space

The CTM begins with the consideration of T-complete functions. For indirect Trefftz formulation,
the approximated solution at the boundary collocation point can be written as a linear combination of
the basis functions [31,47]. For a simply connected domain, one usually locates the source point inside
the domain and the number of source point is only one for in the CTM [48,49].

Considering a two-dimensional domain, Ω, in the polar coordinate, the Laplace governing
equation can be written as

∂2h
∂ρ2 +

1
ρ

∂h
∂ρ

+
1
ρ2

∂2h
∂θ2 = 0 in Ω (13)

with
h = f on ΓD (14)

hn =
∂h
∂n

on ΓN (15)

where ρ and θ are the radius and polar angle in the polar coordinate system, n denotes the outward
normal direction, ΓD denotes the boundary where the Dirichlet boundary condition is given, ΓN
denotes the boundary where the Neumann boundary condition is given, and f denotes the Dirichlet
boundary condition. For the Laplace equation, the particular solutions can be obtained using the
method of the separation of variables. The particular solutions of Equation (13) include the following
basis functions [50].

1, ln ρ, ρv cos(vθ), ρv sin(vθ), ρ−v cos(vθ), ρ−v sin(vθ) (16)

If we adopt the solution of a boundary value problem and enforce it to exactly satisfy the partial
differential equation with the boundary conditions at a set of points, this leads to the CTM.

Considering a simply connected domain, the CTM for the Laplace equation can be expressed as

h(x) ≈
m

∑
i=1

biTi(x) (17)

where x = (ρ, θ), bi =
[

A0 Ai Bi

]
, and Ti(x) =

[
1 ρi cos(iθ) ρi sin(iθ)

]T
. m is the order of

the T-complete basis functions for approximating the solution. A0, Ai and Bi are unknown coefficients
to be determined. The accuracy of the solution for the CTM depends on the order of the basis functions.
Usually, one may need to increase the m value to obtain better accuracy. However, the ill-posed
behavior may also grow up with the increase of the m value [51].

2.3. The T Basis Function for Steady-State Linearized Richards Equation

For modeling subsurface flow in unsaturated soils using the CTM, we first started from the
derivation of the CTM for the two-dimensional steady-state linearized Richards equation. The
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two-dimensional Richards governing equation can be expressed as Equation (5). Using the Gardner
exponential model, the steady-state linearized Richards equation can be derived as

∂2hs

∂x2 +
∂2hs

∂z2 + αg
∂hs

∂z
= 0 (18)

where hs is the steady-state pressure head of the linearized Richards equation. The standard process of
the separation of variables can now be used by taking the steady-state solution hs as

hs(x, z) = X(x)Z(z) (19)

Substituting Equation (19) into Equation (18) and dividing by X(x)Z(z) gives

1
X(x)

d2X(x)
dx2 +

1
Z(z)

(
d2Z(z)

dz2 + αg
dZ(z)

dz

)
= 0 (20)

Each term in the above equation must be a constant for a nonzero solution, so the following
are used.

1
X(x)

d2X(x)
dx2 = −λi (21)

1
Z(z)

(
d2Z(z)

dz2 + αg
dZ(z)

dz

)
= λi (22)

where λi = πi
Li

, i is the positive integer, and Li is the characteristic length. It can be found that
Equations (21) and (22) are simple ordinary differential equations that have solutions as

X(x) = Ai sin(λix) + Bi cos(λix) (23)

Z(z) = (Cisinh(βiz) + Di cosh(βiz))e
−αgz

2 (24)

where βi =

√
α2

g
4 + λ2

i , and Ai, Bi, Ci and Di are arbitrary constants to be evaluated. If we considered
a simply connected domain, the CTM for two-dimensional steady-state linearized Richards equation
can be expressed as

hs(x) ≈
m

∑
i=1

ciJi(x) (25)

where x = (x, z), ci =
[

c1i c2i c3i c4i

]
, and Ji(x) =

[
J1 J2 J3 J4

]T
. c1i, c2i, c3i and c4i are

unknown coefficients determined by the collocation method. The basis Ji(x) for the T basis functions
include four functions obtained from the separation of variables in the Cartesian coordinate system,
which are listed in Table 1.
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Table 1. T basis functions for two-dimensional linearized Richards equation.

Variable Function

Steady-State

Ji(x) =
[

J1 J2 J3 J4
]T

λi =
πi
Li

βi =

√
α2

g
4 + λ2

i
hs =

1
αg

ln(hs + eαghd )

J1 e
−αgz

2 sin(λix)sinh(βiz)
J2 e

−αgz
2 sin(λix) cosh(βiz)

J3 e
−αg z

2 cos(λix)sinh(βiz)
J4 e

−αgz
2 cos(λix) cosh(βiz)

Transient

Lik(x) =
[

L1 L2 L3 L4
]T

c = αg(θs−θr)
Ks

λi =
πi
Li

, λk = πk
Lk

γik = 1
c (β2

i + λ2
k)

hs = (1− eαghd ) sin(πx
Li
)e

αg
2 (Lk−z) sinh(βiz)

sinh(βi Lk)

h = ht + hs
h = 1

αg
ln(h + eαghd )

L1 e
−αg z

2 −γikt sin(λix) sin(λkz)
L2 e

−αgz
2 −γikt sin(λix) cos(λkz)

L3 e
−αg z

2 −γikt cos(λix) cos(λkz)

L4 e
−αgz

2 −γikt cos(λix) sin(λkz)

2.4. The Trefftz Method in Minkowski Spacetime

Considering a two-dimensional spacetime domain, Ωt, enclosed by a spacetime boundary, Γt,
the linearized Richards equation for two-dimensional transient subsurface flow in homogenous and
isotropic confined porous medium can be expressed as

∂2h
∂x2 +

∂2h
∂z2 + αg

∂h
∂z

= c
∂h
∂t

in Ωt (26)

Considering the time dimension, the pressure head is the time-dependent variable. The initial
condition can be described as

h(x, z, t) = g at t = 0 (27)

where g denotes the distribution of the pressure head in the spacetime domain, Ωt, at time zero. To
solve Equation (26), the boundary conditions must be given as follows.

h(x, z, t) = f on Γt
D (28)

hn(x, z, t) =
∂h
∂n

on Γt
N (29)

where Γt
D denotes the spacetime boundary where the Dirichlet boundary condition is given, Γt

N
denotes the spacetime boundary where the Neumann boundary condition is given, and f denotes the
Dirichlet boundary condition in the spacetime domain.

The transient pressure head of the linearized Richards equation [46,52] can be expressed as

h = ht + hs (30)

where ht is the transient pressure head of the linearized Richards equation. The transient linearized
Richards equation is determined by substituting Equation (30) into Equation (10), which gives

∂2ht

∂x2 +
∂2ht

∂z2 + αg
∂ht

∂z
= c

∂ht

∂t
(31)



Water 2017, 9, 954 7 of 22

The standard process of the separation of variables may be used by having the transient solution
ht as

ht(x, z, t) = P(x)Q(z)R(t) (32)

Substituting Equation (32) into Equation (31) and dividing by P(x)Q(z)R(t) gives

1
P(x)

d2P(x)
dx2 +

1
Q(z)

(
d2Q(z)

dz2 + αg
dQ(z)

dz

)
=

c
R(t)

dR(t)
dt

(33)

Each term in the above equation must be a constant for a nonzero solution, so the following
are used.

1
P(x)

d2P(x)
dx2 = −λ2

i (34)

1
Q(z)

(
d2Q(z)

dz2 + αg
dQ(z)

dz

)
= −λ2

k −
α2

g

4
(35)

c
R(t)

dR(t)
dt

= −
(

λ2
i + λ2

k +
α2

g

4

)
(36)

where λk =
πk
Lk

, k is the positive integer, and Lk is the characteristic length. The above equations are
simple ordinary differential equations that have solutions,

P(x) = Ei sin(λix) + Fi cos(λix) (37)

Q(z) = (Gk sin(λkz) + Hk cos(λkz))e
−αgz

2 (38)

R(t) = Iike−γikt (39)

where γik =
1
c (β2

i + λ2
k), Ei, Fi, Gk, Hk and Iik are arbitrary constants to be evaluated. If we considered

a simply connected domain, the CTM for two-dimensional transient linearized Richards equation can
be expressed as

ht(x) ≈
m

∑
k=1

o

∑
i=1

dikLik(x) (40)

where x = (x, z, t), dik =
[

d1ik d2ik d3ik d4ik

]
, and Lik(x) =

[
L1 L2 L3 L4

]T
. d1ik, d2ik, d3ik

and d4ik are unknown coefficients determined by the collocation method. m and o are the order of the
T basis functions for approximating the solution. The basis Lik(x) for the T basis functions include four
functions obtained from the separation of variables in the cartesian coordinate system, which are listed
in Table 1.

Again, the CTM for one-dimensional transient linearized Richards equation can also be composed
of a set of linearly independent vectors using the method of the separation of variables. Then, the
solution can be derived as the linear combination of these basis functions.

ht(x) ≈
m

∑
k=1

fkMk(x) (41)

where x = (z, t), fk =
[

f1k f2k f3k

]
, and Mk(x) =

[
M1 M2 M3

]T
. f1k, f2k and f3k are

unknown coefficients determined by the collocation method. The basis Mk(x) for the T basis functions
include three functions obtained from the separation of variables in the Cartesian coordinate system,
which are listed in Table 2.
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The above equations can be discretized at a number of collocated points on the spacetime
boundary using the initial and boundary conditions. Then, we obtained a system of simultaneous
linear equations as

Aα = B (42)

where A is a matrix with the size of aa× bb, α with the size of bb× 1 is a vector of unknown coefficients,
B with the size of aa × 1 is a vector of function values at collocation points, aa is the number of
collocation points, and bb is the number of the order of the T basis function. For simplicity, we adopted
the commercial program MATLAB backslash operator to solve Equation (42).

Table 2. T basis functions for one-dimensional linearized Richards equation.

Variable Function

Transient

Mk(x) =
[

M1 M2 M3
]T

c = αg(θs−θr)
Ks

λk = πk
Lk

µk = 1
c (

α2
g

4 + λ2
k)

hs = (1− eαghd ) 1−e−αgz

1−e−αg Lk

h = ht + hs
h = 1

αg
ln(h + eαghd )

M1 e
−αgz

2 −µkt sin(λkz)
M2 e

−αg z
2 −µkt

M3 e
−αgz

2 −µkt cos(λkz)

3. Numerical Examples

3.1. Steady-State Modeling of Two-Dimensional Subsurface Flow in Unsaturated Soil

Meshless methods only rely on a series of random collocation points to discretize the spatial
domain, which means not only onerous mesh generation is avoided, but also a more accurate
description of irregular complex geometries can be achieved. Therefore, we investigated a
two-dimensional steady-state unsaturated flow problem for an irregular boundary shape. With
a two-dimensional simply connected domain, Ω, enclosed by an irregular boundary, the governing
equation is expressed as

∂

∂x
(Kr

∂h
∂x

) +
∂

∂z
(Kr

∂h
∂z

) +
∂Kr

∂z
= 0 (43)

A two-dimensional object boundary under consideration is defined as

Ω = {(x, z)|x = ρ(θ) cos θ, z = ρ(θ) sin θ } (44)

where ρ(θ) =
1/3
√

cos 3θ +
√

2− sin2 3θ, 0 ≤ θ ≤ 2π. The linearized governing equation is expressed
as Equation (18). The boundary conditions are the Dirichlet boundary condition and the Dirichlet
boundary data is applied using the following analytical solution.

hs(x, z) = xe−αgz (45)

Finally, the steady-state solution can be obtained using the following equation.

hs(x, z) =
1
αg

ln(hs(x, z) + eαghd) (46)

The soil is assumed to have the αg in the Gardner exponential model of 2× 10−5. The pressure
head when the soil is dry is assumed to be hd = −103 (m). The Dirichlet boundary condition is given
on the boundaries using the analytical solution as shown in Equation (45). There are 51 boundary
collocation points and a source point. We selected m = 50 and Li = 180, and adopted the commercial
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program MATLAB backslash operator to solve the system of simultaneous linear equations. Figure 1
depicts the computed pressure head distribution. Comparing with the analytical solution, it is found
that highly accurate result in the order of 10−15 can be obtained for this example, as depicted in
Figure 2.

The previous example has demonstrated that the proposed method can be used to deal with the
two-dimensional steady-state subsurface flow in unsaturated soils for an irregular boundary shape
with very high accuracy. We further applied the proposed method to investigate the numerical solution
of a two-dimensional steady-state Green–Ampt problem in the following section [53].
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Figure 3 indicates a two-dimensional cross section of the soil with the dimensions of length
a = 50 (m) and height L = 10 (m), where a two-dimensional Green–Ampt problem is investigated.
A pool of water at ground surface is maintained holding the pressure head. The specified pressure
head, as shown in Equation (50), is applied at the top with pressure head set to zero in the center
and tapering rapidly to dry conditions at two sides of the boundary, as shown in Figure 3. The αg

parameter corresponding to the soil is also used. The bottom, left and right sides of the soil are in dry
condition maintained as hd = −20 (m). Therefore, the boundary conditions can be expressed as

h(0, z) = hd (47)

h(a, z) = hd (48)

h(x, 0) = hd (49)

h(x, L) =
1
αg

ln
(

eαghd + (1− eαghd)

(
3
4

sin(
πx
a
)− 1

4
sin(

3πx
a

)

))
(50)

The analytical solution [46] of two-dimensional steady-state linearized Richards equation is
given by

hs(x, z) = (1− eαghd)e
αg(L−z)

2

(
3
4

sin(
πx
a
)

sinh(β1z)
sinh(β1L)

− 1
4

sin(
3πx

a
)

sinh(β3z)
sinh(β3L)

)
(51)

where β1 =

√
α2

g
4 + (π

a )
2 and β3 =

√
α2

g
4 + ( 3π

a )
2
.

The steady-state solution can then be obtained using Equation (46). There are 200 boundary
collocation points uniformly distributed in the boundary. We selected m = 50 and Li = 50 for solving
this example. The computed results are depicted in Figure 4 which demonstrates that the process of
infiltration can continue if there is a pool of water at ground surface maintained holding the pressure
head for additional water at the soil surface. It is found that the best accuracy of the proposed method
can reach up to 10−13, as shown in Figure 5.Water 2017, 9, 954  11 of 23 
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3.2. Transient Modeling of One-Dimensional Flow in Unsaturated Soil

The second example under investigation is the transient modeling of one-dimensional flow in
unsaturated soil. The thickness of the soil (L) is 10 (m). The soil is assumed to have the αg in the Gardner
exponential model of 2× 10−5. The saturated hydraulic conductivity (Ks), saturated water content (θs),
and residual water content (θr) of this example are 10−4 (m/h), 0.35, and 0.14, respectively [54]. The
total simulation time (T) is one hour (h). The governing equation can be expressed as follows.

∂

∂z
(Kr

∂h
∂z

) +
∂Kr

∂z
=

1
Ks

∂θm

∂t
(52)

Using the Gardner exponential model, the linearized governing equation can be expressed as
Equation (12). The initial condition was the soil in dry condition maintained as hd = −100 (m). Thus,

h(z, 0) = hd (53)
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The boundary conditions are the Dirichlet boundary condition. The Dirichlet boundary data are
applied using the following analytical solution [46].

ht(z, t) =
2(1− eαghd)

Lc
e

αg(L−z)
2

m

∑
k=1

(−1)k(
λk
µk

) sin(λkz)e−µkt (54)

where µk =
1
c (

α2
g

4 + λ2
k). The h(z, t) can be obtained using the following equations.

h(z, t) = ht(z, t) + hs(z) (55)

hs(z) = (1− eαghd)
1− e−αgz

1− e−αg L (56)

Finally, the transient solution can be obtained as follows.

h(z, t) =
1
αg

ln
(

h(z, t) + eαghd
)

(57)

To deal with the transient modeling, we adopted the coordinate system in Minkowski spacetime
instead of that in the original Euclidean space. Based on Minkowski spacetime, we assume that time is
an absolute physical quantity that plays the role of the independent variable such that the spacetime
coordinate system is a n-dimensional space and one-dimensional time. In this example, there is
one-dimensional space and one-dimensional time. The spacetime domain is therefore a rectangular
shape, as shown in Figure 6b. We transformed the one-dimensional initial value problem, as depicted
in Figure 6a, for transient modeling of subsurface flow into two-dimensional inverse boundary value
problem. It should be noted that the initial and boundary conditions are both applied on the spacetime
boundary. In addition, it becomes an inverse boundary value problem because the right-side boundary
values in Figure 6b were not assigned.

The initial condition was applied on the left side of the spacetime domain and the boundary
conditions were applied on both top and bottom sides of the domain, as shown in Figure 6b.
By selecting the space interval (∆z) and time interval (∆t) for 0.05 (m) and 0.05 (h), there are 375
boundary collocation points and a source point. The Dirichlet boundary values were given on
boundary collocation points which collocated on three sides of the domain using the analytical solution
for the problem. We selected m = 50 and Lk = 10 for solving this example.

To obtain the computed results of the pressure head at different time, we collocated 2496 inner
points which uniformly placed inside the rectangular domain. To view the results clearly, the profiles
of the numerical solution on different time were selected to compare with the analytical solution.
Figure 7 indicates that the computed results agreed very well with the analytical solution. Results
obtained demonstrates that the accuracy of the absolute error can be reached to the order of 10−12. The
above numerical example also illustrates that the transient problem can be solved without using the
traditional time-marching scheme.

The previous example has validated the one-dimensional transient unsaturated flow problem
with the analytical solution. We further investigated the application of the one-dimensional transient
Green–Ampt problem using the proposed method. A column of soil is initially dry until water begins
to infiltrate the soil. A pool of water at ground surface is then maintained holding the pressure head to
zero. This is known as the one-dimensional Green–Ampt problem [53].

The thickness of the soil (L) is 10 (m). The soil parameters including αg, Ks, θs and θr are the same
as previous one. The total simulation time is 1 h. The governing equation is the same as shown in
Equation (52). The initial condition is also the same as shown in Equation (53), where the soil is in dry
condition maintained as hd = −1 (m).
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At time greater than zero, the boundary conditions at top and bottom of the soil can be expressed
as follows.

h(0, t) = hd (58)

h(L, t) = 0 (59)

The solution procedure is similar with the previous one which also adopted the coordinate system
in Minkowski spacetime. The imposed initial condition was applied on the left side of the domain
and the imposed boundary conditions were applied on both top and bottom sides of the domain.
By selecting ∆z = 0.05 (m) and ∆t = 0.05 (h), there are 375 boundary collocation points and a source
point. The Dirichlet boundary values from the given initial and boundary conditions were given on
boundary collocation points which collocated on three sides of the spacetime domain. We selected
m = 50 and Lk = 10 for solving this example.

To obtain the computed results of the pressure head at different time, we collocated 2496 inner
points which uniformly placed inside the rectangular spacetime domain. Figure 8 demonstrates the
absolute error of this example which demonstrates that the accuracy can be reached to the order
of 10−6.Water 2017, 9, 954  15 of 23 
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3.3. Transient Modeling of Two-Dimensional Flow in Unsaturated Soil

The third example under investigation is the transient modeling of two-dimensional flow in
unsaturated soil. With a two-dimensional simply connected domain, Ω, enclosed by amoeba-like
boundary, as shown in Figure 9a, the governing equation can be expressed as Equation (5). The
linearized Richards equation is expressed as Equation (10). The soil parameters including αg, Ks, θs

and θr are the same as previous one. The total simulation time is one (h). The initial condition was the
soil in dry condition maintained as hd = −100 (m). Thus,

h(x, z, 0) = hd (60)
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domain (three-dimensional inverse boundary value problem).

A two-dimensional amoeba-like object boundary under consideration is defined as

Ω = {(x, z, t)|x = ρ(θ) cos θ, z = ρ(θ) sin θ } (61)

where ρ(θ) = e(sin θ sin 2θ)2
+ e(cos θ cos 2θ)2

, 0 ≤ θ ≤ 2π.
The boundary conditions are assumed to be the Dirichlet boundary condition. The Dirichlet

boundary data are applied using the following analytical solution.

ht(x, z, t) = xe
−α2

gt
4c e

−αgz
2 (62)

The ht(x, z, t) can be obtained using the following equations.

h(x, z, t) = ht(x, z, t) + hs(x, z) (63)

hs(x, z) = (1− eαghd) sin(
πx
Li

)e
αg
2 (Lk−z) sinh(βiz)

sinh(βiLk)
(64)

Finally, the transient solution can be obtained as follows.

h(x, z, t) =
1
αg

ln
(

h(x, z, t) + eαghd
)

(65)
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To deal with the transient modeling of two-dimensional flow in unsaturated soil, we again adopted
the coordinate system in Minkowski spacetime instead of that in the original Euclidean space. In this
example, there is two-dimensional space and one-dimensional time. The spacetime domain is therefore
transformed a three-dimensional amoeba-like object domain, as shown in Figure 9b. We transformed
the two-dimensional initial value problem into the three-dimensional inverse boundary value problem
because the top side boundary values were not assigned, as depicted in Figure 9b. The initial condition
was applied on the bottom side of the spacetime domain and the boundary conditions were applied
on the circumferential amoeba-like boundary.

There are 3028 boundary collocation points and a source point. The Dirichlet boundary values
from the given initial and boundary conditions were given on boundary collocation points which
collocated on bottom and circumferential amoeba-like boundaries of the spacetime domain. We selected
m = 10, Li = 180 and Lk = 180 for solving this example.

To obtain the computed results of the pressure head at different time, we collocated 370 inner
points which uniformly placed inside the three-dimensional spacetime domain. Figure 10 illustrates
that the computed results agreed very well with the analytical solution. Figure 11 indicates the absolute
error of the two-dimensional computed results. It is found that highly accurate numerical solutions in
the order of 10−12 can be obtained for this example.

The previous example has validated the two-dimensional transient unsaturated flow problem
with the analytical solution. We further investigated the application of the two-dimensional transient
Green–Ampt problem using the proposed method. Figure 12a shows a two-dimensional cross section
of a soil with the dimensions of length a = 1 (m) and height L = 1 (m). The soil parameters including
αg, Ks, θs and θr are the same as previous one. The total simulation time is 1 h. This is known as the
two-dimensional Green–Ampt problem. The soil is initially dry until infiltration is supplied such that
a specified pressure head is applied at the top with pressure set to zero in the center and tapering
rapidly to dry condition at two sides of the boundary. The specified pressure head boundary condition,
as shown in Equation (70), is applied at the top of the soil. The bottom, left and right sides of the soil
are in dry condition maintained as hd = −1 (m), as depicted in Figure 12a.Water 2017, 9, 954  18 of 23 
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Figure 12. Schematic illustration of the two-dimensional transient Green–Ampt problem: (a) original
two-dimensional transient problem (two-dimensional initial value problem); and (b) collocation points
of two-dimensional transient problem in Minkowski spacetime domain (three-dimensional inverse
boundary value problem).
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The governing equation is the same as shown in Equation (5). The linearized Richards equation is
expressed as Equation (10). The initial condition was assumed to be dry. Thus,

h(x, z, 0) = hd (66)

The boundary conditions of the soil are as follows.

h(0, z, t) = hd (67)

h(a, z, t) = hd (68)

h(x, 0, t) = hd (69)

h(x, L, t) =
1
αg

ln
(

eαghd + (1− eαghd) sin(
πx
a
)
)

(70)

The analytical solution [46] for ht(x, z, t) can be expressed as

ht(x, z, t) =
2
Lc

(1− eαghd) sin(
πx
a
)e

αg(L−z)
2

m

∑
k=1

(−1)k(
λk
γik

) sin(λkz)e−γikt (71)

Finally, the transient solution can be obtained using Equations (63)–(65). The solution procedure
is similar with the previous one which also adopted the coordinate system in Minkowski spacetime.
The imposed initial condition was applied on the bottom side of the domain and the imposed boundary
conditions were applied on all four vertical sides of the domain, as shown in Figure 12b. By selecting
∆z = 0.05 (m) and ∆t = 0.05 (h), there are 736 boundary collocation points and a source point.
The Dirichlet boundary values from the given initial and boundary conditions were given on boundary
collocation points which collocated on five sides of the spacetime domain. We selected m = 10, Li = 1
and Lk = 1 for solving this example.

To obtain the results of the pressure head at different time, we collocated 4056 inner points which
uniformly placed inside the cubic spacetime domain. Results obtained demonstrate that the numerical
solution agreed very well with the analytical solution, as depicted in Figure 13. It is found that the
accuracy can be reached to the order of 10−5. The above numerical example also illustrates that the
two-dimensional transient unsaturated flow problem can be solved without using the traditional
time-marching scheme.Water 2017, 9, 954  20 of 23 
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4. Conclusions

This study has proposed a novel meshless method for the transient modeling of subsurface flow
in unsaturated soils. This pioneering study is based on the CTM and provides a promising solution for
transient modeling of subsurface flow in unsaturated soils. The validity of the model is established
for a number of test problems. Application examples of subsurface flow problems in unsaturated
soils were also carried out. The fundamental concepts and the construct of the proposed method are
addressed in detail. The findings are addressed as follows.

It is well known that the Richards equation is a highly nonlinear equation governed by nonlinear
physical relationships. In this study, we proposed a linearization process using the Gardner exponential
model for the nonlinear Richards equation to model the subsurface flow in unsaturated soils. As a
result, the CTM can be applied to the numerical modeling of subsurface flow in unsaturated soils.

The CTM is originally developed to deal with the boundary value problems. The pioneering
work in this study is the first successful attempt to solve the transient problem using the CTM. For the
transient modeling of the subsurface flow in unsaturated soils, we proposed an innovated concept that
one may adopt the coordinate system in Minkowski spacetime instead of that in the original Euclidean
space. Consequently, both the initial and boundary conditions can be treated as boundary conditions
on the spacetime domain boundary. The initial value problem for transient modeling of subsurface
flow in unsaturated soils can then be transformed into the inverse boundary value problem. As a
result, the transient problems can be solved without using the traditional time-marching scheme.

Results obtained from examples revealed that the proposed method could be easily applied
to one-dimensional and two-dimensional subsurface flow problems in unsaturated soils. Since the
proposed CTM is a boundary-type meshless method, it is advantageous, especially for problems
involving regions of irregular geometry. In addition, the proposed method can yield highly accurate
numerical solutions. The results of this study demonstrate that the applicability of the CTM may be
extended to other major engineering problems in the near future.
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