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Abstract: Several natural disasters occur because of torrential rainfalls. The change in global climate
most likely increases the occurrences of such downpours. Hence, it is necessary to investigate the
characteristics of the torrential rainfall events in order to introduce effective measures for mitigating
disasters such as urban floods and landslides. However, one of the major problems is evaluating
the number of torrential rainfall events from a statistical viewpoint. If the number of torrential
rainfall occurrences during a month is considered as count data, their frequency distribution could be
identified using a probability distribution. Generally, the number of torrential rainfall occurrences has
been analyzed using the Poisson distribution (POI) or the Generalized Poisson Distribution (GPD).
However, it was reported that POI and GPD often overestimated or underestimated the observed
count data when additional or fewer zeros were included. Hence, in this study, a zero-inflated model
concept was applied to solve this problem existing in the conventional models. Zero-Inflated Poisson
(ZIP) model, Zero-Inflated Generalized Poisson (ZIGP) model, and the Bayesian ZIGP model have
often been applied to fit the count data having additional or fewer zeros. However, the applications
of these models in water resource management have been very limited despite their efficiency and
accuracy. The five models, namely, POI, GPD, ZIP, ZIGP, and Bayesian ZIGP, were applied to
the torrential rainfall data having additional zeros obtained from two rain gauges in South Korea,
and their applicability was examined in this study. In particular, the informative prior distributions
evaluated via the empirical Bayes method using ten rain gauges were developed in the Bayesian
ZIGP model. Finally, it was suggested to avoid using the POI and GPD models to fit the frequency
of torrential rainfall data. In addition, it was concluded that the Bayesian ZIGP model used in this
study provided the most accurate results for the count data having additional zeros. Moreover, it was
recommended that the ZIP model could be an alternative from a practical viewpoint, as the Bayesian
approach used in this study was considerably complex.
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1. Introduction

The number of extreme rainfall events has increased drastically during the last two decades [1].
In addition, the extreme daily rainfall averaged over both dry and wet regimes shows robust increases
in both observations and climate models over the six decades [2]. The global flood cost due to extreme
rainfall events has reached a total of USD 470 billion since 1980 [3]. In addition, 8835 disasters,
1.94 million deaths and USD 2.4 trillion of economic losses were reported globally as a results of
droughts, floods, windstorms, etc. from 1970 to 2012 [4]. Moreover, climate change would likely
exacerbate this trend in the near future. The rainfall observations showed a general increase in the
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heavy or torrential rainfall at a global scale. The results predicted using a General Circulation Model
(GCM) indicated an increase in the extreme rainfall associated with global warming [5]. Saidi et al. [6]
discussed the intensification of heavy-rainfall events due to climate change in Italy.

In particular, climate anomalies have caused more torrential rainfalls and typhoons in South Korea.
South Korea has been experiencing unprecedented torrential rainfalls since 1998, e.g., 500 mm/day in
the Imjin River basin, 870 mm/day in the Gangwon Province, etc. As the mean annual rainfall that
occurred in South Korea was approximately 1300 mm, the rainfall record of 870 mm/day amounts to
approximately 65% of the mean annual rainfall. Recently, torrential rainfalls have become one of the
most frequent, widespread, severe meteorological hazards affecting South Korea. Moreover, natural
hazards associated with torrential rainfalls, such as flash flood, stream flooding, and landslides, occur
repeatedly [7].

The term torrential rainfall refers to rain that is pouring quite heavily. Although there is no
formal or scientific definition for torrential rainfall, the Meteorological Administration of South Korea
defines the rainfall to be torrential if the amount of rainfall is higher than 80 mm/day or 30 mm/h
because these rainfall intensities usually occur abrupt landslides. Hence, in this study, torrential
rainfall was defined as the amount of rainfall that is higher than 80 mm/day because only daily
rainfall data were collected. The magnitude of extreme rainfall at a specific return period by the
rainfall frequency analysis is very important because it is used as a reasonable design value for
various hydraulic structures such as levees, dams, etc. Meanwhile, the statistical characteristics of the
number of torrential rainfall occurrences are very important because it should be used for structural or
nonstructural measure to prevent flood in a given region of interest. Hence, the objective of this study
is to develop a methodology considering the statistical characteristics of the frequency distribution to
fit the number of torrential rainfall occurrences.

Many researchers modeled rainfall to understand flood, drought, and environmental processes
effectively. A stochastic model of precipitation that relates to the number of storms in a given time
interval was reported by Todorovic and Yevjevich [8]. They used the Poisson distribution to represent
the random properties of the rainfall process. Markov chain models were developed to represent the
sequence of rainfall series [9–12]. Instead of Markov chains, some studies used various probability
distributions. The gamma distribution containing two parameters was often used in fitting the rainfall
amount [13–15]. Other probability distributions such as exponential, mixed exponential, and Weibull
distributions were employed in the analysis of rainfall characteristics [16,17]. Nourani et al. [18]
used a multivariate ANN-wavelet technique to develop a rainfall–runoff model. Recently, Rauf and
Zeephongsekul [19] suggested nonparametric copulas to analyze the rainfall severity and duration
in Australia.

One of the difficulties of employing probability distributions to model rainfall events is that the
data pertaining to rainfall events are continuous consisting of exact zeros. Hence, it is difficult for most
statistical models to analyze events consisting of both discrete and continuous distributions [20].
As this study focuses on the number of torrential rainfall occurrences, the data, namely, count
data, can be modeled using the discrete probability distributions. For applications of count data,
the Poisson distribution has been widely used to represent their statistical properties. However,
it was reported that the Poisson distribution often underestimated or overestimated the observed
dispersion because of additional or fewer zeros. Cohen [21] and Lambert [22] showed that this
phenomenon might have occurred because a parameter in the Poisson distribution (POI) was often
insufficient to describe the same population. They suggested that the general Poisson distribution
(GPD) could not fit the count data having additional zeros. Therefore, they proposed the Zero-Inflated
Poisson (ZIP) model to solve the problem caused by additional or fewer zeros. After the development
of the ZIP model, Gupta et al. [23] proposed the Zero-Inflated Generalized Poisson (ZIGP) model.
They estimated three parameters in the ZIGP model using the Maximum Likelihood Estimation (MLE)
method and provided the asymptotic variance–covariance of the estimators. In particular, Angers and
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Biswas [24] proposed the Bayesian framework for the ZIGP model and showed the appropriate priors
and posteriors using the Monte Carlo integration via importance sampling.

The applications of the ZIP and ZIGP models for the count data were reported in scientific
areas such as sociology, engineering, and agriculture. However, in the field of water-related studies,
the application of the zero-inflated concept is quite limited. Silva et al. [25] used the ZIP model to
perform flood frequency analysis via the peaks-over-threshold method.

In this study, the five different models, POI, GPD, ZIP, ZIGP, and Bayesian ZIGP were developed
and applied to the torrential rainfall data obtained from the two rain gauges in South Korea.
In particular, in the procedure of the Bayesian framework, the informative prior distributions were
evaluated to provide more accurate results.

2. Models for Zero-Inflated Count Data

2.1. Zero-Inflated Poisson (ZIP) Model

Poisson distribution has been frequently used to model the count data [26,27]. However, one often
encounters count data where the number of zeros is such that the Poisson distribution cannot fit the
data. Bohning et al. [28] showed clearly this phenomenon using DMFT (Decayed, Missing and Filled
Teeth) data. Johnson et al. [29] suggested that zero-inflated concept could be used to resolve this
problem. Consider a discrete random variable, X with mass concentrated on the integers. If X = 0
is observed with frequency higher or lower than that predicted theoretically by the assumed model,
then the adjusted random variable X can be described as following equation.

P(X = 0) = ω + (1−ω)P(X = 0) (1)

P(X = j) = (1−ω)P(X = j), j = 1, 2, 3, ...

where ω is a weighting parameter. Thus, in the case 0 < ω < 1, this adjusted model can incorporate
extra zeros and, in the case ω < 0, this model can deal with fewer zeros than given by the original
model (ω = 0). This adjusted model is called as “ZIP model” when the Poisson distribution,
P(X) = exp(−λ)λx/x! is used in Equation (1). Thus, ZIP model can be described as Equation (2).
In addition, the two parameters in ZIP model, λ and ω, can be estimated simply by the method of
moments as Equation (3).

P(X = 0) = ω + (1−ω) exp(−λ), x = 0 (2)

P(X = j) = (1−ω)× 1
x!

λx

eλ
, j = 1, 2, 3, ...

ω̂ =
s2 − X

s2 + X2 − X
and λ̂ =

s2 + X2 − X
X

(3)

where s2 and X are the variance and mean of the sample data, respectively.

2.2. Zero-Inflated Generalized Poisson (ZIGP) Model

Consul and Jain [30] suggested the form of GPD with two parameters. This GPD provides a very
close fit to supposedly binomial, Poisson, and negative binomial data. Consul and Jain [30] showed this
phenomenon accurately through the analysis using various data such as industrial accidents, spatial
distribution of insects, etc. Equation (4) is the probability mass function of the GPD and Equation (5) is
the estimates to the two parameters by the method of moments. Especially, the conditions for α̂ and λ̂

should be satisfied as 0 ≤ α̂ < 1 and λ̂ > 0.

P(X) =
1
x!

λ(λ + αx)x−1e−λ−αx, x = 0, 1, 2, 3, ... (4)
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α̂ = 1±
√

X/s2 and λ̂ = (1− α̂)X (5)

The GPD developed by Consul and Jain [30] can also be applied to zero-inflated model to resolve
the problem from extra zeros or fewer zeros. The zero-inflated model with GPD is called as ZIGP
model and this model can be represented by Equation (6).

P(X = 0) = ω + (1−ω) exp(−λ), x = 0 (6)

P(X = j) = (1−ω)× 1
x!

λ(λ + αx)x−1e−λ−αx. j = 1, 2, 3, ...

where the parameter α having range 0 ≤ α ≤ 1 controls the form of ZIGP model. When α is zero,
then ZIGP model reduces to ZIP model. In ZIGP model, we have inflated zeros in the case of 0 < ω < 1
and also if (1− eλ)

−1
< ω < 0. The three parameters in ZIGP model can be estimated by MLE method.

Angers and Biswas [24] described the estimates by MLE to develop Bayesian ZIGP model. Let ni
be the number of times N takes the value i and suppose we have n sample observations in total.
By mathematical manipulation with ∑

i≥1
ni = n− n0 and ∑

i≥1
ini = nN, the likelihood function of ZIGP

model can be described as Equation (7). In this procedure, the objective is to maximize likelihood
function to the given data. This is performed by taking the three partial derivatives of likelihood
function and equating them to zero. The resulting set of equations is then solved simultaneously to
obtain the estimates to the three parameters, ω, α, λ.

L(ω, α, λ) =
[
ω + (1−ω)e−λ

]n0
∏
i≥1

[
(1−ω)

(1 + αi)i−1

i!
(λe−αλ)

i

eλ

]

=
[
ω + (1−ω)e−λ

]n0
(1−ω)n−n0 λnNe−(n−n0)λe−nNαλ∏

i≥1

(1 + αi)(i−1)ni

(i!)ni
(7)

2.3. Bayesian Zero-Inflated Generalized Poisson (Bayesian ZIGP) Model

2.3.1. Framework of the Bayesian ZIGP Model

The estimation of the number of torrential rainfall events using the Bayesian framework is very
useful because this approach incorporates various information, such as statistical data or expert
judgment, and it can be used appropriately when the size of the collected data is small. However,
the computing power required to solve a posterior distribution was insufficient, thereby limiting the
application of the framework during the 1970s and 1980s. After the 1980s, the growing computing
capacity and algorithms enabled the application of the Bayesian framework. Malakoff [31] mentioned
that a 236-year-old approach to statistics was making a comeback as it has the ability to factor
in hunches as well as hard data applications from pharmaceuticals to fisheries. Hence, recently,
the Bayesian approach has been widely used in the fields of science and engineering. In the planning
and management of water resources, such as flood or low-flow frequency analysis, regional analysis,
and calibration of rainfall–runoff models, several studies that incorporated the Bayesian approach
were conducted [32–38].

Despite numerous applications of the Bayesian approach, relatively fewer studies regarding the
development of the Bayesian framework using the ZIP or ZIGP model were conducted. Angers and
Biswas [24] employed a noninformative prior distribution and developed a posterior distribution for
the ZIGP model. In addition, they applied the importance sampling, which is a technique used in
the Monte Carlo integration, and argued that the classical statistical inference procedures, such as
the method of moment and MLE, were not always suitable to make inferences of the parameters
in the ZIP or ZIGP model. Ghosh et al. [39] performed the Bayesian analysis for the ZIP regression
model. They employed the Bayesian estimation method using conjugate priors and performed the
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Gibbs sampling technique to obtain a large number of random variates from a posterior distribution.
In particular, they suggested that the Bayesian framework outperformed the classical estimation
method, such as MLE, in terms of both bias and precision.

The Bayesian approach is based on specifying a probability model for the observed data D and
a vector θ of unknown parameters. Given the observed data D, the Bayes’ theorem can be used to
determine the posterior distribution of θ via the following equation.

π(θ|D) =
L(D|θ)π(θ)∫
L(D|θ)π(θ)dθ

(8)

where π(θ|D) is a posterior distribution, L(D|θ) is a likelihood function, π(θ) is a prior distribution,
and the denominator of the RHS (Right Hand Side) is a normalizing constant. In addition, θ is ω, α, λ

in Equation (7).

2.3.2. Elicitation of Prior Distribution

The most important and controversial step in developing the Bayesian framework is the selection
of a prior distribution, which represents the information of an uncertain parameter. Generally,
two types of prior distributions can be used to perform the Bayesian Markov Chain Monte Carlo
(MCMC) scheme using the Metropolis–Hastings algorithm. One is the noninformative prior
distribution, such as the conjugated distribution, and the other is the informative prior distribution
using the empirical Bayes method. If large amounts of data are available, noninformative prior
distribution can be useful. Many studies used the noninformative prior distribution [40–42]. As an
informative prior distribution uses the analyst’s beliefs regarding unknown parameters, it is contrary
to the mathematical definition of the noninformative prior distribution. However, if the sample size is
small or the available data only provide indirect information, the development of an informative prior
distribution becomes more useful [34,38]. As previously mentioned, the two-stage Bayes method [43],
the empirical Bayes method [34,38,44,45], and the maximum entropy method [46] were used to elicit
an informative prior distribution. Among the methods, the empirical Bayes method was used in this
study because it was the commonly used procedure, which enabled the use of the auxiliary empirical
data from some observations of the related parameters. In the empirical Bayes method, the unknown
parameters in the prior distribution should be estimated using the MLE method by collecting the
available data.

As the likelihood function for the ZIGP model was already described (Equation (7)), the prior
distribution for the three parameters in the ZIGP model can be elicited. Angers and Biswas [24] used
two uniform distributions and the Jeffreys’ prior distribution for the Poisson distribution. However,
the informative distributions using the empirical Bayes method were elicited in this study for more
realistic results. The detailed procedure for the elicitation of the informative prior distribution by
empirical Bayes method is described in Section 4.

2.3.3. Metropolis–Hastings Algorithms and Choice of Proposal Distribution

Equation (8) cannot be solved directly, as the prior and the posterior are not conjugate family.
In this case, numerical methods, such as the Gibbs sampling or Metropolis–Hastings algorithm based
on the Bayesian MCMC scheme, should be used to sample the data from the posterior distribution.

The Metropolis–Hastings algorithm [47] is the one of most popular algorithm for obtaining
a sequence of random samples from a probability distribution for which direct sampling is
difficult [48–50]. This algorithm simulates the Markov chains in the Monte Carlo integration to generate
a set of samples whose distribution converges to a posterior distribution. The Metropolis–Hastings
algorithm works by generating a sequence of values in such a way that the distribution of the values
more closely approximates the desired distribution. These sample values are produced iteratively
with the distribution of the next sample being dependent only on the current sample value. After the
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iterative sampling process, this algorithm selects a candidate for the next sample value based on
the current sample value. Finally, the candidate is either accepted or rejected using the acceptance
probability. Hence, the reasonable acceptance probability is most important to draw the desirable
random samples. The acceptance probability can be expressed using Equation (9).

ρ = min

[
q(θj

∣∣θj+1 )π(θj+1|D )

q(θj+1
∣∣θj )π(θj|D )

, 1

]
(9)

where ρ is the acceptance probability, which is less than 1. Moreover, π(θ) is a target distribution,
and q(θ) is a proposal distribution. Figure 1 shows the procedure of the Metropolis–Hastings algorithm
for the sampling from a posterior distribution.
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In these steps, the selection of the proposal distribution is crucial for obtaining the reasonable
acceptance rate (or acceptance probability). Roberts et al. [51] proposed that the acceptance rate
should be approximately 45%. Gamerman [52] indicated that the acceptance rate should be in the
range 20%–50%. In particular, the statistical properties of the Markov chain strongly depend on
the selected proposal distribution and its parameters. Chib and Greenberg [49] concluded that the
adequate proposal distributions can be selected from the five types of distributions that require the
specification of such tuning parameters, such as the shape and the scale. If some selected proposal
distribution shows poor mixing in the results, other distributions should be searched to improve the
simulated results.

In addition, the tuning of parameters in the selected proposal distribution is important to generate
well mixed results. There are two types of approaches: manual tuning through trial-and-error
and automatic tuning through some optimization techniques. The automatic tuning approach is
called as adaptive MCMC. In the case of the high dimensions, the adaptive MCMC, which asks the
computer automatically, can be used. This adaptive MCMC scheme has been applied in a variety of
studies [53–55]. However, if the dimensions of parameters are low, the tuning of parameters in the
selected proposal distribution can be performed by manual tuning.
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In this study, a normal distribution N(0,σ2) suggested by Metropolis et al. [47] was selected as
the proposal distribution. In addition, a manual tuning method was used because the number of
parameters was only one per the three parameters, ω, α, λ, and the adaptive MCMC methods was
too difficult.

The selected proposal distribution was very useful in the manipulation of the acceptance
probability because of the symmetry of the distribution. Note that when the selected proposal
distribution such as N(0,σ2) is symmetric, q(θ) and q(−θ) become the same. Therefore, the calculation
of the acceptance probability, ρ becomes simple.

The most important step to perform Metropolis–Hastings algorithm is to check the convergence
of the developed algorithm. Especially, the important issue is choosing σ in the proposal distribution.
If σ is very small, the almost proposed estimates will be accepted, but they will represent very small
movements, and finally, the chain will not mix well. In addition, if σ is too large, the almost proposed
estimates will be rejected and the chain will not move at all. Although the Metropolis–Hastings
algorithm has incorporated an enormous expansion of the classical statistical models, problems exist
pertaining to the convergence of simulation results [56]. When there is no convergence in the results,
the draws may be unrepresentative of the whole support the specific distribution and finally leads
to poor inference. Lee et al. [38] used the trace plot and three quantitative diagnostics by Gelman
and Rubin [57], Raftery and Lewis [58], and Geweke [59] to check the convergence of the developed
Metropolis–Hasting algorithm. Lee et al. [38] developed the codes for these diagnostics by Matlab
software (MathWorks, Natick, MA, USA). Therefore, these codes were used to check the convergence
of the algorithm in this study.

2.3.4. Gelman and Rubin’s Diagnostic

Based on normal theory approximation to exact Bayesian posterior inference, the Gelman and
Rubin’s diagnostic [57] is performed with the following steps:

1. Run m ≥ 2 chains of length 2n from over-dispersed starting values.
2. Discard the first n draws in each chain.
3. Calculate the within-chain variance (W) and between-chain variance (B).
4. Calculate the estimated variance of the parameter as a weighted sum of the within-chain and

between-chain variance.
5. Convergence is monitored by estimating the factor by which the scale parameter might shrink if

sampling were continued indefinitely as Equation (10):

√
R̂ =

√
(

n− 1
n

+
m + 1

mn
B
W

)
d f

d f − 2
(10)

where B is the variance between the means from the m parallel chains, W is the average of the m
within-chain variances, and df is the degrees of freedom of the approximating t density. In this
method, convergence can be evaluated by examining the proximity of shrink factor,

√
R̂ to 1.

In addition, it is noted that a higher level of precision may be required in this diagnostic.

2.3.5. Raftery and Lewis’s Diagnostic

Raftery and Lewis’s diagnostic [58] to detect convergence to the stationary distribution and to
provide a way of bounding the variance of estimates of quantile of functions of parameters was
used. Suppose the user wants to measure some posterior quantile of interest q. If the user defines
some acceptable tolerance r for q and a probability s of being within that tolerance, the Raftery–Lewis
diagnostic can calculate the number of iterations N and the number of burn-in M necessary to satisfy
the stationary conditions. The Raftery–Lewis diagnostic is performed with following steps:



Water 2017, 9, 123 8 of 20

1. Select a posterior quantile of interest q.
2. Select an acceptable tolerance r for this quantile.
3. Select a probability s, which is the desired probability of being within (q − r, q + r).
4. Run a pilot sampler to generate a Markov chain with minimum length using the inverse of the

normal cumulative distribution function.
5. Calculate the dependence factor, I. This factor can be interpreted as the proportional increase in

the number of iterations attributable to serial dependence. Especially, high dependence factor
(>5) means the mixing of chain is poor.

2.3.6. Geweke’s Diagnostic

Geweke [59] developed the diagnostic that compares the location of the sampled parameter
on two different time intervals. If the mean values of the parameter in the two time intervals are
somewhat close to each other, it is assumed that the two different parts of the chain have similar
locations in the state space. Thus, it is assumed that the two samples come from the same distribution.
Let us consider the sample parameters on two different time intervals such as A = {1 ≤ t ≤ nA}
and B = {n∗ ≤ t ≤ n} (1 < nA < n∗ < n and (nA + nB)/n < 1). In this case, the means for the
two different time periods, θA and θB can be calculated by Equation (11).

θA =
1

nA
∑
t∈A

θt and θB =
1

n− n∗ + 1 ∑
t∈B

θt (11)

If the chain has converged at time n0, then the two means θA and θB should be equal and Geweke’s
statistic has an asymptotically standard normal distribution as Equation (12).

Zn =

(
θA − θB

)√
1

nA
ŜA

θ (0) +
1

n−n∗+1 ŜB
θ (0)

→ N(0, 1) if n→ ∞ (12)

where ŜA
θ and ŜB

θ are spectral density in two different time periods. Therefore, the null hypothesis of
equal location is rejected if |Zn| is larger than critical value under the specific confidence level and this
finally indicates that the chain has not yet converged by time, n0. Practically, first step is to calculate the
test statistic, Z to the whole chain. If the test statistic is outside the 95% confidence interval, then calculate
the test statistic again after discarding 10%, 20%, 30%, and 40%. If the test statistic is still outside 95%
confidence interval for the last test, then the chain is considered as failed to converge.

3. Study Area and Data Characteristics

In this study, the statistical properties of the number of torrential rainfall occurrences at the Daegu
and the Busan rain gauges in South Korea were analyzed to apply and compare the developed models
such as POI, GPD, ZIP, ZIGP, and Bayesian ZIGP. The collected data lengths at two gauges were
32 years (1983–2014). Although the recent 30 years (e.g., 1981–2010) should be used to perform the
statistical analysis, 32 years (1983–2014) were used because the starting year of Daegu rainfall gauge
was 1983. Daegu is the third largest city after Seoul and Busan in South Korea. Busan is the second
largest city located in the southeastern region of the Korean peninsula. Hence, it is important to analyze
the statistical property of the occurrences of torrential rainfall to prevent disasters, such as urban flood,
in the two cities. Especially, the additional rainfall data were selected from 10 rain gauges (Yeongju,
Mungyeong, Uiseong, Gumi, Yeongcheon, Geochang, Hapcheon, Miryang, Pohang, and Ulsan) to
elicit an informative prior distribution using the empirical Bayes method.

Figure 2 shows the location of the two target rain gauges (red colored) and the 10 additional rain
gauges (white colored). Table 1 lists the detailed information of the 12 rain gauges and the descriptive
statistics of the rainfall data during the 32 years (1983–2014). In addition, Figure 3 shows the trend
of the number of torrential rainfall events within a month at the Daegu and the Busan rain gauges.
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In Figure 3, it is suggested that the number of torrential rainfall events within a month were increased
after 1994 and 1993 at the Daegu and the Busan rain gauges, respectively.

Table 1, column 6 represents the number of months when the torrential rainfall occurred more
than once during a month. In addition, Table 2 gives the frequency distributions for the torrential
rainfall occurrences for the 12 rain gauges. The numbers of torrential rainfall events within a month
were 0–6 because the maximum number of torrential rainfall occurrence within a month was 6 in the
collected rainfall data. In Table 1, the highest number (129) of torrential rainfalls for the 384 months
occurred at the Geochang rain gauge and the lowest number (56) of torrential rainfalls occurred at
the Yeongcheon rain gauge. Moreover, in Table 2, the highest number of zeros (328) occurred at the
Yeongcheon rain gauge and the lowest number of zeros (255) occurred at the Geochang rain gauge.
In particular, at the Busan, Yeongju, Mungyeong, Gumi, Geochang, Miryang, and Pohang rain gauges,
more than six torrential rainfalls occurred during a given month in the 384 months.
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Figure 2. Location of 2 target rainfall gauges and 10 additional rainfall gauges. Target rainfall gauges
(red): 1–Daegu; and 2–Busan. Additional rainfall gauges: 3–Yeongju; 4–Mungyeong; 5–Uiseong;
6–Gumi; 7–Yeongcheon; 8–Geochang; 9–Hapcheon; 10–Milyang; 11-Pohang; and 12–Ulsan.
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Table 1. Detailed information of 12 rainfall gauges.

Rainfall
Gauges Latitude Longitude Elevation

(EL, m)
Annual Mean
Rainfall (mm)

Number of Months
(Torrential Rainfall

Occurrence)

Number
of Zeros

Daegu 35.885 128.619 64.1 1087 75 309
Busan 35.105 129.032 69.6 1344 109 275

Yeongju 36.872 128.517 210.8 1125 89 295
Mungyeong 36.627 128.149 170.6 1095 87 297

Uiseong 36.356 128.689 81.8 1039 73 311
Gumi 36.131 128.321 48.9 1104 73 311

Yeongcheon 35.977 128.951 93.6 1074 56 328
Geochang 35.671 127.911 221.0 1334 129 255
Hapcheon 35.565 128.170 33.1 1317 124 260
Miryang 35.491 128.744 11.2 1249 117 267
Pohang 36.033 129.380 2.3 1274 103 281
Ulsan 35.560 129.320 34.6 1287 107 277

Table 2. Frequency distributions for the number of months of torrential rainfall occurrences.

Rainfall Gauges
Number of Torrential Rainfall Events Within a Month

Total
0 1 2 3 4 5 6

Daegu 309 53 18 2 2 0 0 384
Busan 275 67 32 5 4 0 1 384

Yeongju 295 60 25 1 1 1 1 384
Mungyeong 297 57 22 3 2 2 1 384

Uiseong 324 42 14 3 1 0 0 384
Gumi 311 50 15 4 2 1 1 384

Yeongcheon 328 49 6 1 0 0 0 384
Geochang 255 80 35 8 4 1 1 384
Hapcheon 260 87 32 4 1 0 0 384
Miryang 267 81 27 4 3 1 1 384
Pohang 281 69 29 2 2 0 1 384
Ulsan 277 78 24 2 2 1 0 384

4. Discussion

Before the elicitation of an informative prior distribution by empirical Bayes method,
the homogeneity of the selected rain gauges should be checked. The cluster analysis can be used to
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identify the homogenous group. Goyal and Gupta [60] identified homogenous rainfall regimes in the
Northeast region of India using the fuzzy cluster analysis. When the data sets of the rainfall from
a specific gauge are homogeneous to the rainfall datasets from other gauges, the data from the other
gauges can be used to elicit the prior distribution under ergodic assumption. The ergodic assumption
means that time average of a time series is the same as its spatial average. In this study, the cluster
analysis using Matlab (Matrix laboratory, R2010a, MathWorks) was performed. Matlab cluster toolbox
provides the two types of cluster analysis methods, K-means and hierarchical clustering. Among these,
only K-means clustering was performed to group the homogeneous gauges. The objective of the
cluster analysis is to find the linear combinations of a set of variables such that a few components that
describe most of the variability of the original set are obtained. In this study, the annual mean rainfall
and the number of torrential rainfalls at 12 rain gauges, given in Table 1, were used as variables for
the cluster analysis. Although the location or elevation information can be used as another variables
for cluster analysis, these variables were excluded in the cluster analysis because the homogeneity on
the annual mean rainfall and the number of torrential rainfalls was important to elicit the informative
prior distribution. Figure 4 shows the results of the clustering analysis using the k-means algorithm.
Among the 12 rain gauges, Daegu, Yeongju, Mungyeong, Uiseong, Gumi, and Yeongcheon rain gauges
were considered one group and Busan, Geochang, Hapcheon, Miryang, Pohang, and Ulsan rain gauges
were considered the other.
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After the grouping process using the cluster analysis, the empirical Bayes method was applied.
The empirical Bayes method uses the classical techniques to fit the prior distribution to the available
data from the two groups. Although this procedure is not a pure Bayesian method from a philosophical
viewpoint of Bayesian analysis, it can be a pragmatic approach for the elicitation of an informative
prior distribution. First, the three parameters, ω, α, λ, of the ZIGP model should be estimated using
the classical estimation method MLE for the number of torrential rainfall data, given in Table 2. Table 3
gives the estimated results to the three parameters for the 12 rain gauges.

The most suitable probability distribution should be selected for the elicitation of an informative
prior distribution after performing the parameter estimation on each data set. To select a suitable
probability distribution, four statistical tests, χ2 test, Kolmogorov–Smirnov (K-S) test, Cramer Von
Mises test (CVM test), and Probability Plot Correlation Coefficient test (PPCC test), were used in this
study. For more detailed theory to these tests, refer to [61]. When the test values in χ2 test, K-S test,
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and CVM test are smaller than the table values, the probability distribution can be used. In addition,
in PPCC test, when the calculated values are larger than the table value, the probability distribution
can be used. The used significance levels in all tests in this study were 5%. These tests were coded by
Matlab software (MathWorks).

Table 3. Estimates of the three parameters of the ZIGP model for the 12 rainfall gauges.

Group I Estimated α Estimated λ Estimated ω

Daegu 0.023992 0.675029 0.614373
Yeongju 0.066584 0.897875 0.626508

Mungyeong 0.117776 1.140179 0.688344
Uiseong 0.038740 0.674795 0.678778

Gumi 0.127569 1.129153 0.737419
Yeongcheon 0.052796 0.257250 0.395497

Group II Estimated α Estimated λ Estimated ω

Busan 0.066026 0.999810 0.579964
Geochang 0.057089 1.050627 0.501002
Hapcheon 0.073083 0.574802 0.261814
Milyang 0.049425 0.940706 0.529185
Pohang 0.032599 0.819537 0.534272
Ulsan 0.136015 0.693241 0.461623

Notes: * α, λ, and ω are three parameters of ZIGP model.

Tables 4 and 5 give the results of the four statistical tests for the three probability distributions:
two-parameter Log Normal distribution (LN2), Generalized Extreme Value distribution (GEV),
and two-parameter Weibull distribution (WBU2). In this selection, the PPCC test provided the critical
clue. Finally, Table 6 gives the summary of the informative prior distributions and the hyper-parameter
values, which were estimated using MLE. In Table 6, the hyper-parameters 1 and 2 were the estimated
parameter of the LN2 (mean and standard deviation) or WBU2 (scale and shape), and the superscript
on each parameter represents groups 1 and 2. Finally, the informative prior distribution for the
Bayesian ZIGP model was represented under the assumption of the three parameters in ZIGP model,
which were independent of each other. Hence, Equations (13) and (14) were developed as the final
informative prior distributions in the Bayesian ZIGP model for the groups 1 and 2.

(Group 1) π(α, λ, ω) = LN2(µ̂1
α, σ̂1

α)×WBU2(κ̂1
λ, β̂1

λ)×WBU2(κ̂1
ω, β̂1

ω) (13)

(Group 2) π(α, λ, ω) = WBU2(κ̂2
α, β̂2

α)×WBU2(κ̂2
λ, β̂2

λ)× LN2(µ̂2
ω, σ̂2

ω) (14)

As the likelihood function and prior distributions of groups 1 and 2 were completely developed,
the three estimated parameters could be sampled from the posterior distribution in the Bayesian ZIGP
model. To do this sampling, Metropolis–Hastings algorithm was employed because the posterior
distribution in Equation (8) was quite complex.

Table 4. Selection of the probability distribution for group 1.

Distribution χ2 Test Decision K-S Test Decision CVM Test Decision
PPCC Test

Decision
Cal. Table

α

LN(2) 3.00 accepted 0.20 accepted 0.13 accepted 0.93 0.92 accepted
GEV 5.75 rejected 0.25 accepted 0.18 accepted 0.92 0.92 rejected

WBU(2) 3.00 accepted 0.25 accepted 0.17 accepted 0.64 0.65 rejected

λ

LN(2) 1.67 accepted 0.25 accepted 0.21 accepted 0.90 0.92 rejected
GEV 6.08 rejected 0.23 accepted 0.15 accepted 0.92 0.00 rejected

WBU(2) 3.33 accepted 0.25 accepted 0.17 accepted 0.89 0.65 accepted
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Table 4. Cont.

Distribution χ2 Test Decision K-S Test Decision CVM Test Decision
PPCC Test

Decision
Cal. Table

ω

LN(2) 1.00 accepted 0.25 accepted 0.23 accepted 0.89 0.93 rejected
GEV 6.00 rejected 0.24 accepted 0.16 accepted 0.91 0.00 rejected

WBU(2) 1.00 accepted 0.26 accepted 0.17 accepted 0.89 0.65 accepted

Notes: Table value of χ2 test: 3.84. Table value of Kolmogorov–Smirnov (K-S) test: 0.38. Table value of Cramer Von
Mises (CVM): 0.45. PPCC: Probability Plot Correlation Coefficient.

Table 5. Selection of the probability distribution for group 2.

Distribution χ2 Test Decision K-S Test Decision CVM Test Decision
PPCC Test

Decision
Cal. Table

α

LN(2) 1.33 accepted 0.23 accepted 0.13 accepted 0.90 0.93 rejected
GEV 7.00 rejected 0.17 accepted 0.13 accepted 0.90 0.91 rejected

WBU(2) 2.00 accepted 0.16 accepted 0.11 accepted 0.91 0.65 accepted

λ

LN(2) 1.67 accepted 0.19 accepted 0.08 accepted 0.91 0.93 rejected
GEV 8.42 rejected 0.18 accepted 0.08 accepted 0.90 0.91 rejected

WBU(2) 1.67 accepted 0.23 accepted 0.11 accepted 0.95 0.65 accepted

ω

LN(2) 2.12 accepted 0.23 accepted 0.23 accepted 0.93 0.92 accepted
GEV 14.08 rejected 0.27 accepted 0.12 accepted 0.92 0.93 rejected

WBU(2) - rejected - rejected - rejected - - rejected

Notes: Table value of χ2 test: 3.84. Table value of K-S test: 0.38. Table value of CVM: 0.45.

Table 6. Summarization of the selected distribution as an informative prior distribution.

Group 1

ZIGP parameters Selected distribution Hyper-parameter 1 Hyper-parameter 2

α LN2 µ̂1
α = −2.653 σ̂1

α = 0.542
λ WBU2 κ̂1

λ = 0.842 β̂1
λ = 2.080

ω WBU2 κ̂1
ω = 0.651 β̂1

ω = 5.139

Group 2

ZIGP parameters Selected distribution Hyper-parameter 1 Hyper-parameter 2

α WBU2 k̂2
α = 0.086 β̂2

α = 1.724
λ WBU2 κ̂2

λ = 0.859 β̂2
λ = 6.634

ω LN2 µ̂2
ω = −0.731 σ̂2

ω = 0.166

Notes: ZIGP: Zero-Inflated Generalized Poisson; LN2: Log Normal distribution; WBU2: Two-parameter
Weibull distribution.

5. Performance of the Metropolis–Hastings Algorithm and Convergence

The Metropolis–Hastings algorithm coded on Matlab (Matrix laboratory, R2010a, MathWorks)
generated 2100 estimates from the posterior distribution using the Bayesian ZIGP model (Equation (8)).
In this posterior distribution, the likelihood function (Equation (7)) and the two prior distributions for
groups 1 and 2 (Equations (13) and (14)) were used. Moreover, “burn-in”, which describes the number
of estimates to be excluded in the total estimates, was 100. The mathematical background for range to
perform “burn-in” is another issue. The range of excluded estimates was decided subjectively by trace
plot in this study. Hence, only 2000 estimates were used to analyze the statistical characteristics of the
occurrences of the torrential rainfalls in the Daegu and the Busan rain gauges. Moreover, σα, σλ, σω
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in the normal type proposal distribution for the three ZIGP parameter were fixed first by two values
(σα = 0.01 and 0.10; σλ = 0.20 and 2.00, σω = 0.15 and 1.50).

Figure 5 shows the trace plots for the results of the estimates of the three parameters in the
Bayesian ZIGP model. In the estimation procedure, if σ is too large, then the most proposed estimates
will be rejected and the chain will not move at all. In addition, if σ is too small, then the most proposed
estimated will be accepted, but they will represent very small movements and finally the chain will
not mix well [38]. These two cases are called “poor mixing”.
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In the case of σα = 0.10, σλ = 2.00, and σω = 1.50, the acceptance rate was approximately 5.5%,
and this result showed that the almost proposed estimates were rejected and the chain did not move
(poor mixing). However, in the case of σα = 0.01, σλ = 0.20, and σω = 0.15, the acceptance rate was
38.5%, and this value showed good mixing. The results of the three parameters for the Busan rainfall
gauge were almost the same as that of the Daegu rainfall gauge. Hence, it was suggested that the
selected parameters, σα, σλ, σω by trial-and-error were reasonable for the simulation of the estimates.

In this study, three additional diagnostics (Gelman and Rubin diagnostic, Rafter and Lewis
diagnostic, and Geweke diagnostic) were used to check the convergence of the generated estimates
via the Metropolis–Hastings algorithm. In the Gelman and Rubin diagnostic, the convergence of
the algorithm can be satisfied when the value is close to one. In the case of Rafter and Lewis,
the diagnostic was greater than five, and the chain obtained using the Metropolis–Hastings algorithm
can be considered poorly mixed. Moreover, in the Geweke diagnostic, if the test statistic is outside the
95% confidence interval, the algorithm can be considered to fail the convergence. The 95% confidence
interval is usually used in engineering and scientific analysis. Table 7 gives the results of the three
diagnostics obtained using Gelman and Rubin, Rafter and Lewis, and Geweke. In this table, it was
also suggested that the parameters σα, σλ, σω selected via trial-and-error were reasonable.

Table 7. Results of the three additional diagnostics.

Cases Gelman and Rubin Raftery and Lewis Geweke Decision

σα = 0.10 1.2584 5.84 −2.125 Poor
σα = 0.01 1.0104 1.05 −1.654 Good
σλ = 2.00 1.3548 4.98 −2.001 Poor
σλ = 0.20 1.1120 2.01 −1.451 Good
σω = 1.50 1.1586 4.48 −2.748 Poor
σω = 0.15 1.0001 1.05 −1.889 Good

6. Result and Comparison between the Five Models

The five statistical models POI, GPD, ZIP, ZIGP, and Bayesian ZIGP were applied to the torrential
rainfall data observed from the Daegu and the Busan rain gauges. Table 8 gives the final estimated
parameters of the five models. In Table 8, the weighting parameters ω for the ZIP, ZIGP, and Bayesian
ZIGP models were 0.6163, 0.6144, and 0.5981 at the Daegu rain gauge and 0.5800, 0.5727 and 0.5301
at the Busan rain gauge, respectively. These results show that the estimated weighting parameter ω

obtained using the Bayesian ZIGP model was the smallest in two gauges. Moreover, the value obtained
using the ZIP model was the largest in the two gauges.

Table 8. Estimated parameters in Poisson distribution (POI), Generalized Poisson Distribution (GPD),
Zero-Inflated Poisson (ZIP), model, Zero-Inflated Generalized Poisson (ZIGP), Bayesian ZIGP.

Distributions POI GPD ZIP ZIGP Bayesian ZIGP

Daegu rain gauge

Estimated α - 0.1640 - 0.0240 0.0140
Estimated λ 0.1198 0.2242 0.6990 0.6750 0.6613
Estimated ω - - 0.6163 0.6144 0.5981

Busan rain gauge

Estimated α - 0.2060 - 0.0660 0.0100
Estimated λ 0.2708 0.3474 1.0238 0.9998 0.9308
Estimated ω - - 0.5800 0.5727 0.5301

Table 9 and Figure 6 give the observed and the fitted frequency distributions obtained from
the five different models. In the Daegu rain gauge, the POI and GPD models could not provide
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adequate fitted results to the observed data. In particular, the two models underestimated the number
of torrential rainfalls at Count 0 and overestimated at Count 1. Hence, it was concluded that the results
obtained from these cases had the same conclusions as that of the earlier studies [28]. From these
results, it was known that the frequency of the number of zeros could not be fitted using the POI and
GPD methods when the frequency X = 0 was significantly high. Finally, it was suggested that the
application of the POI and GPD models to predict the occurrence of extreme torrential rainfall data
should be avoided despite their simplicity. Although, the POI and GPD models failed to simulate
the observed data, ZIP, ZIGP, and Bayesian ZIGP models could provide reasonable results for the
observed data.

Table 9. Comparison between the observed and fitted frequencies.

Models Observed POI GPD ZIP ZIGP Bayesian ZIGP

Daegu rain gauge

Number of
torrential

rainfall events
within a month

0 309 294 296 310 311 309
1 53 79 72 51 50 52
2 18 11 14 18 18 18
3 2 1 1 4 4 3
4 2 0 1 1 1 2
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Total 384 384 384 384 384 384

Busan rain gauge

Number of
torrential

rainfall events
within a month

0 275 248 250 279 290 275
1 67 108 99 60 52 67
2 32 24 25 31 27 31
3 5 4 8 11 10 6
4 4 0 3 3 4 4
5 0 0 1 1 1 0
6 1 0 0 0 0 1

Total 384 384 384 384 384 384
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In the Busan rain gauge, the results obtained using the POI and GPD models were the same as
those of the Daegu rain gauge. However, the results obtained using the ZIGP model were different from
those in the Daegu rain gauge. In Table 9 and Figure 6, it was shown that the ZIGP model overestimated
the number of torrential rainfalls at Count 0 and underestimated at Count 1. These conflicting results
of the Daegu rain gauge were due to the estimation method used in the ZIGP model. Angers and
Biswas [24] argued that the classical statistical inference procedures, such as the MLE and large
sample approximation of a confidence interval, were not always suitable to make inferences of the
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parameters in the ZIGP model. In addition, the advantages of Bayesian approach were reported by
many manuscripts in the field of statistical hydrology [34,35,38,62,63]. Hence, it was concluded that
the ZIGP model used for the estimation of the number of torrential rainfall data might not always
provide accurate results. However, the Bayesian ZIGP model fitted the observed data on all counts
except Counts 1 and 3 at Daegu rain gauge and Counts 2 and 3 at Busan rain gauge. In particular,
only the Bayesian ZIGP model simulated the number of torrential rainfall occurrence at Count 6
accurately. Hence, in the Daegu and the Busan rain gauges, the results of the Bayesian ZIGP model
with the informative prior distribution were the best. Moreover, the results obtained using the ZIP
model were similar to those obtained using the Bayesian ZIGP model. Hence, it was concluded that
the Bayesian ZIGP model could be a reasonable choice to analyze the number of torrential rainfall
data. In addition, the ZIP model could be recommended as an alternative choice from the viewpoint of
practicality because the procedure of the Bayesian ZIGP model using an informative prior distribution
was complex.

7. Conclusions

As already mentioned in the Introduction, the occurrences of torrential rainfall events due to
climate change have increased drastically during the last two decades. The identification of a statistical
property to evaluate the occurrences of torrential rainfalls is very important for water resource
management because the natural disasters due to torrential rainfall threaten the economic stability and
cost human lives. Hence, the objective of this study is to identify the statistical characteristics of the
number of torrential rainfall occurrences.

In general, POI has been applied to model the occurrences of rainfall. However, one of
the difficulties of applying the probability distribution, such as the Poisson model, is that the
data pertaining to rainfall events are random variables with exact zeros. Hence, POI often
underestimates or overestimates the observed rainfall occurrences because of the additional or
fewer zeros. To overcome this problem, the concept of the ZIP and ZIGP models was developed.
Moreover, the Bayesian framework using the zero-inflated concept was developed to fit the data more
accurately. However, only few studies have used the zero-inflated concept for rainfall analysis despite
its scientific advantages.

Hence, in this study, five different models, POI, GPD, ZIP, ZIGP, and Bayesian ZIGP,
were developed and compared to determine the efficiency of the zero-inflated concept in modeling
the occurrences of torrential rainfall events. Moreover, in the procedure of the Bayesian ZIGP
model, the informative prior distributions were elicited to provide more accurate and realistic results.
The empirical Bayes method was applied to elicit the informative prior distributions, and the cluster
analysis with k-means algorithm was applied to group the homogeneous rainfall gauges.

The daily rainfall data during the 32 years (1983–2014) were collected at two rain gauges
(Daegu and Busan) and additional ten daily rainfall data during the same years were collected to
apply the empirical Bayes method to elicit the informative prior distributions. From the collected data,
the number of months for which the torrential rainfall occurred more than once during a month was
calculated at each rainfall gauge. After the calculation of the frequency distribution, the five developed
models were applied to each rainfall data. In the Bayesian ZIGP model with an informative prior
distribution, the estimates from the posterior distribution were sampled using the Bayesian MCMC
scheme via Metropolis–Hastings algorithm.

The results showed that the POI and GPD models, which have been frequently used to fit the
data pertaining to rainfall occurrences, could not provide adequate results for the observed data.
Hence, it was founded that the application of the POI and GPD models for the rainfall-occurrence
modeling should be avoided despite their simplicity. In addition, it was concluded that the ZIGP
model along with the MLE might not always provide accurate results. Finally, it was suggested that
the Bayesian ZIGP with an informative prior distribution could be used as a reasonable choice to
analyze the occurrences of torrential rainfall at the two rain gauges in South Korea. In addition, the ZIP
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model can be recommended as an alternative because the Bayesian modeling used in this study was
considerably difficult.

The focus of this study was to find the most accurate statistical model on the past torrential rainfall
data in South Korea. In addition, it is necessary that the trend of future torrential rainfall due to climate
change should be identified because this change can occur the severe natural disaster. Therefore,
in future, the torrential rainfall occurrences in climate change scenarios such as RCPs (Representative
Concentration Pathways) can be analyzed by the suggested statistical models, Bayesian ZIGP and ZIP,
in this study.
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