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Abstract: The recently observed hydrologic extremes are unlike what has been experienced so far.
Both the magnitude and frequency of extremes are important indicators that determine the flood safety
design criteria. Therefore, how are design criteria updated faced with these extremes? Both a sudden
increase of design rainfall by the inclusion of these extremes and complete ignorance are inappropriate.
In this study, the changes in extremes were examined and an alternative way to estimate the design
rainfall amounts was developed using the data from 60 stations in South Korea. The minimum
density power divergence estimator (MDPDE) with the optimal value of a tuning parameter, α,
was suggested as an alternative estimator instead of the maximum likelihood estimator (MLE);
its performance was evaluated using the Gumbel (GUM) and the generalized extreme value (GEV)
distribution. The results revealed an increase in both the frequency and magnitude of extreme events
over the last two decades, which imply that the extremes are already occurring. The performance of
the MDPDE was evaluated. The results revealed decreased and adjusted values of the design rainfall
compared to MLE. On the other hand, the MDPDE of the GEV distribution with a positive shape
parameter, ξ, does not show its advantage conditionally because the GEV distribution has a heavier
right tail than the GUM distribution (ξ = 0). In contrast, the results showed the high sensitivity of the
MLE to the extremes compared to MDPDE.

Keywords: flood frequency analysis; minimum density power divergence estimator; extreme rainfall;
robust estimation

1. Introduction

On 31 August 2002, one of the most powerful typhoons hit South Korea, the 15th named storm in
that year. Typhoon Rusa had record rainfall on Gangneung, a coastal city located on the east coast
with a population of more than 215,000. The total rainfall on that day was 870.5 mm (34.27 in), which
remains a record in South Korea. Typically, the annual mean precipitation ranges from 1000 mm to
1800 mm in South Korea; in Gangneung, the annual mean precipitation is 1464 mm and the monthly
mean precipitation in August is 298.9 mm. Since observations began in 1911, the historical record for
daily precipitation in Gangneung was 305.5 mm in 1921. For multiple reasons including a relatively
slow speed, the trajectory through the core part of the Korean Peninsula, the meteorological condition
with a cold front facing the typhoon, the topological effect, and the untimely weather forecast [1,2],
Typhoon Rusa caused record damage of approximately USD 5.5 billion since the establishment of the
government in 1945 and 246 fatalities nationwide [3].

In recent decades, a number of studies have focused on obtaining evidence of changes in
precipitation extremes that might originate from global warming. Franks and Kuczera [4] reported
changes in flood probability by comparing the two divided periods before and after 1945 in Australia
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based on the recurrence interval in years. Alexander et al. [5] compared three periods, 1901–1950,
1950–1978 and 1979–2003, in terms of the changes in extreme temperature and precipitation worldwide
and concluded that significant changes in daily precipitation had occurred throughout the 20th century.
Madsen et al. [6] suggested some evidence of a general increase in extreme precipitation but gave no
clear indication of a significant increase in extreme streamflow based on observations and climate
change projections in Europe. Human-induced climate variations or change that affects the hydrologic
cycle, especially the extremes, is becoming increasingly evident [7,8].

Frequency analysis of extreme flood or rainfall events is generally performed assuming that the
events can be represented adequately by a stationary modeling framework. Recently, nonstationary
models were introduced to evaluate the impact of climate change on the probabilities of extreme rainfall
or flood [9]. However, it is unclear if these nonstationary models can be applied directly to practical
purposes, e.g., design rainfall, because these extremes are currently occurring. Madsen et al. [6]
summarized the existing guidelines on the climate change adjustment factors on design flood and
design rainfall. On the other hand, it is unclear how to deal with the extremes in terms of design
rainfall. Changes to dam safety and flood protection standards cannot be accommodated easily on the
same timescales because they are typically involved in producing scientific research, and care should
be taken when implementing and enforcing such changes in the design standard [6]. Coles et al. [10]
highlighted the importance of uncertainty for the modeling of extreme values and also recommended
the use of the GEV model instead of Gumbel model. On the other hand, the Gumbel model is adapted
more widely in South Korea.

While the causality remains to be fully identified and understood, the already occurring extremes
should be reflected in frequency analysis and design standards. As Trenbeth [7] pointed out, extreme
events are inherently rare. Let us get back to the city of Gangneung in South Korea, the previous record
before the record-breading typhoon, was observed on 1921 since observation began in 1911, which is
almost a hundred years ago. Even if the model fitted to pre-2002 data was unable to predict the extreme
in 2002, it is hard to say that the model was a failure because of its unpredictability. Nevertheless, it is
important to reflect the extremes that are already occurring.

The maximum likelihood estimator (MLE) is the most widely used estimation method because it
is a fully efficient estimator. On the other hand, the MLE is quite sensitive to extreme values [11–18];
one single extreme value can severely affect the performance of MLE. To cope with such a defect,
Basu et al. [19] proposed a robust estimation procedure against outliers or extreme values, minimizing
a density-based divergence measure, which is called the density power divergence. Compared to
other density-based methods [20–24], the method suggested by Basu et al. [19] has the merit of
not requiring any nonparametric smoothing methods that are required to estimate the true density
function of data. From this aspect, the minimum density power divergence estimator (MDPDE) is
an easily applicable robust estimator in practice. Owing to its advantages, MDPDE has seen wide
application in various fields. For example, Mihoko and Eguchi [25] developed a robust blind separation
method using density power divergence for recovering the original independent signals when their
linear mixtures are observed. MDPDE also has been applied to time series data analysis. Lee and
Song [26] proposed a robust estimator for the parameters in generalized autoregressive conditional
heteroscedastic (GARCH) model and analyzed the daily Hang Seng index. Kim and Lee [27] suggested
a robust estimation method for the covariance matrix of the multivariate time series and applied it
to the portfolio optimization problem. To the best of the authors’ knowledge, however, this study is
the first attempt to analyze the extreme precipitation frequency based on density power divergence.
In their study, Basu et al. [19] showed that the MDPDE possesses strong robust properties with little
loss in asymptotic efficiency relative to MLE. Therefore, MDPDE can be regarded as a good alternative
to MLE in terms of both the robustness and asymptotic efficiency.

On the one hand, we are facing extreme events that we never have experienced before that give
rise to the need to revise the design criteria for hydraulic structures in the near future. On the other, it is
quite obvious that a sudden change in the design criteria can result in difficulties for implementation of
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flood mitigation measures. More specifically, it is necessary to find alternatives to MLE in terms of flood
frequency analysis to fill the gap and avoid an abrupt increase in design flood quantities. This study,
first, evaluated the decadal changes in extreme precipitations in South Korea using historical rainfall
data from 1974–2014 revealing the increase in frequency and magnitude of extreme events. Second,
a MDPDE [19] was introduced to reflect the extremes to rainfall frequency analysis with robustness.
Precipitation records at 60 rainfall gauges, including Gangneung in South Korea, were used to apply
the MDPDE approach. Both GEV and Gumbel distribution were used to apply MDPDE to discuss the
applicability of MDPDE depending on the data and the presence of extremes or outliers.

2. Methodology

2.1. Decadal Changes in Extreme Rainfall in South Korea

Since Karl et al. [28] defined extreme rainfall events based on three different methods; these
definitions have been used widely to identify heavy or very heavy rainfall events [29–33]. The first
method was based on the actual rainfall amounts and the second method is based on specific thresholds,
whereas the third method is based on the return periods of the events based on the annual maximum
24-h precipitation series. Table 1 lists the definitions depending on the corresponding methods.
An individual rainfall event is identified by an inter-event time greater than six hours as the first and
second methods are based on individual rainfall events.

Table 1. Definition of heavy and very heavy rainfall used in this study.

Methods Description

Actual rainfall amounts Heavy rainfall: an event with precipitation above 50.8 mm (2 in)
Very heavy rainfall: an event with precipitation above 101.6 mm (4 in)

Specific thresholds Heavy rainfall: an event with precipitation above 90th percentiles
Very heavy rainfall: an event with precipitation above 99th percentiles

Return periods Heavy rainfall event: an event with 24-h precipitation above the 20 year return period
Very heavy rainfall: an event with 24-h precipitation above the 100 year return period

The rainfall data were collected from a portal of the meteorological data [34] managed by the
Korea Meteorological Administration (KMA) to identify the decadal changes in extreme rainfall events
in South Korea. Among the currently operating 98 stations in total, 60 stations were selected, which
had started observations before 1974. The entire observation period was divided into two. The first
period is from 1974 to 1994 (21 years) and the other is from 1995 to 2014 (20 years). The changes
in the extreme events were obtained by comparing these two periods in terms of the presence of
extreme events. For example, the first methods using actual rainfall amounts counts the number of
rainfall events, which have a total rainfall volume greater than 2 in or 4 in, whereas the second method
calculates the volume of rainfall events, which is the 90th or 99th percentiles. Finally, the third method
calculates the volume of 24-h precipitation with a 100-year return period.

From the third definition of the heavy and very heavy rainfall events in Table 1, this study
estimates the rainfall magnitudes for the return periods up to 100 years. Later, this return periods
increases up to 300 years for the application of the MDPDE. It is necessary to see that these results
are from a set of a limited number of sample (20 or 40 annual rainfall maxima), which accompanies a
typical type of inherent hydrologic uncertainty. When limited data are used in the analysis, parameter
uncertainty arises and the estimated magnitude itself has a sampling distribution, which is a function
of sample size and underlying hydrologic processes [35]. Typically, these uncertainty increases with
increasing return periods and decreasing sample sizes. This applies to the frequency analysis both for
the decadal changes in the Section 3.1 and the MDPDE in the Section 3.3.

Figure 1 shows the 60 rainfall gauges used in this study, of which the record lengths are longer than
41 years. The numbers of stations follows the conventional numbering system of KMA, where station
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108 is in Seoul and 105 is located in Gangneung with a record rainfall of 870.5 mm for 24 h in 2002
when it was hit by Typhoon Rusa. As mentioned earlier, the analysis was performed for two periods:
1974–1994 and 1995–2014. Following the definition in Table 1, number of events and amount of total
rainfall that correspond to heavy or very heavy rainfall events were obtained. In addition, the volume
of 24-h precipitation with a 100-year return period was also calculated for both periods with the
Gumbel distribution and MLE for parameter estimation. The results of the decadal changes were
averaged for each province for convenience in terms of presentation of the results. Table 2 lists the
provinces in South Korea and the corresponding rain gauges in each province.
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2.2. MDPDE

In this study, we introduce a MDPDE which inherently possesses robust property against extreme
values. Consider a parametric family of models {Fθ} having densities { fθ}, indexed by the unknown
parameter θ ∈ Θ, where Θ represents the parameter space of θ, and let g be the class of all distributions.
The parametric family of model represents a set of distributions, each of which is determined by
specifying a finite number of parameters. For example, the set of normal distribution functions{

F(µ,σ) : −∞ < µ< ∞, σ >0
}

is called the normal distribution family, where µ and σ represent the
mean and standard deviation of normal distribution, respectively. The class of all distributions g
means an entire set of distribution functions defined on the real line. Hence, the normal distribution
family is a member of g. For an estimation of the unknown parameter θ, Basu et al. [19] introduced a
family of density power divergences dα,

dα(g, f )

{ ∫ {
f 1+α(z)−

(
1 + 1

α

)
g(z) fα(z) + 1

α g1+α(z)
}

dz, α > 0,∫
g(z)(log g(z)− log f (z))dz, α = 0,

(1)

where g and f are the density functions, and they defined the minimum density power divergence
functional Tα(·) by the requirement that for every G in g,

dα(g, fTα(G)) = min
θ∈Θ

dα(g, fθ), (2)

where g is the density of G. Since Tα(G) is obtained by minimizing dα(g, fθ) over the parameter
space θ ∈ Θ, it represents the best fitting parameter under the true distribution G in terms of
the density power divergence dα. Note that if G belongs to {Fθ}, Tα(G) = θ for some θ ∈ Θ.
Suppose that the random samples X1, . . . , Xn with a density g are given. Because, in practice, the true
density g is usually unknown, the minimizer of dα(g, fθ) cannot be obtained directly. To resolve this
problem, Basu et al. [19] defined the minimum density power divergence estimator (MDPDE) using
the empirical version of density power divergence. Since the density power divergence dα(g, fθ) can
be written as

dα(g, fθ) =

{ ∫
f 1+α
θ (z)dz−

(
1 + 1

α

)
E( fαθ (Z)) + 1

αE(gα(Z)), α > 0,

E(log g(Z))− E(log fθ(Z)), α = 0,
(3)

where E(·) denotes the expectation of its argument with respect to the true density g and E(gα(Z))/α
and E(log g(Z)) do not depend on θ, MDPDE is defined as

θ̂α,n = argmin
θ∈Θ

Hα,n(θ), (4)

where Hα,n(θ) =
1
n

n
∑

i=1
Vα(θ; Xi) is the empirical version of dα(g, fθ) and

Vα(θ; x) =

{ ∫
f 1+α
θ (z)dz−

(
1 + 1

α

)
fαθ (x), α > 0,

− log fθ(x), α = 0.
(5)

Instead of the unknown true density g, a distribution family { fθ} is employed to play a role of
the true density in the method suggested by Basu et al. [19]. Note that when α is equal to zero and one,
MDPDE is the same as MLE and the L2 distance estimator, respectively. Hence, the tuning parameter
α ∈ [0, 1] provides a smooth bridge between MLE and the L2 distance estimator. To determine the
motivation of MDPDE, for example, refer to Basu et al. [19] regarding the location model, where
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∫
fαθ (z)dz is independent of θ. In this case, MDPDE maximizes

n
∑

i=1
fαθ (Xi) and the corresponding

estimating equation has the form
n

∑
i=1

uθ(Xi) fαθ (Xi) = 0, (6)

where uθ(z) = ∂ log fθ(z)/∂θ is the maximum likelihood score function. This equation can be
considered as a weighted version of the maximum likelihood score equation and when α > 0,
it provides a density power downweighting for extreme values compared to the maximum likelihood,
which guarantees the robustness of the estimators resulting from this process. In general, the degree of
downweighting increases with increasing α.

3. Results and Discussion

3.1. Decadal Changes in Extreme Rainfall in South Korea

The results show that the number of severe or very severe storms has increased over last
two decades but the volumes showed different behavior. Figure 2 shows the changes in extreme
rainfall events over last two decades (1995–2014) compared to the previous decades (1974–1994).
The number of severe storms (>2 in) and very severe storms (>4 in) both doubled over last two decades.
Interestingly, these changes in the number of extreme rainfalls were consistent throughout the whole
country, as shown in Figure 2a,b. In contrast, Figure 2c,d shows the changes in the storm volumes of
the 90th and 99th percentiles, respectively. The results show that the 90th percentile volume of rainfall
events (severe storms) was increased up to 20% in Seoul (Station 108), whereas the 99th percentile
volume of rainfall event was increased up to 55% in Seoul over last two decades. On the other hand,
the changes differed according to the location. In particular, the southern part shows a small increase
or even a decrease.
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Figure 2. Changes in extreme rainfall: (a) percent changes in number of events greater than 50.8 mm
(2 in); (b) percent changes in number of events greater than 101.6 mm (4 in); (c) percent changes in
volume of events greater than the 90th percentile; and (d) percent changes in volume of events greater
than the 99th percentile.

Interestingly, the frequency of extreme rainfall events increased consistently throughout the
country over the last two decades but rainfall volume was not evenly changing. The results in Figure 3
strengthen this finding by showing the changes in the 24-h rainfall with a 100-year return period.
As shown in Figure 3a, the rate of changes in the 24-h rainfall was up to 23% in Seoul (Station 108)
but it is as low as −9% in Ulsan (Station 152). The variation of the changes in the estimated probable
rainfall amount was similar to that of percentiles. The northern part of the country showed an increase
in the 24-h rainfall but a decrease in the southern part.
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Figure 4 shows boxplots of the 60 precipitation stations during 1974–1994 (Figure 4a) and also
during 1995–2014 (Figure 4b). The outliers were defined as an observation point greater than the
1.5 interquartile range above the third quartile or lower than the 1.5 interquartile range below the
first quartile. The thresholds, beyond which the outliers are defined, are presented as the grey solid
line in Figure 4a and the black solid line in Figure 4b. The result shows that the number of outliers
over the last two decades (1995–2014) decreased from 60 to 45 (12.5% compared to the previous two
decades (1974–1994). In contrast, the global mean value of outliers was increased to 355.86 mm from
323.46 mm (10%). On the other hand, the threshold that determines the outliers, itself has increased
over last two decades. The black solid line is the threshold of the second period during 1995–2014,
as shown in Figure 4. If this threshold is applied to the first period during 1974–1994, the number of
outliers decreases.
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duration; the grey dash shows the mean of the outliers during 1974–1994.

Figure 5a shows the changes in the threshold over the last two decades for 60 rainfall gauges in
South Korea with a rainfall duration of 24 h. Among the 60 gauges, 44 gauges showed an increase in
the threshold, which means that mostly, the third quartile and interquartile range increased. Figure 5b
shows the number of outliers depending on their durations. As shown in Figure 5, for the rainfall
duration of 24 h, the number of outliers decreased from 60 during the first period (1974–1994) to 45
during the second period (1995–2014). If threshold for the second period is applied to the first period,
the number of outliers decreases to 37. This means that the number of outliers has increased if the
same threshold is applied for both periods. The dots in Figure 5b show that the recalculated number
of outliers has decreased consistently for all rainfall durations. In addition, the result shows that the
global mean value of the outliers increased for all gauges over the last two decades, as shown in
Figure 5c.
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with a rainfall duration of 24 h; (b) number of outliers during 1974–1994 and 1995–2014; and (c) mean
of the outliers for each period depending on the rainfall durations.

Although the changes in frequency and magnitude of the extreme events are dependent on the
location, the results show that the frequency and magnitude (volume) of extreme rainfall events have
increased, in general, over last two decades in South Korea. A simple analysis of the number and
magnitude of outliers among the annual rainfall maxima shows that the magnitude of the outliers
also increased over last two decades. In addition, the threshold itself that determines the outliers was
increased, which results in the outliers 20 years ago being no longer considered as outliers in recent
days. Moreover, the recent 20 years have witnessed some magnitude of outliers (circled outliers in
Figure 4) that have never been experienced before. The maximum outlier was observed in Gangneung
(Station 105) in 2002 during Typhoon Rusa, as mentioned in the introduction, which was 870.4 mm in
one day. Note that the previous maximum rainfall was recorded in 1921. This section may be divided
by subheadings. It should provide a concise and precise description of the experimental results, their
interpretation as well as the experimental conclusions that can be drawn.

3.2. Physical Mechanism Behind the Changes of Extreme Events

Korea Meteorological Administration (KMA) [36,37] predicted that the amount of rainfall increase
would be more than 200 mm for the next 20 years and more than 300 mm after 2040. Extreme rainfall
events can be caused either by convective rainfall or Typhoon typically in Korea. Especially, for the last
20 years, heavy rainfall events caused convective rainfall tend to increase. For example, these heavy
rainfall events include the extreme events in Seoul with a 100-year frequency in 2010 and 2011, Busan
in 2009, Gyeonggi-do and Gangwon-do in 2008, Gangwon-do in 2006, Jeonju in 2005, and Seoul in
2001. These convective rainfall events have closely related to the geographic characteristics of Korea
Peninsula neighboring both the Pacific high and the Continental high. Due to this geographic location,
Korea peninsula works as a narrow alley where the warm water vapor provided from the Southeastern
areas in China would be the main sources for the heavy convective rainfall. In a general sense, the
temperature increase would increase humidity and, eventually, the rainfall intensity at this location.
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In Korea, the average temperature increased by 1.8 ◦C during last 100 years and it is expected to
increase by 1.8–4.8 ◦C by 2100 based on RCP scenarios from IPCC [36].

The strength of Typhoon that affected Korea Peninsula also tends to increase. This is mainly due
to changes of the origin, which is moving north. Choi et al. [38] showed the origin of Typhoon with the
maximum strength moved north since 1999 by comparing the origins during 1999–2013 and 1977–1998.
Choi and Moon [39] analyzed the reaching latitude of typhoon for 40 years comparing the first 20 years
to the later 20 years since 1975. The maximum latitude that Typhoon traveled was increased from
28◦ N to 34◦ N during last 40 years, which means Typhoon travels north further by 660 km. This is
mainly due to the seawater temperature and sea level increase around Korea peninsula [40]. Typhoons
are very rare in October in Korea. However, Typhoon Chaba on October 2016, which caused the loss of
10 lives in the southeastern area, was a good example of increasing number of Typhoon due to the
seawater temperature increase.

3.3. Performance of MDPDE with the Gumbel Distribution

This study considered the Gumbel distribution family as a parametric distribution family {Fθ}
to construct the MDPDE. The Kolmogorov–Smirnov test (K-S test) showed that the annual maxima
of the 24-h duration rainfall at Gangneung follow the Gumbel distribution (GUM). Figure 6 shows
the Gumbel distribution fitted to the 24-h annual maxima from 1974 to 2014 at Gangneung, where
one of the extreme events was observed (870.5 mm for 24 h). In this study, we considered four cases
of α = 0, 0.2, 0.5 and 1 to compare the performance of MLE and MDPDE with various α ∈ (0, 1].
The different choices of α also yield similar results. As mentioned in Section 2.2, when α is equal to
zero and one, MDPDE is identical to MLE and the L2 distance estimator, respectively. The MDPDE for
the Gumbel distribution is summarized in Table 3, where µ̂ and σ̂ represent the estimates for location
and scale parameters, respectively. As shown in Figure 6, MLE (α = 0) tends to be affected more by
the extreme event (870.5 mm) than the L2 distance estimator (α = 1), which leads to more inclined
distributions to the right or to the extreme event as the value of α decreases. As a result, the design
rainfalls obtained with MLE (α = 0) are highest compared to other values of α regardless of the return
periods. The difference between the design rainfall estimated with MLE and the L2 distance estimator
was up to 17.3% depending on the recurrence interval. Consequently, the result shows that the MDPDE
with α greater than zero improves the robustness, and hence, decrease the impact of an extreme event
compared to MLE (α = 0).

Water 2017, 9, 81  10 of 17 

 

heavy convective rainfall. In a general sense, the temperature increase would increase humidity and, 

eventually, the rainfall intensity at this location. In Korea, the average temperature increased by 

1.8 °C during last 100 years and it is expected to increase by 1.8–4.8 °C by 2100 based on RCP 

scenarios from IPCC [36]. 

The strength of Typhoon that affected Korea Peninsula also tends to increase. This is mainly 

due to changes of the origin, which is moving north. Choi et al. [38] showed the origin of Typhoon 

with the maximum strength moved north since 1999 by comparing the origins during 1999–2013 

and 1977–1998. Choi and Moon [39] analyzed the reaching latitude of typhoon for 40 years 

comparing the first 20 years to the later 20 years since 1975. The maximum latitude that Typhoon 

traveled was increased from 28° N to 34° N during last 40 years, which means Typhoon travels 

north further by 660 km. This is mainly due to the seawater temperature and sea level increase 

around Korea peninsula [40]. Typhoons are very rare in October in Korea. However, Typhoon 

Chaba on October 2016, which caused the loss of 10 lives in the southeastern area, was a good 

example of increasing number of Typhoon due to the seawater temperature increase. 

3.3. Performance of MDPDE with the Gumbel Distribution 

This study considered the Gumbel distribution family as a parametric distribution family {𝐹θ} 

to construct the MDPDE. The Kolmogorov–Smirnov test (K-S test) showed that the annual maxima 

of the 24-h duration rainfall at Gangneung follow the Gumbel distribution (GUM). Figure 6 shows 

the Gumbel distribution fitted to the 24-h annual maxima from 1974 to 2014 at Gangneung, where 

one of the extreme events was observed (870.5 mm for 24 h). In this study, we considered four cases 

of α = 0, 0.2, 0.5 and 1 to compare the performance of MLE and MDPDE with various 𝛼 ∈ (0, 1]. 

The different choices of α also yield similar results. As mentioned in Section 2.2, when α is equal to 

zero and one, MDPDE is identical to MLE and the L2 distance estimator, respectively. The MDPDE 

for the Gumbel distribution is summarized in Table 3, where μ̂ and σ̂ represent the estimates for 

location and scale parameters, respectively. As shown in Figure 6, MLE (α = 0) tends to be affected 

more by the extreme event (870.5 mm) than the L2 distance estimator (α = 1), which leads to more 

inclined distributions to the right or to the extreme event as the value of α decreases. As a result, the 

design rainfalls obtained with MLE (α = 0) are highest compared to other values of α regardless of 

the return periods. The difference between the design rainfall estimated with MLE and the L2 

distance estimator was up to 17.3% depending on the recurrence interval. Consequently, the result 

shows that the MDPDE with α greater than zero improves the robustness, and hence, decrease the 

impact of an extreme event compared to MLE (α = 0). 

 

Figure 6. Gumbel distribution fitted to the 24-h annual maxima at Gangneung (Station 105) and 

design rainfall depending on the return periods. 

Figure 6. Gumbel distribution fitted to the 24-h annual maxima at Gangneung (Station 105) and design
rainfall depending on the return periods.



Water 2017, 9, 81 11 of 17

Table 3. MDPDE for the Gumbel distribution according to α.

α 0 0.2 0.5 1 0.092

µ̂ 139.413 132.468 128.227 122.340 135.257
σ̂ 65.360 56.354 55.286 52.815 59.122

3.4. Balance between Robustness and Asymptotic Efficiency Based on the Optimal Value of α

As mentioned in Section 2.2, if the desire is to improve the robustness, adopting MDPDE with
a relatively large α value can be an appropriate solution. However, as α increases, the asymptotic
efficiency of MDPDE decreases because the case α = 0 corresponds to MLE, which has full asymptotic
efficiency. In summary, the tuning parameter α controls the trade-off between the robustness and
asymptotic efficiency. Therefore, how can the tuning parameter α be chosen in practice? In this context,
we introduce a method for selecting the optimal tuning parameter, which was proposed recently by
Fujisawa and Eguchi [41]. If the true distribution g is known, the optimal tuning parameter α̂ can be
obtained by

α̂ = argmin
α

D(g, fθ̂α,n
), (7)

where D(g, f ) is a divergence. As a candidate of the divergence, Fujisawa and Eguchi [41] considered
the Cramer–von Mises type whose empirical version can robustly approximated by

1
n

n

∑
i=1

{
i− 0.5

n
− Fθ(xi)

}2
, (8)

where x1, . . . , xn are the order statistics of the observations. Combining the idea of cross validation
with the above consideration, they proposed an optimal tuning parameter selection method as follows:

α̂ = argmin
α

1
n

n

∑
i=1

{
i− 0.5

n
− F

θ̂
(−i)
α,n

(xi)

}2
, (9)

where θ̂
(−i)
α,n is the MDPDE obtained by leaving out the ith observation.

Using the 24-h annual maxima at Gangneung, an optimal value of α of 0.092 can be obtained
using the optimal tuning parameter selection method. The MDPDE for the Gumbel distribution
corresponding to optimal α = 0.092 is provided in Table 3. Figure 7 shows the Gumbel distribution
with the optimal α value (α = 0.092) compared to MLE (α = 0). The result shows that the design rainfall
estimated from MDPDE with the optimal value are greater than those from the L2 distance estimator
by 11.2%–11.5% and also less than those from the MLE by 6.3%–7.7% depending on the recurrence
interval from 10 to 300 years. These results indicate that MDPDE with an optimal value of α suggests
an alternative way to evaluate the design rainfall with the balance between the asymptotic efficiency
and robustness.
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As mentioned in the introduction, the changes to the flood protection standards or design
criteria cannot be achieved easily on the same timescales as those typically involved in producing
scientific research. Care should be taken when implementing and applying such changes in the design
standard [6]. Considering these difficulties of increasing design criteria faced with increasing frequency
and magnitude of extreme events, MDPDE provides a sound and reliable alternative approach to
evaluating the design rainfall.

3.5. Performance of the MDPDE with GEV Depending on the Magnitude of the Extremes

In Sections 3.3 and 3.4, the performance of MDPDE was evaluated using the Gumbel family as a
parametric family {Fθ}. In this section, the GEV was considered a candidate for another parametric
family. However, the results were slightly different from those with GUM, where MDPDE did not
reduce the design rainfall compared to MLE. The MDPDE for the GEV distribution when it was
applied to the same data (Station 105) is summarized in Table 4, where µ̂, σ̂ and ξ̂ represent the
estimates for location, scale and shape parameters, respectively. Figure 8 shows the estimated design
rainfall assuming the GEV. In contrast to the results in the previous section with the GUM (Figure 6b),
MDPDE does not show its robust property in this case for Station 105. As the value of α increases, the
estimated design rainfall also increases. The GEV has three parameters: location (µ), scale (σ) and
shape parameter (ξ). The performance of MDPDE is especially related to the shape parameter (ξ),
which determines the heaviness of the tail and the magnitude of the extremes. The GUM distribution
is identical to GEV with ξ = 0. Therefore, the value (870.5 mm for 24 h), which was originally regarded
as an outlier by the GUM, is no longer an outlier for the GEV.

Table 4. MDPDE for the GEV distribution according to α.

α 0 0.2 0.5 1

µ̂ 126.380 126.453 126.705 126.461
σ̂ 49.747 51.759 54.615 56.341
ξ̂ 0.404 0.438 0.497 0.506
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Figure 8. Estimated design rainfall from the GEV fitted to 24-h annual maxima at Gangneung (Station 105).

For further discussion, this study evaluated the performance of MDPDE with the GEV depending
on the shape parameter and also the magnitude of the extremes or outliers in this section. First, a set
of random variables (50 variables) following the GEV with µ = 0, σ = 1 and ξ = 0.1 was generated
(Figure 9a). The maximum value, which was originally 3.4709, was then replaced with an arbitrary
larger value. Figure 9a shows the performance of the MDPDE with different values of α, which shows
the opposite results compared to the Gumbel distribution with extreme events in the previous section.
As the value of α increases, the estimated design rainfall also increases, which is different from the
results in the previous section, where MDPDE with α > 0 showed a decrease in the design rainfall
compared to MLE. These behaviors are similar to what the data of Station 105 has shown in Figure 8
for GEV. Figure 9b,c shows the results from the MDPDE after replacing the maximum value with an
arbitrary larger value, 8 and 10, respectively. Compared to the case with no outlier (Figure 9a), the cases
with outliers show that MDPDE shows the robust property and the same performance with the GUM
case. The reason for these behaviors is that the newly added value, 8 and 10, become outliers for the GEV.
As the magnitude outliers are larger (from 8 to 10), the robust property of MDPDE becomes stronger.
In addition, MLE (α = 0) is more sensitive than the cases of MDPDE with α > 0, as shown in Figure 9b,c.
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Therefore, the existence and magnitude of outliers greatly affect the performance of the MDPDE and 
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GUM distribution (ξ = 0). 

 

Figure 9. (a) GEV (0, 1, 0.1) with no outlier; (b) replacing the maximum with an outlier of 8; and
(c) with an outlier of 10.

What if the shape factor, ξ, of the GEV is increased? ξ was increased to 0.2 with the same outliers
of 8 and 10. The results showed that the increased shape parameter results in a heavier tail for GEV,
which makes the previous added extremes (8 or 10) no longer outliers, and the MDPDE does not show
the robust property in this case, as shown in Figure 10a,b. On the other hand, if these values (8 and 10)
are replaced with a larger value of 25, the MDPDE shows a robust property. Therefore, the existence
and magnitude of outliers greatly affect the performance of the MDPDE and the results also highly
affected by the shape parameter in case of applying the GEV instead of the GUM distribution (ξ = 0).
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4. Conclusions

The changes in extremes need to be recognized and reflect the changes in terms of improving
and revising existing design and safety criteria. The existing design criteria should be evaluated
under changing circumstances. On the other hand, the traditional methods, such as the MLE, can
result in a sudden increase in extremes, which cannot be accepted easily by the community and
result in difficulties for implementation. Often, these outliers and extremes are disregarded due to
socioeconomic influences. In this regard, this study examined the changes in frequency and magnitude
of extreme events in South Korea and revealed an increase in both the frequency and magnitude of
extreme events over last two decades. In addition, the MDPDE was suggested as an alternative way
to derive the design rainfall, which is based on the balance between the asymptotic efficiency and
robustness compared to the MLE, which is relatively sensitive to extreme values. The results showed a
reduced amount of estimated design rainfall by the MDPDE with the optimal tuning parameter, α,
compared to the MLE. Nevertheless, care should be taken when applying the MDPDE because the
behavior of the MDPDE differs according to the type of probability distribution function and heavy
tails as well as the magnitude of the outliers. Overall, this study shows that the MDPDE works as
an alternative estimator of design rainfall or design flood with extremes and helps us form sudden
increases in design criteria in times of climate change.
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