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Abstract: Accurate forecasting of annual runoff is necessary for water resources management.
However, a runoff series consists of complex nonlinear and non-stationary characteristics, which
makes forecasting difficult. To contribute towards improved prediction accuracy, a novel hybrid
model based on the empirical mode decomposition (EMD) for annual runoff forecasting is proposed
and applied in this paper. Firstly, the original annual runoff series is decomposed into a limited
number of intrinsic mode functions (IMFs) and one trend term based on the EMD, which makes
the series stationary. Secondly, it will be forecasted by a least squares support vector machine
(LSSVM) when the IMF component possesses chaotic characteristics, and simulated by a polynomial
method when it does not. In addition, the reserved trend term is predicted by a Gray Model. Finally,
the ensemble forecast for the original runoff series is formulated by combining the prediction results
of the modeled IMFs and the trend term. Qualified rate (QR), root mean square errors (RMSE),
mean absolute relative errors (MARE), and mean absolute errors (MAE) are used as the comparison
criteria. The results reveal that the EMD-based chaotic LSSVM (EMD-CLSSVM) hybrid model is a
superior alternative to the CLSSVM hybrid model for forecasting annual runoff at Shangjingyou
station, reducing the RMSE, MARE, and MAE by 39%, 28.6%, and 25.6%, respectively. To further
illustrate the stability and representativeness of the EMD-CLSSVM hybrid model, runoff data at three
additional sites, Zhaishang, Fenhe reservoir, and Lancun stations, were applied to verify the model.
The results show that the EMD-CLSSVM hybrid model proved its applicability with high prediction
precision. This approach may be used in similar hydrological conditions.

Keywords: empirical mode decomposition; chaotic characteristics; phase space reconstruction;
least squares support vector machine; runoff forecasting

1. Introduction

Runoff forecasting, especially annual runoff forecasting, is required for appropriate and effective
water resource planning and management [1,2]. It is generally known that the processes of runoff
generation are heavily influenced by a host of factors such as precipitation, temperature, evaporation,
underlying surface, and human activity [3,4]. Due to the uncertainty of these factors, runoff series tend
to be nonlinear, non-stationary, and even chaotic [5,6]. It is very difficult to make accurate predictions
about annual runoff, which has been a challenge for hydrologists over years.

In the past two decades, the characteristic of deterministic chaos in runoff series has been observed
by some researchers [7–9]. When the runoff series possesses a chaotic trait, the conventional forecasting
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methods may not function properly. Recently, chaos-based runoff forecasting techniques have become
increasingly attractive to the hydrology community [10,11]. Generally, the key to chaotic time series
prediction is the phase space reconstruction theory, which is not concerned with whether a time series
is stationary or not. Many studies have shown that once the time series has chaotic attractor, the
phase space can be reconstructed when the appropriate parameters are chosen [12,13]. However,
a reconstruction process may be affected by the non-stationary characteristics of the runoff series.
A general method to deal with the non-stationarity is to apply the finite difference method (FDM) to the
runoff series in question [14]. However, the series processed by using FDM may not remain stationary.
In view of this, an empirical mode decomposition (EMD) has recently been introduced. The EMD
method can self-adaptively decompose a complex non-stationary and nonlinear series into several
intrinsic mode functions (IMFs). The EMD-based hybrid models have been successfully employed
to predict runoff series [15,16]. However, many researchers only consider EMD a useful tool for the
analysis of multi-scale variations of the runoff series [17,18], and have paid little attention to converting
non-stationary runoff series into stationary ones. In this paper, the EMD method is introduced to make
the time series stationary.

Due to the nonlinear and chaotic characteristics of the runoff series, artificial intelligence appears
to be a useful alternative to conventional statistical techniques for forecasting runoff, such as artificial
neural networks (ANNs), support vector machines (SVM), and least squares support vector machines
(LSSVM). Previous studies have demonstrated that ANNs are useful for runoff series forecasting [19,20].
However, the ANNs were subject to local convergence, slow learning, and poor generalization ability,
which led to unsatisfactory performance. By contrast, the SVM is characterized by having non-linear
kernels, high generalization ability, and sparse solutions, which is useful for forecasting small sample
cases. The SVM is based on the structural risk minimization induction principle rather than the
empirical risk minimization, and can achieve the global optimum by solving a quadratic optimization
problem. The SVM is currently used increasingly in forecasting runoff series [21,22], although
this method is often time-consuming and has a higher computational burden due to the requisite
constrained optimization programming. To reduce the complexity of the optimization process, the
LSSVM is proposed, which has also been successfully employed in runoff forecasting [23,24]. It adopts
equality constraints rather than inequality constraints and uses the least squares linear system as its
loss functions, which makes it computationally easier. The LSSVM presents similar advantages over
the SVM, but an additional advantage of the LSSVM is that it only requires solving a set of linear
equations rather than quadratic programming. Therefore, this paper presents an algorithm aimed at
achieving accurate forecasts of annual runoff based on the combination of the EMD and chaotic least
squares support vector machine (EMD-CLSSVM), which means that the original annual runoff time
series are transformed into stationary subseries by EMD; subseries would be predicted by LSSVM
when it has chaotic characteristics, and by a polynomial method when it does not.

The main objective of this paper is to apply the EMD-CLSSVM hybrid model for annual runoff
series forecasting under the case studies in the upper reaches of the Fenhe River basin, China. First,
the EMD is applied to decompose the original annual runoff data into several IMFs and one trend
term. Secondly, the stationarity of these IMFs was tested based on the KSPP method. Thirdly, the
chaotic characteristics of the IMFs were identified based on the largest Lyapunov exponent method.
The IMFs and the trend term were then modeled and forecasted using the CLSSVM, polynomial
method, and Gray Model (GM). Finally, these prediction results are integrated to get the final annual
runoff forecasting values. The EMD-CLSSVM hybrid model is compared to the CLSSVM hybrid
approach to find a reliable hybrid forecasting model for annual runoff series.
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2. Data and Methods

2.1. Study Area and Data

The Fenhe River is located in the North China (110◦ E–114◦ E, 35◦ N–39◦ N), which covers a
drainage area of about 38,728 km2 with a river length of 716 km, as seen in Figure 1. With a semi-arid
climate, the Fenhe River basin has an average annual precipitation ranging from 300 to 750 mm and an
annual mean temperature varying from 9 to 12 ◦C. The upper reaches of the Fenhe River are in the
area above Lancun station. Annual runoff data from four hydrologic stations in the upper reaches,
i.e., Shangjingyou, Fenhe reservoir, Zhaishang, and Lancun, were analyzed. Shangjingyou station lies
in Lan River, which belongs to one of the tributaries of Fenhe River. The Zhaishang, Fenhe reservoir,
and Lancun stations are in the mainstream of Fenhe River. The locations of the stations are shown in
Figure 1. These runoff data of flow records covering 1956 to 2000 were obtained from the government
hydrologic database. The first 40 years (1956–1995) of runoff data were applied for calibration purpose
and the remaining five years of data were used for validation.
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Figure 1. Locations of four hydrologic stations in the Fenhe River basin of China.

2.2. Methods

2.2.1. Empirical Mode Decomposition

EMD is an effective method used for the analysis of non-stationary time series [25]. The most
important feature of EMD is that it can adaptively decompose the non-stationary runoff series into
several stationary IMFs and a trend term. The IMFs are produced by an iterative process called sifting.
Sifting is the core of the EMD method. The sifting process is summarized as follows:

Step 1) Identify all the extreme (maxima and minima) values of a time series x(t).
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Step 2) Generate the upper and lower envelope (u(t) and v(t)) by applying cubic spline interpolation.
Step 3) Compute a local mean curve m(t) of the two envelopes at the same time using

m(t) = (u(t) + v(t))/2. (1)

Step 4) Calculate the difference,
h(t) = x(t)−m(t). (2)

Step 5) Check the properties of h(t); it will be considered a valid IMF if it satisfies these two conditions:

• The number of extreme and zero crossings must be equal or differ at most by one.
• At any point, the local mean value of the envelope defined by the local extremes must

be zero.

Step 6) When h(t) is not qualified as an IMF, repeat Steps 1) to 5) by sifting the residual series. The sifting
process stops when the residual (i.e., the trend term; r(t)) satisfies the predetermined criteria.

Finally, the input runoff series can be decomposed into several IMFs and a residual r(t) as
follows. In addition, the original runoff series x(t) can be exactly reconstructed by the following
linear superposition:

x(t) =
n

∑
i=1

h(t) + r(t), (3)

where h(t) is the IMF, r(t) refers to the residual term, and n is the number of IMFs.

2.2.2. Phase Space Reconstruction and Chaotic Characteristics Identification

The phase space is the space of all possible states of a system with the observed data. Phase space
reconstruction is the prerequisite for predictions of time series. To describe the temporal evolution of a
time series in a multi-dimensional phase space, it is essential to unfold a multi-dimensional structure
using univariate data, i.e., the one-dimensional time series is embedded to multi-dimensional phase
space through reconstruction. For a time series {x1, x2, · · · , xn}, it may be reconstructed into a series
of delay vectors of the following type:

yi =
{

xi, xi+τ, xi+2τ, · · · , xi+(m−1)τ

}
, i = 1, 2, · · · , n− (m− 1)τ, (4)

where yi is a point of m-dimensional phase space, m is the embedding dimension, and τ is the delay time.
The connection of n− (m− 1)τ points describes the evolution orbit of the system in m-dimensional
phase space. By means of phase space reconstruction, it is hoped that the points in m-dimensional phase
space form an attractor that is defined as regular phase space orbit. In theory, a good reconstruction
means near topological equivalence of the reconstructed attractor to the original one.

The selection of τ and m is important for the quality of the reconstruction. Delay time τ is usually
calculated by the autocorrelation function method, the multiple correlation function method, and the
mutual information method [26]. The autocorrelation function method is mainly used to measure the
linear correlation of a continuous time series. However, when the time series is nonlinear, this method
will be ineffective. The mutual information method, based on Shannon information entropy, can not
only be used to calculate the correlation between variables, but also to provide measurement of the
overall dependence of variables. This method can be used to analyze the linear correlation as well
as the nonlinear correlation. Therefore, in this paper, the mutual information method is employed to
determine the delay time τ. The typical methods of determining embedding dimension m include the
Grassberger–Procaccia algorithm, correlation integral, false nearest neighbor (FNN) [27], and the Cao
method [28]. Generally, the saturated correlation dimension method requires a larger sample. The FNN
method will obtain different false nearest points when the threshold value selection is different. Hence,
the Cao method is adopted to determinate the embedding dimension in this paper.
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If a time series is non-stationary, the phase space reconstruction method is robust. It is necessary to
transform the time series into stationary ones before selecting the parameters of phase space. The KPSS
method introduced by Kwiatkowski, Phillips, Schmidt and Shin [29] is used to test the stationarity of a
time series.

Let yt, t = 1, 2, . . . , N, be the time series for which we wish to test stationarity. Let et, t = 1, 2, . . . ,
N be the residuals from the regression of y on an intercept and time trend. Let σ̂2

ε be the estimate of the
error variance from this regression (the sum of squared residuals, divided by N). Define the partial
sum process of the residuals:

St =
t

∑
i=1

ei, t = 1, 2, . . . , N. (5)

The Lagrange Multiplier (LM) statistic is

LM =
N

∑
t=1

S2
t /σ̂2

ε . (6)

The null hypothesis of this test is stationary series. Thus if the LM statistic value is greater than
the critical value (chosen alpha level), the null hypothesis is rejected. On the contrary, if the LM statistic
value is less than the critical value, the null hypothesis cannot be rejected.

The diagnosis of the character of chaos can begin when the phase space has been reconstructed.
Chaotic characteristics identification is significant to reveal the essential law of runoff series and
establish a reliable forecasting model. The usual methods of chaotic characteristics identification
include the phase portrait, power spectrum, saturated correlation dimension, largest Lyapunov
exponent, Kolmogorov entropy, and so on [30]. The largest Lyapunov exponent is employed to
identify the chaotic characteristics in this paper.

2.2.3. Chaotic Least Squares Support Vector Machine Model

Given the training samples Xt = {x1, x2, · · · , xn}, if we choose the proper delay time τ, embed
dimension m, and transform the prediction series Xt into new m dimension data space, it may be
expressed as follows: 

X1

X2
...

XM

 =


x1 x1+τ x1+2τ · · · x1+(m−1)τ
x2 x2+τ x2+2τ · · · x2+(m−1)τ
...

...
...

...
...

xM xM+τ xM+2τ · · · xM+(m−1)τ

, (7)

where M = n− (m− 1)τ, X2 = F(X1), X3 = F(X2), . . . , XM = F(XM−1), and the relation is:

Xt+1 =
{

xt+1, xt+1+τ, xt+1+2τ, · · · , xt+1+(m−1)τ

}
= F(xt, xt+τ, xt+2τ, · · · , xt+(m−1)τ). (8)

The former m− 1 dimension of Xt+1 is as in the historic data, which is converted into a single
output as follows:

xt+1+(m−1)τ = f (xt, xt+τ, xt+2τ, · · · , xt+(m−1)τ), (9)

where f (x) is the mapping from Rm to R. The essence of the prediction problem is to obtain a best
approximation of f (x), which has high nonlinearity. Therefore, a nonlinear function is adopted to fit
the mapping. Combined with the LSSVM model, training data is obtained as follows:

Y = [ x2+(m−1)τ x3+(m−1)τ · · · xM+1+(m−1)τ ]
T

. (10)

Assuming the current training sample is as shown in Equation (10), the length of the time window
is M. When one new series comes into the time window, the oldest series X1 is removed. Therefore,
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the training series goes back to the form of Equation (10) again. Using the LSSVM algorithm, the current
regression function is given as follows:

f (x) =
M

∑
i=1

αiK(xi, x) + b. (11)

Furthermore, the result of the first prediction step is

x̂M+2+(m−1)τ =
M

∑
i=1

αiK(xi, XM+1) + b, (12)

where XM+1 = [xM+1, xM+1+τ, xM+1+2τ, · · · , xM+1+(m−1)τ].
Thus, the result of p step prediction model is,

x̂M+p+1+(m−1)τ =
M

∑
i=1

αiK(xi, XM+p) + b, (13)

where XM+p = [xM+p, xM+p+τ, xM+p+2τ, · · · , xM+p+(m−1)τ].

3. Model Results and Discussion

3.1. Stationarity Test of the Original Runoff Series

In order to examine the stationarity of a runoff series, the KPSS method is used to test the
stationarity of the original runoff series. The result indicates that the LM statistic value (0.847) of
the annual runoff series for Shangjingyou hydrologic station is greater than the critical value (0.463),
which shows that the annual runoff series for Shangjingyou station is non-stationary. Therefore, it is
necessary to transform the runoff series to become stationary.

3.2. EMD of Runoff Series

The original runoff series are decomposed into several sub-series over the same time domain,
namely, IMF1 to IMF5, and one trend term based on the EMD for Shangjingyou hydrologic station, as
seen in Figure 2.
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The KPSS is also used to analyze the stationarity of IMFs. As shown in Table 1, the LM statistic
value of several IMFs for Shangjingyou station are all less than the critical value, which indicates the
runoff series decomposed by the EMD become stationary ones.

Table 1. Lagrange Multiplier (LM) statistic, delay time τ, embedding dimension m, average period p,
and Lyapunov exponent λ1 of intrinsic mode functions (IMFs) for Shangjingyou station.

IMFs LM Statistic τ m Average Period p Lyapunov Exponent λ1

IMF1 0.114 1 2 3 0.113
IMF2 0.148 1 5 4 0.160
IMF3 0.063 2 4 4 0.101
IMF4 0.075 4 6 8 0.040
IMF5 0.571 1 6 23 —

3.3. Determination of Delay Time τ and Embedding Dimension m

Figure 3 indicates the mutual information I(τ) of IMF1, IMF2, IMF3, IMF4, and IMF5 for
Shangjingyou station. I(τ) for each runoff series is the minimum attained firstly at the lag time
of 1, 1, 2, 4, and 1. Therefore, the five values of the delay time τ for IMF1, IMF2, IMF3, IMF4, and IMF5
at Shangjingyou station are chosen as 1, 1, 2, 4, and 1, respectively (Table 1). The embedding dimension
m of the IMFs for Shangjingyou station, as determined by the Cao method, is shown in Table 1.
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3.4. Identification of Chaotic Characteristics

The average periods of several IMFs for Shangjingyou station need to be determined before
identifying the chaotic characteristics by the largest Lyapunov exponent method. Therefore, the Hilbert
transform [25] is used to calculate the average period p with the results shown in Table 1.

The largest Lyapunov exponent is used to identify the chaotic characteristics of IMFs for
Shangjingyou station. It can be seen in Table 1 that the Lyapunov exponent λ1 of IMFs for Shangjingyou
station is greater than zero, except for IMF5, which indicates that IMFs have chaotic characteristics.
The average period of the IMF5 for Shangjingyou station was 23 years, but the lengths of IMF5 for
Shangjingyou station are only 45 years. Therefore, the Lyapunov exponent method would be unable to
analyze the chaotic characteristics of the IMF5. In view of this, the Power Spectrum method is used to
analyze the chaotic characteristics of the IMF5 for Shangjingyou station. Figure 4 shows that the IMF5
for Shangjingyou station has a single peak, which indicates that the IMF5 time series does not have
chaotic characteristics.
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Chaotic characteristics are only found from IMF1, IMF2, IMF3, and IMF4 for Shangjingyou station.
The IMF5 for Shangjingyou station has no chaotic characteristics.
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3.5. Hybrid Model

For the chaotic time series, after the phase space reconstruction, the LSSVM model is trained by
the reconstructed learning samples. The parameters of the LSSVM model include C, ε, and σ, where ε

decides the SVM number and model generalization. The greater the value of ε, the lower the number
of SVM and the worse the model precision. ε is taken to be 0.001 in this paper. The parameters of C
and σ jointly control the model complexity and prediction accuracy. In the calculation, the Bayesian
Information Criterion (BIC) is used to optimally select the parameters of C and σ. The selected
parameters are shown in Table 2.

Table 2. Least squares support vector machine (LSSVM) model parameters of IMFs for Shangjingyou
station. C: penalty factor; σ: parameter of kernel function.

IMFs IMF1 IMF2 IMF3 IMF4

C 625.2 316.0 68.1 18.1
σ 0.1 49.2 7.2 8.3

The CLSSVM is used to train and test the IMF1, IMF2, IMF3, and IMF4 for Shangjingyou station.
The polynomial method is employed to model and forecast the last IMF for Shangjingyou station,
and the GM is applied to predict the trend term. Finally, the resultant predictions of the modeled
IMFs and trend term are summed to formulate an ensemble forecast for the original runoff series.
In order to further prove the superiority of the EMD-CLSSVM hybrid model over the others, the
CLSSVM hybrid model was employed as a comparative forecast model to predict the annual runoff,
which means that in place of the EMD-CLSSVM model, the CLSSVM model is used with other models
unchanged. The prediction results are shown in Figure 5. It can be seen from the hydrographs that the
EMD-CLSSVM hybrid model shows better performance for annual runoff forecasting compared with
the CLSSVM hybrid model in the testing period.
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3.6. Comparative Analysis

To verify the stability and representativeness of the EMD-CLSSVM hybrid model, Fenhe reservoir,
Zhaishang, and Lancun stations are used as examples. The original runoff series are decomposed into
several IMFs and a trend term is based on the EMD for the three hydrologic stations, as shown in
Figures 6–8.
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Analysis results of the chaotic characteristics of runoff series for the three stations are given in
Table 3.

Table 3. LM statistic, delay time τ, embedding dimension m, average period p, and Lyapunov exponent
λ1 of IMFs for the three stations.

Stations IMFs LM Statistic τ m Average Period p Lyapunov Exponent λ1

Fenhe
reservoir

IMF1 0.180 1 7 7 0.091
IMF2 0.087 1 7 7 0.042
IMF3 0.105 3 6 6 0.023
IMF4 0.112 3 5 5 0.168
IMF5 0.363 2 4 23 —

Zhaishang

IMF1 0.248 1 7 7 0.01
IMF2 0.119 2 7 7 0.169
IMF3 0.097 2 3 3 0.169
IMF4 0.335 1 4 23 —

Lancun

IMF1 0.129 1 7 7 0.163
IMF2 0.129 2 7 7 0.017
IMF3 0.082 2 4 4 0.140
IMF4 0.329 2 4 23 —

Similarly, it can be seen in Table 3 that the Lyapunov exponent λ1 of the IMFs for Fenhe reservoir,
Zhaishang, and Lancun stations are more than 0, except for the IMF5 for Fenhe reservoir station and
the IMF4 for Zhaishang and Lancun stations, which indicates that the IMFs have chaotic characteristics.
The average period of the IMF5 for Fenhe reservoir station and the IMF4 for Zhaishang and Lancun
stations is 23 years. Therefore, the Power Spectrum method is used to analyze the chaotic characteristics
of the IMF5 for Fenhe reservoir station, and the IMF4 for Zhaishang and Lancun stations. Figures 9–11
show that the IMF5 for Fenhe reservoir stations and the IMF4 for Zhaishang and Lancun stations each
have single peaks, which indicates that the three time series do not have chaotic characteristics.
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The prediction results analyzed from Figures 12–14 are similar to those in Figure 5. It can be seen
from the hydrographs that the CLSSVM hybrid model shows worse performance for annual runoff
forecasting than the EMD-CLSSVM hybrid model in the testing period, especially in Figures 13 and 14.
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3.7. Evaluation of Model Performance

To evaluate the performance of the models, qualified rate (QR), root mean square errors (RMSE),
mean absolute relative errors (MARE), and mean absolute errors (MAE) are employed to measure the
goodness of fit of various models in this paper. Each statistical measure provides unique insight into
the performance of the model. The forecast value is eligible if the forecast relative error is less than
20% [31]. The QR is defined as the ratio of the number of eligible years to the number of prediction
years. Model performance can be measured as “satisfactory” if QR > 70%, as “good” if QR > 80%,
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as “very good” if QR > 90%, and as “unsatisfactory” if QR < 70%. RMSE and MARE provide different
types of information about the predictive capabilities of the model. MAE provides a more balanced
measure of goodness of fit at moderate values [32].

The assessments of training and testing results obtained by the two models for four stations are
presented in Table 4.

Table 4. Performance indicators of different models for four hydrologic stations during training and
testing periods.

Station Hybrid
Model

Training Testing

QR RMSE
(106 m3) MARE MAE

(106 m3) QR RMSE
(106 m3) MARE MAE

(106 m3)

Shangjingyou CLSSVM 61% 10.19 0.21 8.12 100% 2.49 0.07 2.03
EMD-CLSSVM 97% 3.78 0.07 2.93 100% 1.52 0.05 1.51

Fenhe
reservoir

CLSSVM 65% 120.33 0.27 70.83 100% 11.03 0.05 9.89
EMD-CLSSVM 97% 75.17 0.21 53.43 100% 9.93 0.03 7.95

Zhaishang CLSSVM 68% 114.91 0.32 90.91 40% 77.05 0.26 67.64
EMD-CLSSVM 97% 40.19 0.09 30.33 100% 17.71 0.07 15.72

Lancun
CLSSVM 58% 106.63 0.30 65.58 40% 85.84 0.30 74.17

EMD-CLSSVM 97% 24.18 0.07 19.11 100% 12.16 0.05 10.18

Note: QR: qualified rate; RMSE: root mean square errors; MARE: mean absolute relative errors; MAE: mean
absolute errors.

Table 4 shows that the EMD-CLSSVM hybrid model for Shangjingyou station has good
performance during both training and testing. In the training period, the EMD-CLSSVM hybrid model
obtained good QR, RMSE, MARE and MAE statistics, which increases the QR by 59%, and reduces
the RMSE, MARE, and MAE by 62.9%, 66.7%, and 63.9%, respectively, in comparison with CLSSVM
hybrid model. The EMD-CLSSVM hybrid model obtained good QR, RMSE, MARE, and MAE statistics
in the testing period, reducing the RMSE, MARE, and MAE by 39%, 28.6%, and 25.6%, respectively,
in comparison with the CLSSVM hybrid model.

Table 4 shows that the performance of the CLSSVM hybrid model is worse than the EMD-CLSSVM
hybrid model for the other three hydrologic stations. Training QR and testing QR of the EMD-CLSSVM
hybrid model for the other three hydrologic stations also reach up to 97% and 100%, respectively.
The training QR of the CLSSVM hybrid model for the other three hydrologic stations is about 60%, and
the testing QR of the CLSSVM hybrid model for Fenhe reservoir station is 100%. However, the testing
QR of the CLSSVM hybrid model for Zhaishang and Lancun stations is 40%, i.e., it is disqualified.
It can be observed from Table 4 that EMD significantly increases the accuracy of the CLSSVM hybrid
model in terms of RMSE, MARE, and MAE. For Fenhe reservoir station in the training period, the
EMD-CLSSVM hybrid model reduces the RMSE, MARE, and MAE by 37.5%, 22.2%, and 24.6%,
respectively, as comparison with the CLSSVM hybrid model. In the testing period, the reductions
in RMSE, MARE, and MAE are 10%, 40%, and 19.6%, respectively. For Zhaishang station in the
training period, the EMD-CLSSVM hybrid model reduces the RMSE, MARE and MAE by 65%, 71.9%,
and 66.6%, respectively, in comparison with the CLSSVM hybrid model. In the testing period the
reductions in the RMSE, MARE, and MAE are 77%, 73.1%, and 76.8%, respectively. For Lancun station
in the training period, the EMD-CLSSVM hybrid model reduces the RMSE, MARE, and MAE by 77.3%,
76.7%, and 70.9%, respectively, in comparison with the CLSSVM hybrid model. In the testing period
the reductions in the RMSE, MARE, and MAE are 85.8%, 83.3%, and 86.3%, respectively. Similarly,
it can be seen from Table 4 that the EMD-CLSSVM hybrid model has better accuracy in forecasting
annual runoff at Fenhe reservoir, Zhaishang, and Lancun stations, which is consistent with the results
for Shangjinyou station. Therefore, the forecasting results of the other three stations have further
confirmed the high consistency and good stability of the EMD-CLSSVM hybrid model.
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The optimal model that gives the minimum RMSE, MARE, and MAE was selected. The EMD-CLSSVM
hybrid model has good performance with lower RMSE, MARE, and MAE values. The reason the
forecasting accuracy of the EMD-CLSSVM hybrid model is better than that of the CLSSVM hybrid
model lies in the advantages of EMD, e.g., decomposing the original runoff series into several sub-series
and transforming the time series into stationary ones. A stationary series is needed when selecting the
parameters of phase space in chaotic theory. A nonstationary time series affects the performance of
phase space reconstruction, which leads to a reduction in prediction accuracy. In practice, it is very
difficult to forecast nonstationary annual runoff series. EMD is introduced to transform nonstationary
series into stationary ones, taking advantage of a combination of chaotic theory and LSSVM methods,
which enhances the prediction accuracy. On the other hand, EMD is also a decomposition process.
The decomposition strategy does effectively enhance the prediction accuracy. From Table 4, it is clear
that the prediction accuracy of the CLSSVM hybrid model is worse than the prediction accuracy of
the EMD-CLSSVM hybrid model. For example, compared to the CLSSVM hybrid model, the RMSE,
MARE, and MAE of the EMD-CLSSVM hybrid model are all reduced by more than 80% for Lancun
station in the testing period; the RMSE, MARE, and MAE of the EMD-CLSSVM hybrid model are
reduced by more than 70% for Zhaishang station in the testing period. Zhaishang station and Lancun
station are located in the lower reaches of the Fenhe reservoir. The runoff time series are affected by
human activities at the two stations, including the characteristics of multi-scale changes. These results
indicate that many multi-scale components with different characteristics exist in the runoff time series.
The decomposition process segregates the multi-scale components from the runoff time series and
predicts the components separately, and this can enhance the forecasting performance.

The main reason for this improvement is that the EMD-CLSSVM hybrid model is capable of
decomposing original runoff series into stationary time series using EMD, which indicates that the
EMD-CLSSVM hybrid model significantly outperformed the CLSSVM hybrid model. The models
applied to the four hydrological stations have achieved consistent results, which indicates that the
EMD-CLSSVM hybrid model has the characteristics of high consistency and great stability.

4. Conclusions

If the runoff series possesses a chaotic trait, the traditional forecasting methods cannot perform
properly. To improve the accuracy of runoff forecasting, the LSSVM model may be an effective tool for
the prediction of chaotic runoff series. Thus, the EMD-CLSSVM hybrid model was investigated for
prediction purpose. The EMD-CLSSVM hybrid model was coupled with the EMD technique, chaotic
theory, LSSVM, and other forecasting methods. The annual runoff data from Shangjingyou station
in Lan River, a tributary of the Fenhe River in China, were used to develop the model, while Fenhe
reservoir, Zhaishang, and Lancun in Fenhe River in China were used to verify the proposed method.
Firstly, the KPSS method was used to analyze the stationarity of the runoff series. The results showed
that the runoff series for four hydrologic stations was nonstationary. Using the EMD technique, the
original runoff series were decomposed into several IMFs and one trend term. After the KPSS test, it
was found that the decomposed IMFs were stationary. On this basis, the chaotic theory was employed
to analyze the chaotic characteristics of several IMFs. It is indicated that the IMF1, IMF2, IMF3, and
IMF4 for Shangjingyou and Zhaishang stations have chaotic characteristics. So do the IMF1, IMF2, and
IMF3 for Zhaishang and Lancun stations. The remaining IMFs have no chaotic characteristics. Then the
CLSSVM model was used to predict the IMF1, IMF2, IMF3, and IMF4 for Shangjingyou and Zhaishang
stations, and the IMF1, IMF2, and IMF3 for Zhaishang and Lancun stations; the polynomial method
was employed to predict the last IMF, and the GM was applied to predict the trend term. Finally, the
prediction result was reconstructed to obtain the prediction value of the original runoff series. The
results showed that the EMD-CLSSVM hybrid model has good performance in comparison with the
CLSSVM hybrid model. For four hydrological stations, the EMD-CLSSVM hybrid model increased
QR with respect to the CLSSVM hybrid model by 30%–60% and reduced RMSE, MARE, and MAE
by 10%–85.8%, 22.2%–83.3%, and 19.6%–86.3%, respectively. Although runoff generation is impacted
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by many factors, no exogenous variables are considered in this paper. The reason is that a chaotic
runoff series carries enough information about the behavior of the system to carry out forecasting.
Moreover, this paper focuses on the advantages of the proposed method. However, directly applying
the CLSSVM hybrid model for runoff prediction does not produce a better result. The reason is that a
nonstationary runoff series limits prediction accuracy. Therefore, the EMD has been introduced for
stationarity conduct of the runoff series. The method proposed in this paper can be applied to the
remaining reaches of Fenhe River, where data are available. It would also have potential application in
other catchments with a similar environment.
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