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Abstract: Aging infrastructure is the main challenge currently faced by water suppliers. Estimation
of assets lifetime requires reliable criteria to plan assets repair and renewal strategies. To do so,
pipe break prediction is one of the most important inputs. This paper analyzes the statistical
dependence of pipe breaks on explanatory variables, determining their optimal combination and
quantifying their influence on failure prediction accuracy. A large set of registered data from Madrid
water supply network, managed by Canal de Isabel II, has been filtered, classified and studied.
Several statistical Bayesian models have been built and validated from the available information with
a technique that combines reference periods of time as well as geographical location. Statistical models
of increasing complexity are built from zero up to five explanatory variables following two approaches:
a set of independent variables or a combination of two joint variables plus an additional number
of independent variables. With the aim of finding the variable combination that provides the most
accurate prediction, models are compared following an objective validation procedure based on the
model skill to predict the number of pipe breaks in a large set of geographical locations. As expected,
model performance improves as the number of explanatory variables increases. However, the rate
of improvement is not constant. Performance metrics improve significantly up to three variables,
but the tendency is softened for higher order models, especially in trunk mains where performance is
reduced. Slight differences are found between trunk mains and distribution lines when selecting the
most influent variables and models.

Keywords: pipe breaks; explanatory variables; predictive models; statistical dependence; distribution
lines; trunk mains; water supply

1. Introduction

Aging infrastructure involves an increasing risk of failure in underground water pipes that
have consequences in the quality of service provided to end-users. For developed countries, aging
infrastructure is a current concern but it is likely to become an important issue worldwide in
the future [1]. Water distribution networks are large scale systems which demand continuous
improvements for their design optimization or to achieve appropriate levels of efficiency [2]. Likewise,
increasing asset investment is required for rehabilitation or repairing to maintain the level of service.
Service suppliers make remarkable efforts to establish suitable asset management policies in order
to improve the decision making process while managing uncertainties for medium or long-term
planning [3]. These tasks involve deep understanding of system performance, network deterioration
processes and pipe failure mechanisms.
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The development of water network models to foresee the system possible behavior contributes
to an effective asset management. Indeed, some researchers are centered on determining an optimal
pipe replacement strategy based on failure prediction models [4,5]. From this approach some studies
identify the remaining service life as the period of time at the end of which a pipe stops providing the
function it was designed for [6]. Over this period, communities would face increasing repair costs [7].
This way, different models to predict pipe failure have been developed in order to determine that
period of time for programming not only preventive or proactive repair campaigns but also renewal
programs. However, uncertainty related to the quality and the quantity of data needed to build the
model also has to be faced.

Pipe failure models can be grouped as physically based models and statistical models [8].
While the first group aims to discover the physical mechanisms behind pipe breaks, statistical models
are based on historical break data to identify break patterns in the water mains [9]. Models are also
classified as deterministic or stochastic models [10]. In deterministic models the number of failures is
calculated from mathematical functions based on explanatory variables but they need large series of
known variables data. Meanwhile, stochastic models take into account the random nature of failures.
They can be classified as: single-variate models and multivariate models. Multivariate models allow a
better understanding of the influence of each parameter in failure occurrence but require fixing how
the covariates act on the failure distribution. On the other hand, single-variate models require dividing
the input data into homogeneous groups assuming a constant failure rate within the group.

Some research projects are being developed for a better understanding of the explanatory factors
of bursts and failures. Condition assessment studies [11] are conducted to identify main variables
related to the asset deterioration process. Effective decisions about the likelihood of failure and renewal
planning are based on collection of information about asset condition, analysis of this information and
ultimately transformation of this information into knowledge [12,13]. Condition assessment methods
can be classified into direct and indirect methods [14]. Direct methods include automated/manual
visual inspection, non-destructive testing and pipe sampling. Indirect methods include water audit,
flow testing, and measurement of terrain resistivity to determine the risk of deterioration. However,
all these techniques are quite expensive and uncertainties are still substantial.

Data quality becomes a key factor when building the pipe break predictive model because of
the large data sets required to develop a reliable model and the uncertainties associated to the data
record process [15–18]. Therefore, Bayesian analysis based on considering random variables and
incorporating external information to build a probability distribution has been selected by several
researches [19–22] as a good approach to describe the uncertainties in the model parameters.

In this regard, a model able to predict pipe failure should be built from reliable data in a robust
manner. Based on this idea and in order to improve the understanding of failure processes, an accurate
quantification of model and uncertainties in prediction has become a key problem [23,24].

Commonly, the occurrence of failures increases with the age of network elements [25]. However,
while some components can be operative for longer periods than their design life, other younger
elements present a high failure rate and need to be replaced soon [26]. This could be explained by the
fact that failures in pipelines depend on many factors that are difficult to characterize quantitatively [27].
Assets aging involves its natural deterioration but there are some other drivers such as external
corrosion, the amount of loading (pressure, and ground movement), the pipe length and diameter,
the pipe material, the quality of installation and workmanship, and even the burst history itself that
influences the failure process [28].

Structural deterioration of elements in water networks are usually produced by specific influencing
factors related to environmental conditions and material characteristics [29]. Influencing variables are
categorized as [30,31]: structural or physical variables, external or environmental variables, internal or
hydraulic variables and maintenance variables. However, the influence of these factors on pipe breaks
and the analysis of their capability to predict failures are not properly quantified.
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The aim of the research reported in this paper is to evidence the statistical dependence of pipe
breaks on explanatory variables. It is developed from a complete database of pipe failures where
every failure at each element has been carefully registered along a four-year period (2010–2014).
Such failure database has provided a great chance to develop a quantitative analysis of the influence of
explanatory variables in the task of predicting failures by their appropriate combination. This results
in an improvement of the models’ performance.

In the following section, this paper details the applied input data in terms of failure registration
and pipe characteristics. Section 2.2 describes the methodology applied: selection of explanatory
variables, description of the Bayesian analysis used, how the different models are built and finally the
validation process of applied models. After the technique is described, results obtained for the Canal
de Isabel II network (trunk mains and distribution lines) are explained in Section 3. Main findings
obtained by direct comparison of the performance of the applied models to each of the networks are
explained in Section 4. To conclude, the last section summarizes the main conclusions of the research
in terms of pipe break dependence on explanatory variables and best combination of variables for pipe
break prediction models.

2. Data and Methods

2.1. Data

Statistical dependence of explanatory variables on pipe breaks is analyzed with a large set of data
recorded in the water supply network managed by Canal de Isabel II. Canal de Isabel II is the company
commissioned for the integral water cycle in Madrid’s region. The urban water network managed
by the company covers more than 8000 km2 and supplies water to more than 177 municipalities. It is
composed of a set of trunk mains and a set of distribution lines. The distribution lines are formed by
more than 370,000 pipe segments with a total length of more than 14,000 km. The trunk mains are
formed by close to 40,000 elements with more than 3000 km of total length. The present analysis is
focused on the water supply networks (trunk mains and distribution pipes). Part of the assets managed
by Canal de Isabel II, such as water treatment plants, pumping stations, water channels and service
connections, are not considered in this study.

Canal de Isabel II records network data from every pipe segment and other elements such as age,
material, diameter, and depth in its own geographic information system (GIS). Since 2004, the company
has implemented a Sectorization Plan, with 779 hydraulic sectors already in service that enables a more
accurate knowledge of network performance. Through the sectorization, much information about the
pressure on each sector’s inlet is gathered with the monitoring system (SCADA). In addition, the entire
network of Canal de Isabel II is incorporated into calibrated and bimonthly updated hydraulic models
of system operation. Such mathematical models also provide hydraulic variables that were considered
in the analysis. Representative pressure and velocity values (maximum, average and minimum) for
each pipe segment of the network were taken into account in this research.

Moreover, a large series of system failures is recorded by the corresponding information
management system (named GAYTA). That system incorporates a database of events related to
breaks, leaks, water quality or low pressure problems, client claims and other relevant information
communicated to Canal de Isabel II by any other stakeholder, works and operation activities carried
out within the network as well as maintenance labors. For each of them, a set of parameters have been
introduced in a database as well as the location, the municipality and the hydraulic sector where it is
located. This study has been developed from failure records between 2011 and 2014. Complementary
data regarding operational maneuvers in this period have been used to identify their influence on
pipe failures.

The GAYTA database collected information of more than 433,000 system events in the considered
period (2011–2014). Filtering techniques were applied to remove duplicated events and works from the
input databases. This process is quite relevant when considering the events information registered in
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the corresponding information system. To do so the following filters were applied: firstly, we selected
every event that was produced by any activity of the company. In a second filter those events out of the
scope of the study were removed; this applies to service connections, valves, and other special devices
reducing the set of data to 155,407 registers. The third filter only considers events related to breaks and
leakages which reduced the number of events to 61,870. The fourth filter was applied to remove those
events where the location is not properly identified and thus the failure cannot be assigned to a specific
pipe segment. Similar filters were applied to every variable so as to remove all those pipe segments
where the information set is not complete whether because of the parameters of the pipe itself or
because the registered information in the events database is not complete. Finally, about 10,000 events
were selected for analysis in the distribution lines and 410 events in the trunk mains.

The main parameters of the data used in this research are summarized in Table 1.

Table 1. Analyzed data.

Category Number of Components
2011 2012 2013 2014

Events Events Events Events

Distribution lines 373,113 (14,176 km) 1758 1773 1970 2237
Trunk mains 39,915 (3297 km) 94 78 74 79

Other sources of information were also used in this analysis; the geological characterization of
the terrain was taken from geological maps developed by the Spanish Geologic and Mining Institute.
Such maps were correlated with the GIS data so that a type of terrain was identified for each pipe
segment of the network. Regarding land use, national data were also taken into account. The Land
Use System Information (SIOSE) provides information about that characteristic considering several
categories: artificial cover, crops, water surfaces, combined, infrastructure, etc. Each type of land cover
has several subtypes depending on the application such as roads, railways, airports, commercial areas,
industrial areas, etc. This information was synthetized for a detailed characterization of every pipe
segment within the network.

By incorporating all this information to a certain methodology several predictive models can
be proposed as described in the following section. Every source involves several variables that are
incorporated in the study. From the Canal de Isabel II GIS: diameter, installation year, material and
location are obtained. From the geographical referenced maps: terrain, land use and depth are taken.
From the hydraulic models, maximum, average and minimum pressures as well as maximum, average
and minimum velocity are calculated. From the operational and works database, hydraulic transient
ratio is considered for every pipe by analyzing the relationship between system maneuvers at special
network elements and their incidence in the rest of system components. The list of considered factors
classified as physical, environmental or internal variables for each type of network is shown in Table 2.

Such large amount of information was compiled and classified to produce several predictive
models incorporating different variables with the aim of identifying the most relevant variables in the
failure phenomena.
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Table 2. Considered variables.

Type of Variable Distribution Lines Trunk Mains

Physical Diameter Diameter
Physical Installation year Installation year
Physical Material Material

Environmental Terrain -
Environmental Land use Land use
Environmental Depth Depth

Internal Maximum pressure Maximum pressure
Internal Average pressure Average pressure
Internal Minimum pressure Minimum pressure
Internal Maximum velocity Maximum velocity
Internal Average velocity Average velocity
Internal Minimum velocity Minimum velocity
Internal Transient index Transient index

2.2. Methodology

The analysis of all collected data is assessed in three steps: first, the explanatory variables that
can influence the pipe break phenomena are selected; second, several predictive models with multiple
variables combined in different manners are formed; and to conclude the analysis, the third step is to
evaluate the results obtained for each of the proposed models in order to look for the best predictive
option for distribution and for trunk mains.

2.2.1. Explanatory Variables Selection

The variable selection was done following a two-step approach. Firstly, a set of candidate variables
were selected based on current state of the art. Variables taken from the literature include those usually
related to pipe breaks: material, diameter and year of installation (pipe age). These three variables are
considered principal variables in the analysis. A second group of variables was selected. In this case,
their influence on break prediction is not that evident, thus they are considered as secondary variables.
They were identified from a holistic point of view. Every considered variable is listed in Table 2.

All these variables were analyzed to ensure the availability of appropriate collected data to
be studied. From the available data, a statistical analysis was done to find empirical evidences
that the selected variables influence pipe breaks. As the specification of each network is different,
the significance test was applied twice, one for distribution lines and one for trunk mains.

2.2.2. Bayesian Models for Failure Prediction

The predictive models of failure are based on a Bayesian analysis. The goal is to identify the
probability of occurrence of a failure event (i.e., pipe burst) as a function of a set of explanatory variables.

In the case of one single explanatory variable X, two events may be defined:

• Event A: A failure event occurs.
• Event B: Explanatory variable takes a value in the interval [x, x + ∆x].

The generic probability of a failure event Pr(A) in a given component of the network (i.e., a pipe
segment) for a given period (i.e., one year) may be estimated from the expression (Equation (1)):

Pr(A) =
Nf
NT

(1)

where Nf is the number of failure events registered in the period and NT is the total number of
components. In the case of a pipe segment, NT would be equal to the total length of the network
divided by the length of the pipe segment.
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The generic probability describes the a priori information about the failure event (in the absence
of information about explanatory variables). If there is additional information (i.e., we know that for
the pipe segment the explanatory variable takes a value in the interval [x, x + ∆x]), we can estimate the
probability of occurrence of the explanatory event as defined in Equation (2).

Pr(B) = Pr(x ≤ X < x + ∆x) = FX(x + ∆x)− FX(x) (2)

where FX is the probability distribution function of the explanatory variable X.
From the observations we may also estimate the conditional probability that for a failed component

the explanatory variable takes a value in the interval [x, x + ∆x] according to Equation (3):

Pr(B|A) = FFX(x + ∆x)− FFX(x), (3)

where Pr(B|A) is the probability that the explanatory variable X of a failed component takes a value in
the interval [x, x + ∆x] and FFX is the probability distribution function of the explanatory variable X
among the failed components.

Applying Bayes equation we can estimate the conditional probability of occurrence of a failure
for a component with the explanatory variable in the interval [x, x + ∆x] (Equation (4)).

Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)
=

FFX(x + ∆x)− FFX(x)
FX(x + ∆x)− FX(x)

Nf
NT

, (4)

where Pr(A|B) is the probability of failure of a component where the explanatory variable X takes a
value in the interval [x, x + ∆x].

Therefore, the probability of failure conditioned to an explanatory variable can be estimated from
the unconditional probability distribution of the explanatory variable and the probability distribution
of the same variable among the failed components. For a given interval of the explanatory variable,
the ratio of probabilities is a factor that multiplies the a priori probability of failure. If the relative
frequency of the interval of the explanatory variable is higher in the distribution conditional to failures
than in the unconditional distribution this particular interval of the explanatory variable increases the
probability of failure and decreases it otherwise.

This approach can easily be extended to the case where several explanatory variables are used by
considering the joint probability distribution of all explanatory variables. However, from a practical
point of view, the number of explanatory variables is limited by our ability to estimate the joint
probability function. This constraint can be relaxed assuming that some explanatory variables are
independent from the rest.

2.2.3. Model Building

As result of the statistical analysis, variables were identified as relevant for the failure event
prediction, and so are to be included in the models used to predict such events. Many models
were tested in the analysis. The order of the model is the number of explanatory variables used.
The zero-order model is therefore the unconditional probability of failure estimated from the whole
dataset. Models are classified according to the following three criteria: (1) number of explanatory
variables jointly analyzed; (2) number of additional independent explanatory variables; and (3) number
of intervals considered in the definition of the probability distribution functions.

Because it would be unpractical to include all explanatory variables into one single model,
a hierarchical approach was followed. Models of increasing complexity were built, starting from
models using one single explanatory variable up to five explanatory variable models (order one to
order five). All possible combinations of variables are analyzed for models of orders one and two.
Two possibilities were considered in the case of second order models: two independent variables and
two joint variables. The number of possible combinations can be extremely large for models of order
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larger than two. To restrict the search space, models of order larger than two were only built based on
the ten best models selected in the previous order. Given the ten best models of order n, models of
order n + 1 were built by adding an additional variable, assumed independent from the rest. In all
cases the explanatory variables were discretized in ten possible resolutions: from two to ten intervals,
plus one additional case with the maximum possible resolution. The same level of resolution was
assumed in all variables.

With the aim of obtaining the best prediction, a very large number of candidate models
were proposed considering the available data. The analysis, as explained in the following section,
was completed with a model evaluation step to allow for the selection of the best model for each type
of network.

2.2.4. Model Validation

The methodology for model validation is based on the comparison between the expected number
of failures predicted by the model (Np) and the real number of failures observed (No) at each validation
period. Models are evaluated in a set of network samples of varying size. Samples are defined
according to a geographical criterion, considering square network areas surrounding a random central
point. The size of these square areas is defined sampling from a uniform distribution between a
minimum limit (Lmin) and a maximum one (Lmax), with the condition to contain at least a minimum
number of elements (Ne). Figure 1a shows the selection of elements in blue color for a sample with
size L centered in a red point, while Figure 1b represents all central points (100 in total) analyzed for
the validation process.
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Model performance is linked to the regression between the number of failures predicted by the
model in each sample and the number of failures actually observed. Two parameters were selected:
the slope of the regression equation conditioned to null intercept and the regression coefficient R2.
Optimal value for both of them is one.

Sensitivity studies were carried out for checking validation procedure. Their aim was to quantify
the uncertainty of the results of the validation (regression slope and regression coefficient) as a function
of the parameters of the validation process. The analysis was focused on: size of the sample (in terms
of number of zones), size of the zones of the sample and validation period.

The study of the size of the sample was done considering the obtained value for the quality
indicators depending on the number of elements of the sample. The analysis was done for sample
sizes between 100 and 500 elements. The analysis of the influence of the size of the zones was done
modifying the dimension limits (Lmin and Lmax) keeping a constant minimum number of elements
Ne. For the evaluation of the validation period, the period of available data was split into four years.
Data from one year were used to adjust the model, which was then validated in the other three one-year
periods. To do so, every possible combination was used for a total of 12 combinations.

The sensitivity study revealed that the number and size of the zones are relevant, but the parameter
that most affects the results is the validation period. Because the result varies from one adjusting
period to another, in order to identify the best model to represent the behavior, several periods have
been used in each case and the best approach has been selected.

Based on such analysis, the proposed validation methodology considers a sample size of
500 elements of dimensions within 10 and 100 km. The performance of the models is studied in
a wide range of zones from the smallest to the biggest ones that almost cover the entire system.
The models were adjusted to the four available years (2011, 2012, 2013 and 2014) and each one of those
was validated in the other three years. That way, 12 quality parameters were obtained for each of the
selected variable combinations. Obtained results were compared to the order cero quality parameters.

The best variable combination is considered to be the one with a better global performance for
the 12 cases analyzed. Global performance is based on a quality parameter defined as the distance
to the optimum point in a plane defined by the two basic quality parameters: slope and correlation
coefficient. Such distance (see Equation (5)) is the distance between the validation result and the
optimum (adjusted slope equal to 1 and correlation coefficient equal to 1).

d =

√
(m− 1)2 + (r− 1)2 (5)

where d is the distance, m is the slope of the regression line and r is the correlation coefficient.
For each model built on a given variable combination, 12 sets of quality parameters are calculated

(m, r, d). The selection is made considering the mean and standard deviation of the quality radius
(see Equations (6) and (7)):

M =
∑12

i=1 di

12
, (6)

SD =

√√√√ 1
12

12

∑
i=1

(di −M)2 (7)

Figure 2 illustrates how model results are compared and evaluated for a certain model,
corresponding to a given combination of variables. The values of the mean and standard deviations of
the quality radiuses are represented with a large dot. The individual values of the quality radiuses
for each of the 12 validation cases are represented as smaller dots of the same color in the location
corresponding to the standard deviation. The best model is the one closer to the origin of coordinates.
For comparison purposes, the zero-order model is represented in brown color and highlighted with
a horizontal line. The best model is also highlighted with a horizontal line. The distance between
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the best model and the zero-order model lines shows the improvement that can be achieved in the
prediction by using the set of models under analysis.Water 2017, 9, 158  9 of 25 
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line. Improvement from order zero to best model is indicated as the distance between both lines.

3. Results

Following the procedure described in the previous section, firstly zero-order model results are
presented. Later, results for both distribution lines and trunk mains are included for models ranging
from order one to order five. With this approach, the influence of incorporating additional variables to
the analysis can be analyzed with the aim of improving the models performance, firstly for distribution
lines and later for trunk mains.

3.1. Zero Order Models

Zero order models do not consider any predicting variable in their formulation. Results obtained
for both networks can be seen in Table 3. Such analysis is based on the 12 validation cases described
before. Model performance metrics are worse for the distribution lines than for the trunk mains
although distribution network is larger. These performance values are used as the reference for the
analysis of the multiple-variable models with the aim of quantifying the improvement of predictions’
performance as new explanatory variables are added.

Table 3. Performance metrics for zero order models.

Category Mean Slope (m) Mean R2 (r) Mean Radius (M) Standard Dev. Radius (SD)

Distribution lines 1.107 0.975 0.157 0.125
Trunk mains 0.991 0.981 0.110 0.078
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3.2. First Order Models

First order models are built with one single explanatory variable. Results obtained for distribution
lines and trunk mains are shown on Table 4 and Figure 3.

Table 4 presents the performance results of the best model for each variable from all the
aggregations considered. There are three variables that clearly provide a better prediction in both
networks: diameter, material and year of installation. All other variables, including the hydraulic ones,
provide a worse prediction with performance statistics closer to the zero order models.

Obtained results for trunk mains might be affected by the smaller number of registered breaks in
comparison with the distribution lines. This might explain that for trunk mains the performance is not
clearly improved beyond three variables, as will be seen later.

Table 4. One variable models: predictive capacity for distribution lines (left) and trunk mains
(right) networks.

Distribution Lines Trunk Mains

Variable Mean Slope Mean R2 Mean Radius Std. Dev. Mean Slope Mean R2 Mean Radius Std. Dev.

Diameter 1.021 0.971 0.075 0.053 0.948 0.977 0.073 0.063
Material 1.030 0.980 0.085 0.066 1.000 0.980 0.073 0.056

Year 1.049 0.980 0.097 0.084 0.971 0.979 0.086 0.059
Land Use 1.099 0.975 0.149 0.119 1.015 0.980 0.093 0.078

Depth 1.100 0.976 0.151 0.122 0.988 0.981 0.095 0.068
Pmax 1.112 0.975 0.153 0.127 1.010 0.981 0.096 0.078
Pave 1.112 0.975 0.153 0.127 1.006 0.981 0.098 0.078
Pmin 1.111 0.975 0.154 0.127 1.003 0.981 0.100 0.078

Terrain 1.108 0.975 0.156 0.125
Vmax 1.108 0.975 0.156 0.125 0.987 0.980 0.102 0.073
Vave 1.108 0.975 0.156 0.125 0.983 0.981 0.100 0.078
Vmin 1.107 0.975 0.157 0.125 0.995 0.981 0.107 0.078
Tran 1.108 0.975 0.157 0.126 0.993 0.980 0.103 0.074
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Figure 3. First order models results based on mean radius and standard deviation: (a) distribution
lines; and (b) trunk mains. Individual validation models are represented as small dots and average
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values of mean radius obtained for each model. Order zero mean radius is represented by the brown
dashed line and the best predictive model is represented as a blue dashed line.

3.3. Distribution Lines

Based on previous results, multiple variable models were tested with the aim of improving
the performance of single variable models. Two approaches are followed, considering independent
variables or considering two joint variables plus additional independent variables. Firstly, the results
of the independent variable models are explained and summarized in Figure 4.

Two independent variable models are built based on the results of the single variable models.
Thus combinations between diameter, material and year of installation are expected to produce a better
prediction. Although the order two models generally improve the performance of single variable ones,
none of them improve the prediction of the diameter order one model. Three independent variable
models improve the order one and order two models. Again, diameter is involved in the best models.
For the four independent variable models, the obtained results are quite similar to the three variable
models. Diameter, type of terrain, minimum pressure and maximum velocity provide the best results.
Thus, the mean radius obtained (0.064) slightly improves the order three result (0.065). The models
built with five independent variables do not improve the results of the four independent variable
models providing the same mean radius (0.064) in the best model. Thus, from the observed results,
there is no advantage to introducing five variables in the predictive model.

Joint variable models are studied from the base of two joint variables incorporating, one, two or
three additional independent variables to the model. Results are shown in Figure 5.

When analyzing the two joint variables models, the best combination obtained is diameter and
transients index, with a mean radius of 0.075. Such result improves most of the single variable models
but provides the same performance as the best one-order model (mean radius of 0.075 for the variable
diameter). Other models combining material and type of terrain, depth or land use provide worse
results than the single variable model. In any case, the improvement for single variable model to the
two joint variables is far smaller than from the zero order model to the single variable models.
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The 2J + 1I models are produced starting from the best two joint variable models adding an
additional one (assumed independent from the others). From that point, several combinations provide
a clear improvement in the performance of the prediction compared to those obtained with order
one or two models. The combination of diameter plus transient index and minimum pressure clearly
improves the results with mean radius decreasing from 0.075 to 0.060. It can be concluded that when
comparing both types of order three models, the most accurate prediction is obtained with the 2J + 1I
models. For the 2J + 2I models, the best results are obtained with the diameter-year variables combined
with the depth and pressure variables (minimum, average or maximum). Diameter and material
combined with minimum velocity and depth also provide good results. Best model provides a mean
radius of 0.052 which reduces the values for the three variable models whose results are between 0.060
and 0.064. Thus, if the four variables are properly selected and combined, the performance of the
prediction can be improved. The 2J + 3I models are built based on the results of the 2J + 2I models
where a fifth independent variable is included. In this case, there is only one model that improves
the performance of the four variable models. The combination of diameter and material with depth,
average velocity and maximum velocity provides a mean radius slightly better (0.051 vs. 0.052).
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Figure 5. Distribution lines. Mean radius and standard deviation for models with two joint variables
plus independent variables. Order zero mean radius is represented with brown dotted line; and best
predictive model with blue line for: (a) order two; (b) order three; (c) order four; and (d) order
five models.
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3.4. Trunk Mains

Like in the case of distribution lines models, trunk mains model results are analyzed in two steps.
Independent variable models results are shown first in Figure 6, and later on two joint variable models
plus additional independent variables are studied as shown in Figure 7.

When analyzing the two-order model for diameter and material combined, the result is
significantly improved from a mean radius of 0.073 (for one variable model) to 0.035 when both
variables are combined. Other independent combinations including diameter and other variables show
less performance improvement, such as diameter with year (mean radius of 0.060), land use (0.070),
or maximum velocity (0.070). Order two models including pressure variables also provide a significant
improvement from first order models. Mean radius values for first order models including pressure
variables range from 0.096 to 0.100. These values are reduced to 0.065 to 0.068 when two pressure
variables are combined for maximum and minimum pressure (0.065), average and maximum pressure
(0.066) and average and minimum pressure (0.068), suggesting that pressure range is more relevant
than absolute value as a cause for pipe breaks. From the observed results, it may be concluded that
single variable models performance is improved by incorporating an additional independent variable;
especially if diameter is considered. Pressure and velocity variables show a good performance in terms
of accuracy as well.

When material and diameter are combined with other variables in order three models,
the performance is further improved. These two variables combined with land use provide the
best result, with mean radius of 0.028. Combination of these variables with depth or pressure also
improve order two results, but to a less extent, with mean radius of 0.033 and 0.038. However,
when four independent variables are considered the mean radius is not improved. The optimal
combination is obtained with diameter, material, land use and depth, with mean radius of 0.033.
This means that by introducing a fourth variable (depth) the performance is reduced from the order
three model (mean radius of 0.028) to the order four model (mean radius of 0.033). If five independent
variables are used in the predictive model, the results are generally worse than for order three
or four models. In fact, the best prediction reports mean radius of 0.047 for the combination of
diameter, material, average velocity, maximum velocity and minimum velocity. As explained above,
more complex models (orders four and five) do not show any clear improvement in the prediction
of breaks on trunk mains. This might be explained because of the reduced amount of available data
in trunk mains in comparison with the distribution lines, which limits our ability to estimate the
probability distributions conditional to breaks.
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Figure 6. Trunk mains. Mean radius and standard deviation for models with all independent variables.
Order zero mean radius is represented with brown dotted line; and best predictive model with blue
line for: (a) order two; (b) order three; (c) order four and (d) order five models.
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Order two models have been analyzed combining every pair of variables. Two joint variable
models report a significant improvement of the prediction performance. Models including material as
one the predictive variables report the following values for mean radius: 0.061 for material combined
with depth, 0.062 for material combined with average pressure and 0.066 for material combined
with diameter or maximum pressure. These results clearly improve the best value of mean radius
obtained with one predictive variable (0.073 for material). Similar results are obtained for combinations
including diameter, reducing the mean radius from 0.073 to 0.066 (diameter combined with material).
Other joint combinations of diameter with variables such as year, land use and velocity also improve the
performance; on the other hand, combination of diameter with pressure or depth does not improve the
results. Analyzing year, the third variable from one variable models list, the results are also improved
from a mean radius of 0.086 for year alone to a mean radius of 0.068 for year jointly combined with
material. Other joint combinations of year with other variables introduce slight improvements but
not so relevant. Overall, models of two joint variables clearly improve the predictive performance
as compared to single variable models. The best models are formed with the joint combination of
material plus another variable such as depth, average pressure or transient index. In any case, the best
result for two independent variables is clearly better than the best result for two joint variables (a mean
radius of 0.035 for two independent variables versus a mean radius of 0.061 for two joint variables).
For trunk mains, two independent variables models clearly show a better behavior than the two joint
variables ones. This may be due to the limited availability of pipe break data in trunk mains.

Models with two joint variables plus one independent variable are studied starting from the results
of the order two models. Observed results show a very significant performance improvement, because
most of the models report mean radius below 0.040 while the best mean radius for order two models
(2J) was 0.061. Again, material is involved in the best models; in this case, jointly combined with any of
the pressure variables and incorporating diameter as additional independent variable. The best results
are obtained for minimum pressure (mean radius of 0.031), maximum pressure (mean radius of 0.032)
and average pressure (mean radius of 0.033). Other combinations clearly improve the performance of
order two models such as the joint combination of material and depth which is significantly improved
from a mean radius of 0.061 (2J) to a mean radius of 0.035 by incorporating diameter as a third
independent variable. Order four models formed by two joint plus two independent variables do not
show any clear improvement in the prediction accuracy when compared with 2J + 1I. Best results are
obtained for the joint combination of diameter and minimum velocity plus material and maximum
velocity as well as the combination of material and maximum pressure plus diameter and depth.
Such models report mean radius of 0.033 while for the corresponding order three models the mean
radius obtained was 0.031. There is only one model from the set of two joint plus three independent
variables models (order five) that increases the performance of order four models reducing the mean
radius from 0.033 to 0.031. Such reduction is obtained with the joint combination of material and
maximum pressure plus diameter, maximum velocity and minimum velocity. It must be highlighted
that order three results are improved neither with order five nor with order four models despite
the introduction of additional variables. This again might be due to the difficulty in estimating the
probability distribution conditioned to breaks in trunk mains due to the limited number of pipe breaks
registered. It is also noted that the year of installation is not present in the best models of order higher
than three, while hydraulic parameters (pressure and velocity) are always present.
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five models.

4. Discussion

Several models have been analyzed to predict the behavior of the distribution lines as well as
trunk mains. The results obtained are compared with the aim of achieving the best prediction with the
minimum number of variables. Such comparison is shown in Figure 8 and Table 5 for the distribution
lines and in Figure 9 and Table 6 for the trunk mains. The different order models are shown versus the
obtained mean radius so that the best performances of each model order are clearly compared.

Regarding the distribution lines, there are multiple variables involved in the best models.
For models of order higher than two, there are many variable combinations that produce similar results
because the differences between the ten best models selected are very small. The small differences in
performance between sets of variables do not seem to be very relevant, given the variability of results
obtained in the 12 validation cases considered. The only common variable that appears in all best
combinations is the pipe diameter which results to be a critical parameter in the predictive models.
For independent variable models the best prediction is obtained by adding an additional variable to
the best model of the previous order. In this case, best models are obtained by combining diameter
and terrain with hydraulic variables (pressure and velocity). Rather surprisingly, year of installation
does not appear in the best model of each order. In the case of two joint variables, the combinations
of diameter and year or diameter and material are present in most models analyzed and they clearly
outperform the independent combination of diameter and terrain for orders higher than three. The joint
combination of diameter and year seems to be more robust than diameter and material because it
dominates the best models of order five.

The developed analysis suggests that the best predictive model is for the distribution lines the
order four model with two joint variables and two additional independent variables, because adding a
third independent variable makes the calculation more complex without a significant performance
improvement, as can be seen in Figure 8 and Table 5. The best variable arrangement in this case is the
joint combination of diameter and year plus average pressure and depth of installation, although the
other pressure variables also provide similarly good results.
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Table 5. Best predictive models: Distribution lines. Values in parenthesis represent the number of
intervals considered in variable discretization (F stands for full resolution).

Category Ord. Joint Variables Independent Variables Mean Radius

Independent Variables

2 - Diam (8)–Terr (4) 0.076
3 - Diam (8)–Terr (4)–Pmin (F) 0.065
4 - Diam (8)–Terr (4)–Pmin (F)–Vmax (6) 0.064
5 - Diam (8)–Terr (4)–Pmin (F)–Vmax (6)–Vmin (6) 0.064

Joint Variables

2 Diam (6)–Tran (8) - 0.075
3 Diam (2)–Tran (7) Pmin (F) 0.060
4 Diam (8)–Year (4) Pave (F)–Depth (3) 0.052
5 Diam (2)–Mat (7) Depth (5)–Vave (9)–Vmax (9) 0.051

The analysis of the results of trunk mains reveals a wider dispersion between performances of
models built with different sets of variables than in the case of the distribution lines. As can be seen in
Figure 9 as well as Table 6, higher order models do not improve the performance, thus the optimum
model is the order three model formed by three independent variables. Again, the diameter is a
critical parameter to predict the behavior of the assets, but material is also a relevant parameter to be
considered. As in the case of the distribution lines, for independent variable models the best models
are obtained by adding an additional variable to the best model of the previous order, up to order
five, where performance clearly degrades with respect to the previous order. When considering the
joint variable models there are no combinations of joint variables that can be identified as dominant
over the others among the best models. Diameter and material appear in most cases combined with
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hydraulic variables, but there are many possibilities. In any case, the joint variable models are always
inferior to the independent variable models.

Based on obtained results the proposed predictive model for trunk mains is the three independent
variable model formed by diameter, material and land use.

Comparing the obtained results for each type of network, it can be inferred that pipe diameter
emerges as a critical variable to explain the behavior of any of the networks. There is a significant
difference in the performance of the results obtained for each type of network: for the distribution lines
the joint models show better performance, while for trunk mains the best performance is obtained
with independent model. Such difference might be affected by the different amount of analyzed data
in each case. The fact that there is much more information for the distribution lines from the recorded
breaks can explain such difference in the performance as well as the fact that increasing the number of
variables (independent variables) in the trunk main models does not improve the performance. Results
for trunk mains show that the performance tends to decrease from a maximum obtained for the third
order models to higher order models. The number of observed breaks per year in the distribution lines
is about 2000, while in the trunk mains is always smaller than 100. This means that the estimation of
the probability distribution of any variable conditioned to breaks is much more robust in the case of
the distribution lines than in the case of trunk mains, especially if the number of intervals considered
in the analysis is large. For practical purposes the estimation of the joint probability distribution of two
variables conditioned to breaks in trunk mains is limited to cases where only two or three intervals are
considered in each variable and this fact clearly limits the predictive skill of such models.Water 2017, 9, 158  22 of 25 
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Figure 9. Trunk mains: Mean Radius vs. Model order. Blue dots represent values obtained for
individual models and the dashed red line represents the best models: (a) independent variables;
and (b) two joint variables plus additional independent variables.

The results shown are highly influenced by the specific characteristic of the network where the
methodology is applied (Canal de Isabel II network). However, the procedure allows determining the
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number of variables to be used in a predictive model and the identification of such variables. Slight
variations are expected depending on specific networks where the proposed methodology might be
applied. The results show that performance is rapidly improved by introducing two or three variables.
Anyway, it is quite clear that incorporating variables beyond a certain level in the analysis do not add
performance in the prediction.

Table 6. Best predictive models: Trunk mains. Values in parenthesis represent the number of intervals
considered in variable discretization (F stands for full resolution).

Category Or. Joint Varables Independent Variables Mean Radius

Independent Variables

2 - Diam (10)–Mat(3) 0.035
3 - Diam (10)–Mat (3)–Use (6) 0.028
4 - Diam (10)–Mat (3)–Use (6)–Depth (F) 0.033
5 - Diam (10)–Mat (3)–Vave (F)–Vmax (2)–Vmin (2) 0.047

Joint Variables

2 Mat (11)–Depth (10) - 0.061
3 Mat (11)–Pmin (F) Diam (3) 0.031
4 Diam (F)–Vmin (F) Mat (2)–Vmax (9) 0.033
5 Mat (11)–Pmax (6) Diam (3)–Vmax (3)–Vmin (3) 0.031

5. Conclusions

The research compiles and analyzes a large set of collected data on pipe breaks. With the proposed
methodology, the influence of different variables on failure rates can be quantified. Multiple models
are studied combining several explanatory variables with the aim of proposing an accurate break
model for distribution lines and trunk mains.

The statistical dependence of pipe breaks on each explanatory variable depends on the type of
network. Multiple variables have been studied to provide an accurate failure prediction based on
network parameters rather than in simple statistical data, which is only based on recorded performance
of the network.

From all the variable combinations (joint and independent models), the best prediction for the
distribution lines is obtained with the model formed by diameter and year as joint variables plus
average pressure and depth as independent variables. Such model provides a mean radius of 0.052,
which is a significant improvement over the values obtained for the zero order model (0.157) or for
the material single variable model (0.075). The results of trunk mains are conditioned by the fact that
the number of registered breaks is clearly smaller in comparison with the distribution lines. For this
case, results show that prediction is not increased in higher order model. This is explained because
it is difficult to build a complex model form such a small number of breaks. Based on that, the best
prediction is obtained for the three independent variable model formed by diameter, material and land
use. Obtained mean radius is 0.028, which improves significantly the zero order model performance,
0.110, or the first order model performance, 0.073, obtained with material.

The discussed models enable to predict the pipe breaks so that this information can be used to
support economic analysis of repair versus replace strategies. This information helps water companies
to plan their maintenance and renewal strategies. This all results in a better management of the water
distribution asset and a better level of provided service by the supplier.

The observed relation between the performance of the predictive model and the number of
considered variables obtained in the study shows that there are no clear advantages in considering
a large set of predictive variables. Using a reduced set of explanatory variables also increases the
reliability of the proposed predictive models and makes the investment/replacement decision making
much easier for water supply companies reducing the complexity of the lifetime estimation models.

Acknowledgments: No funds have been received to support this research. The authors would like to thank
Canal de Isabel II their support to publish this study providing the data used in this work and scientific and
technological advice.



Water 2017, 9, 158 23 of 24

Author Contributions: Patricia Gómez-Martínez and Luis Garrote performed the analyses and were in charge of
the first manuscript draft. Francisco Cubillo and Francisco J. Martín-Carrasco participated in the methodology
approach and in variables selection.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Diam Diameter
GIS Geographic Information System
Mat Material
Pave Average pressure
Pmax Maximum pressure
Pmin Minimum pressure
Terr Type of terrain
Tran Transient index
Use Land use
Vave Average velocity
Vmax Maximum velocity
Vmin Minimum velocity
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