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Abstract: This study presents an approach for obtaining limited sets of realizations of hydraulic
conductivity (K) of multiple aquifers using simulated annealing (SA) simulation and spatial
correlations among aquifers to simulate realizations of hydraulic heads and quantify their uncertainty
in the Pingtung Plain, Taiwan. The proposed approach used the SA algorithm to generate large
sets of natural logarithm hydraulic conductivity (ln(K)) realizations in each aquifer based on
spatial correlations among aquifers. Moreover, small sets of ln(K) realizations were obtained
from large sets of realizations by ranking the differences among cross-variograms derived from
the measured ln(K) and the simulated ln(K) realizations between the aquifer pair Aquifer 1 and
Aquifer 2 (hereafter referred to as Aquifers 1–2) and the aquifer pair Aquifer 2 and Aquifer 3
(hereafter referred to as Aquifers 2–3), respectively. Additionally, the small sets of realizations of the
hydraulic conductivities honored the horizontal spatial variability and distributions of the hydraulic
conductivities among aquifers to model groundwater precisely. The uncertainty analysis of the
100 combinations of simulated realizations of hydraulic conductivity was successfully conducted
with generalized likelihood uncertainty estimation (GLUE). The GLUE results indicated that the
proposed approach could minimize simulation iterations and uncertainty, successfully achieve
behavioral simulations when reduced between calibration and evaluation runs, and could be
effectively applied to evaluate uncertainty in hydrogeological properties and groundwater modeling,
particularly in those cases which lack three-dimensional data sets yet have high heterogeneity in
vertical hydraulic conductivities.

Keywords: geostatistical simulation; hydraulic conductivity; groundwater flow; cross-semivariogram;
generalized likelihood uncertainty estimation (GLUE); conditioning spatial covariance; multi-aquifer

1. Introduction

Numerical simulations of groundwater flow are crucial to accurately predicting fluid movements
in aquifer systems. One of the most influential parameters in groundwater simulation is hydraulic
conductivity (K), which is a soil property that measures the ability of soil to transmit fluid through pore
spaces and fractures [1] (e.g., the ratio of velocity to hydraulic gradient). Previous studies [2–5] have
demonstrated that hydrogeological parameters, such as transmissivity and hydraulic conductivity,
exhibit log-normal distributions. Kupfersberger and Deutsch [6] indicated that a deterministic
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distribution of hydraulic conductivity can only be acquired by measuring hydraulic conductivity at
each location in an aquifer. However, though hydraulic conductivity in soil and rock exhibits large
spatial heterogeneity, with likely variations of several orders of magnitude within a short distance [7,8],
only a small number of measurements can be made due to the prohibitively expensive cost. It is thus
suggested that hydraulic conductivity should be addressed within a stochastic framework, and the
uncertainty should be quantified in groundwater simulations in multiple aquifers [1,7,9].

Hydraulic conductivity is one of the most critical and uncertain parameters in numerous
groundwater models [1]. The high degree of spatial variability in hydraulic conductivity and the
complexity of causes of this variability are widely recognized as major impediments to making
precise predictions [8]. Stochastic methods are widely applied to estimate, simulate, and delineate
representative heterogeneous field distributions of hydrogeological properties for groundwater models
based on a limited number of groundwater samples [1,9–11]. Stochastic analysis allows a quantitative
evaluation of the effects of variability and thereby provides a means of addressing uncertainty in the
resultant heads and flows that are caused by uncertainty in the hydraulic conductivity field [10,12].
Monte Carlo simulation is commonly applied in groundwater modeling, where hundreds—or even
thousands—of simulations are performed using generated parameters such as hydraulic conductivity,
from which the probability of occurrence of each simulated response can be computed based on
statistical data [9,11]. Typically, the parameters are generated by integrating random instances of
parameter values from user-defined probability distribution functions or by generating a spatial
distribution of parameters using such approaches as geostatistical simulation [13,14]. In groundwater
modeling, the flow and transport equations are then solved numerically for each simulated realization.
Most authors acknowledge that the estimation of hydrological parameters from a limited number
of parameters and hydraulic head measurements is an ill-posed problem that leads to non-unique
solutions [15]. All of these non-unique solutions satisfy a geostatistical characterization of the model
domain, as encapsulated in a semivariogram, and all yield nearly identical model-generated heads at
the locations of the observed hydraulic heads [15]. Geostatistical and stochastic methods applied to
modeling geological heterogeneity are common practice, based on the complexity of subsurface and
the relative scarcity of data on media properties [3].

Geostatistical simulation, including lower upper (LU) decomposition, turning bands, sequential
gaussian (SG) simulation and simulated annealing (SA) simulation, is a well-known technique
for modeling the spatial uncertainty of a regionalized variable [1,2,10,11,16–18] such as hydraulic
conductivity. The typical geostatistical simulation is performed using a semivariogram model
and a simulation algorithm to generate many realizations (conditional or unconditional) of the
random function model [18]. Geostatistical conditional simulation techniques can be applied
to generate numerous multiple realizations of hydraulic parameters. However, the realizations
likely match sample statistics, while conditioning data provide a quantitative measure of spatial
uncertainty [19]. The consensus is that no single algorithm is most suitable in all cases [17,20]. The SA
algorithm is a well-known adaptation of the Metropolis–Hastings algorithm, which was developed by
Metropolis et al. [21] and subsequently generalized by Hastings [22]. Basically, in geostatistics, SA
simulation is one of Monte Carlo simulation techniques that perturbs or updates pixelwise an initial
pixel grid over numeral iterations until the pixel values honor the given histogram and semivariogram
model [23]. As shown in Lin et al. [2], the SA simulation consistently simulated spatial distributions of
transmissivity in their case. For this reason, the SA simulation was adopted in this study.

Although numerous recent studies have applied geostatistical simulation techniques to simulate
hydrogeological properties [1–3,10,11,18,24], most of these simulated or estimated hydraulic
conductivities of aquifers were not spatially correlated for a multi-aquifer subsurface. A set of
alternative realizations is particularly useful in assessing uncertainty in the spatial distribution of
attribute values [20,25]. Yet, the fact that only a limited number of realizations is usually generated
makes characterizing the spatial uncertainty difficult [20]. However, a large number of realizations
usually ensures that extreme scenarios are bounded in the response distribution [20]. Accordingly,
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questions relate to the number of realizations needed to specify this space [20]. Additional information
can be used in conditional simulations to generate small but accurate realization sets representing
hydrogeological parameters. Therefore, conditioning information, such as spatial correlations among
measured hydraulic conductivity values of paired aquifers, can be considered in geostatistical
simulations of horizontal spatial distributions in large multiple aquifer subsurfaces. The simulated
hydraulic conductivity conditioning semivariogram, histogram and cross-semivariogram then can
be used to model hydraulic heads in multi-aquifer systems when the parameters among the aquifers
displayed are spatially correlated.

The generalized likelihood uncertainty estimation (GLUE) procedure [26] is an extension of Monte
Carlo random sampling that incorporates the goodness-of-fit of each simulation [27], and has been
widely used to quantify uncertainty based on model calibration results [28]. The GLUE procedure
comprehensively estimates the likelihood of all possible outcomes for a specific distribution of inputs,
and practically determines behavioral parameter sets of a model [28,29]. Based on the results of the
GLUE procedure in assessments of multiple possibilities for generating simulations, a set of parameter
sets, which lead to acceptable model realizations rather than only one “optional” calibrated parameter
set, is determined. This determination refers to “equifinality” for model uncertainty analysis [30].
It is noted that most relevant hydrological and groundwater studies have tended to use GLUE for
their uncertainty analysis, such as Chu et al. [29] and Mirzaei et al. [31] in hydrological modeling;
Hassan et al. [27], Jackson et al. [32], and Marchant et al. [33] in groundwater modeling; and
Wang et al. [34] and Huang et al. [28] in wetland modeling.

The major purpose of this study was to develop an approach that uses SA simulation and
spatial correlations among aquifers, obtain limited sets of realizations of hydraulic conductivity of
multiple aquifers, and simulate realizations of hydraulic heads and quantify their uncertainty in a
study case. We developed semivariogram and cross-semivariogram models of measured natural
log hydraulic conductivity (ln(K)) for three aquifers, Aquifers 1, 2, and 3, in the Pingtung Plain of
southern Taiwan. This study generated the average standard deviations for 500 sets of ln(K), statistics
of ln(K) simulations, experimental semivariogams of ln(K) simulations, and GLUE analysis with
threshold 0.6 to rank realizations which were great enough to capture and simulate distributions
of K and groundwater levels. The fitted semivariogram model-based simulation was performed to
generate 500 realizations of ln(K) for each aquifer, respectively. A rank-and-select process is proposed
to consider the spatial relations between aquifer pairs. The pairs considered in this study are Aquifer
1 and 2 and the second pair Aquifer 2 and 3, hereafter referred to as Aquifers 1–2 and Aquifers 2–3
respectively. The top 100 combinations of ln(K) realizations of Aquifers 1, 2, and 3 were selected, with
consideration given to the spatial relations among aquifer pairs, and used as input for MODFLOW
to simulate hydraulic heads. GLUE analysis was employed to assess the global uncertainty of the
simulated hydraulic heads based on the top 100 combinations.

2. Materials and Methods

Figure 1a,b depicts the study process with GLUE analysis as flowcharts. In Figure 1a, GS+, SASIM
(Simulated Annealing SIMulation) and GAM3 (a program of geostatistical) [13] is integrated with
measured hydraulic conductivity (designated “measured K”) and applied to generate 100 combinations
of K which fit the spatial-correlation of measured data. In Figure 1b, the 100 combinations and one set
of an interpolation of K are modeled in a well-calibrated MODFLOW simulation. The simulated head
with different sets of K is then compared to demonstrate the uncertainty caused by different sets of K.
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Figure 1. (a) Flowchart for conditional simulation; (b) Flowchart of generalized likelihood 
uncertainty estimation (GLUE) analysis. K: hydraulic conductivity; ln(K): natural log hydraulic 
conductivity; SASIM: simulated annealing simulation; GAM: a program of geostatistical library; BC: 
boundary condition.. 

2.1. Study Area 

The Pingtung Plain is the largest alluvial plain in the region in southern Taiwan. To its east are 
the Central Mountains of Taiwan, to the north and west are low hills of quaternary sediment, and to 
the south is the Taiwan Strait. The Pingtung Plain has an area of approximately 1140 km2, running 
about 60 km from north to south and 20 km from east to west (Figure 2a). Groundwater in the Plain 
is one important water source in southern Taiwan. Figure 2b,c shows the hydrogeological 
formation A’-A and B’-B, respectively. In Figure 2b,c, for example, F1 refers to Aquifer 1, T1 is 
Aquitard 1, and B1 is the boundary of the conceptual layer between Aquitard 1 and Aquifer 2. As 
shown in Figure 2b,c, the aquifer system includes Aquifer 1, Aquifer 2, and Aquifer 3, respectively. 
Aquifer 1, Aquifer 2, and Aquifer 3 monitoring wells are denoted by a cross, an empty square, and 
a black dot, respectively, in Figure 2a. The monitoring wells are part of the Taiwan government’s 
Groundwater Monitoring Network Integrated Plan. After the monitoring wells are installed, 
pumping tests for achieving hydraulic conductivity (measured K) are required. The number of 
monitoring wells (i.e., number of measured K) are 41, 32, and 38 for Aquifer 1, Aquifer 2, and 
Aquifer 3, respectively. 

 

Figure 1. (a) Flowchart for conditional simulation; (b) Flowchart of generalized likelihood
uncertainty estimation (GLUE) analysis. K: hydraulic conductivity; ln(K): natural log hydraulic
conductivity; SASIM: simulated annealing simulation; GAM: a program of geostatistical library; BC:
boundary condition.

2.1. Study Area

The Pingtung Plain is the largest alluvial plain in the region in southern Taiwan. To its east
are the Central Mountains of Taiwan, to the north and west are low hills of quaternary sediment,
and to the south is the Taiwan Strait. The Pingtung Plain has an area of approximately 1140 km2,
running about 60 km from north to south and 20 km from east to west (Figure 2a). Groundwater in
the Plain is one important water source in southern Taiwan. Figure 2b,c shows the hydrogeological
formation A’-A and B’-B, respectively. In Figure 2b,c, for example, F1 refers to Aquifer 1, T1 is
Aquitard 1, and B1 is the boundary of the conceptual layer between Aquitard 1 and Aquifer 2.
As shown in Figure 2b,c, the aquifer system includes Aquifer 1, Aquifer 2, and Aquifer 3, respectively.
Aquifer 1, Aquifer 2, and Aquifer 3 monitoring wells are denoted by a cross, an empty square, and
a black dot, respectively, in Figure 2a. The monitoring wells are part of the Taiwan government’s
Groundwater Monitoring Network Integrated Plan. After the monitoring wells are installed, pumping
tests for achieving hydraulic conductivity (measured K) are required. The number of monitoring wells
(i.e., number of measured K) are 41, 32, and 38 for Aquifer 1, Aquifer 2, and Aquifer 3, respectively.
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Figure 2. (a) Locations of groundwater monitoring wells in the study area; (b) hydrogeological 
formation A’-A; (c) hydrogeological formation B’-B; (d) grid systems and boundary conditions. 
Note: “F1” refers to Aquifer 1, and “B1” is the conceptual layer boundary between Aquifer 1 and 
Aquifer 2. 
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Figure 2. (a) Locations of groundwater monitoring wells in the study area; (b) hydrogeological
formation A’-A; (c) hydrogeological formation B’-B; (d) grid systems and boundary conditions. Note:
“F1” refers to Aquifer 1, and “B1” is the conceptual layer boundary between Aquifer 1 and Aquifer 2.

2.2. Spatial Correlations

In geostatistics, the semivariogram is widely used for quantifying the spatial relationships between
sample values [2,13]. In this study, the experimental semivariogram γzz(h), which is the half-mean
squared difference between pairs of sample points by the lag distance h, is represented by:

γzz(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)− Z(xi)]
2 (1)

where γzz(h) is the semivariance, h is the lag distance that separates pairs of points, Z(x) is the
hydraulic conductivity at location x, Z(x + h) is the hydraulic conductivity at location x + h and
N(h) is the number of point pairs separated by lag distance h, respectively. The spatial relationships
between the two second-order stationary regionalized variables (e.g., the hydraulic conductivities in
two aquifers), Z(x) and Y(x), can be characterized by the experimental cross-semivariogram γxy(h),
which is expressed as:

γxy(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)− Z(xi)][Y(xi + h)−Y(xi)] (2)

According to Equation (2), a cross-semivariogram between Aquifer 1 and Aquifer 2 is calculated
based the natural log measured K which exists for both Aquifer 1 and Aquifer 2 at locations (xi).

Semivariogram modelling, which is needed for kriging and geostatistical simulation procedures,
was performed on the experimental semivariograms and cross-semivariograms of measured natural
log hydraulic conductivity (ln(K)). Two widely used semivariogram models, the spherical model and
the Gaussian model are represented below by Equations (3) and (4), respectively, below.

γ(h) =

 C + S
{

3h
2a −

1
2

(
h
a

)3
}

for 0 < h ≤ a

C + S for h > a
(3)

γ(h) = C + S
{

1− exp(
−h2

a2 )

}
for h > 0 (4)
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In Equations (3) and (4), C is the nugget, h is the lag distance, a is the range, and S is the partial
sill, respectively. In the case of the Gaussian model, the effective range A = 30.5a, which is the distance
at which the sill (equal to the sum of partial sill (S) and nugget (C)) is within 5% of the asymptote
(the sill never meets the asymptote in the Gaussian or exponential models) [35].

The sill is the upper limit of a semivariogram that tends to level out at large distances (i.e., the
range of a semivariogram model) [13]. The variability of the investigated variable can be measured by
a sill of the semivariogram model. A higher sill corresponds to greater variability [13]. The range of a
semivariogram model reveals the distance of two sites above which hydraulic conductivity becomes
independent and is more likely to be random. Therefore, a greater range of the semivariogram model
corresponds to better continuity of hydraulic conductivity in this study. In this study, the experimental
semivariograms and cross-semivariograms models of measured ln(K) were calculated with the GAM3
program from the geostatistical software library (GSLIB) [13]. The variography of the measured ln(K)
experimental semivariograms and cross-semivariograms were performed by GS+ software [35].

2.3. Geostatistical Simulation

The SA algorithm was used to simulate the spatial distributions of hydraulic conductivity
realizations of ln(K). In this study, the modified simulated annealing simulation (SASIM) program,
which is a SA routine of GSLIB [13], was used to generate ln(K) realizations. Execution steps of the
SASIM program are described as follows. Firstly, the SA program assigned random values in the
simulation grids from a given histogram and then swapped the pairs of data values (i.e., ln(K)) at
random locations in the simulation grids. After each swap, the object function (O) in Equation (5),
which is defined as an average squared difference between the experimental semivariogram of ln(K)
and given semivariogram, was employed to measure the goodness of fit.

O = ∑
h

[γ∗(h)− γ(h)]2

γ(h)2 (5)

where γ(h) is the prespecified semivariogram, and γ∗(h) is the semivariogram calculated from the
simulated realizations of ln(K). To avoid trapping within the local minima of the object function O,
a temperature function (i.e., a Boltzman distribution) in the SASIM program controls the speed at which
the optimization function is reduced by allowing swaps that increase the optimization function [13].
In the temperature function, t represents the temperature in the annealing procedure. As temperature
increases, the probability that an unfavorable swap will be accepted increases [13]. The temperature
function used in this study is shown in Equation (6).

P{accept} =
{

1 if Onew ≤ Oold

e
Onew−Oold

t if Onew > Oold
(6)

To obtain combinations of realizations for a multi-aquifer system which considers the
semivariograms of each aquifer and cross-semivariograms of aquifer combinations simultaneously,
a two-step approach is proposed. First, the geostatistical simulation SASIM program which
conditionally simulates a complete 3-D field with simulated-annealing, was run in 316 cells each
with 2.0 km × 2.0 km dimensions. A 2.0 km × 2.0 km cell size was suggested by Chang and Liu [36]
and the grid systems of the entire study area are shown in Figure 2d. The objective function of
SASIM is to minimize the squared difference between the desired semivariogram and the actual
semivariogram by generating realizations that are guaranteed to fit the actual semivariogram. Previous
studies [2–4] have demonstrated that hydrogeological parameters, such as transmissivity and hydraulic
conductivity, exhibit log-normal distributions. Therefore, we applied the SASIM program to generate
500 realizations of ln(K) for Aquifer 1, Aquifer 2, and Aquifer 3, respectively. The candidate number
of aquifer combinations is 5003 (125,000,000). In order to consider the spatial relationship between
aquifer pairs Aquifers 1–2 and Aquifers 2–3 for producing the combinations of simulated realizations
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of ln(K), the cross-semivariograms of ln(K) for Aquifers 1–2 and Aquifers 2–3 were ranked to select the
appropriate ln(K) in our study area. Therefore, we calculated the differences of cross-semivariograms
derived from the measured ln(K) and the simulated realizations of ln(K) for Aquifers 1–2 and Aquifers
2–3, respectively. The differences were ranked and the top 100 combinations of simulated realizations
of hydraulic conductivity were selected for MODFLOW modeling.

2.4. Modular Groundwater Flow Model

The MODFLOW model was reported by McDonald and Harbaugh [37]. The MODFLOW model
is a physical finite-difference numerical flow model developed by the U.S. Geological Survey (USGS)
to solve three-dimensional partial-differential equations for ground-water flow through a porous
medium using a finite-difference method [38,39]. Before running MODFLOW, the study area should
be discretized into cells for which parameters are assigned to simulate confined or unconfined flows
and saturated flows in one, two, or three dimensions. The groundwater flow process solves the
partial differential equation using a finite-difference method in which the groundwater flow system
is divided into a grid whereby the hydraulic head is calculated. The details of MODFLOW can be
found in the MODFLOW and MODFLOW-2000 guides edited by McDonald and Harbaugh [38] and
Harbaugh et al. [39], respectively.

In this study, the Pingtung Plain was divided into 316 cells, each with a cell size of 2.0 × 2.0 km
(Figure 2d). The top ranked 100 combinations of simulated realizations of hydraulic conductivity
were input for MODFLOW to simulate steady-state hydraulic heads. Because one of the aims of this
study is to develop an approach to simulate spatial distributions of hydraulic conductivity honoring
measured heads, the steady-state groundwater model is sufficient. Moreover, no flow boundary
conditions of the study plain were imposed along the eastern, western, and northern boundaries of the
Pingtung Plain, and a constant head equal to mean sea level datum was specified along the southern
domain to simulate the coastal boundary (Figure 2d). Only the main river, Kaoping River, and its
upstream branch, including the Chishan River, Laonung River, and Ailiao River, are considered in
the groundwater model. These river sections are connected to the top aquifer (Aquifer 1), though
the model considered the sink or source terms (type II) instead of the interaction between rivers and
the top aquifer. The quantities for river exchange (between three major rivers), recharge (plain area),
and pumpage (from urban and suburban areas) were determined in an inverse procedure, and have
been calibrated.

2.5. Generalised Likelihood Uncertainty Estimation (GLUE)

The performance of the top ranked 100 combinations of simulated realizations of hydraulic
conductivity for hydraulic head simulation to simulate the hydraulic heads was evaluated by a
likelihood function of the Nash–Sutcliffe efficiency (NSE) index (Equation (7)), which is a normalized
measure (−Inf to 1.0) that calculates the relative measure of the residual variance compared to the
measured data variance [28,40,41]. The likelihood function is calculated as follows

L(θi|Y) = NSE = 1−
ΣN

i=1(Yi − Ŷi)
2

ΣN
i=1(Yi −Y)2 (7)

where the L(θi|Y) is the likelihood measure for each parameter set θ, N is the total number of measured
heads, Yi is the measured head of the ith monitoring well, Y is the average of measured heads of the
monitoring wells and Ŷi is the corresponding simulated head of MODFLOW output.

If the simulated head MODFLOW predicts the measured head perfectly, then Yi will equal to Ŷi,
which implies that the square of the differences between the model simulations and the measured
heads is 0 and the NSE index equals 1. A NSE value of 0 suggests that the model performs only as well
as the use of the mean measuring heads Y in prediction. A NSE index less than 0 indicates that the
residual variance is larger than the measured heads variance, which implies that the mean of measured
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heads is a better predictor than the model. Therefore, we prefer the NSE values to be larger than 0.0
and approaching 1.0. In their ground water studies, Jackson et al. [32] and Marchant et al. [33] selected
an NSE value of 0.5 to represent the threshold of determination of non-behavioral simulations and
behavioral simulations. Ritter and Muñoz-Carpena [42] determined an NSE threshold for performance
evaluation of hydrological models at 0.65. In this study, the GLUE analysis with an NSE index
threshold larger than 0.6 was used to assess the uncertainty and behavioral parameter sets on the
selected realizations of the hydraulic conductivities associated with the simulated hydraulic heads.

3. Results

3.1. Semivariogram and Cross-Semivariogram Analyses

Three experimental semivariograms of measured hydraulic conductivity ln(K) for Aquifer 1,
Aquifer 2, and Aquifer 3, respectively, and three cross-semivariograms of measured ln(K) between
aquifers pairs Aquifers 1–2, Aquifers 2–3, and Aquifers 1–3, were computed by the geostatistical
software GS+. In order to perform the semivariogram modelling on the three experimental
semivariograms and three cross-semivariograms, a relatively consistent set of best-fit models was
generated using the least-squares fitting technique with minimum reduced sum of squares (RSS),
and maximum R2 in GS+. The theoretical models used for fitting the three semivariograms of
measured ln(K) and the three cross-semivariograms of measured ln(K) were the spherical and Gaussian
models, respectively.

Table 1 lists the parameters of fitted spherical models and Gaussian models for the corresponding
semivariograms and cross-semivariograms. A trial and error procedure is applied to decide the model
type of semivariograms and cross-semivariograms. Semivariograms for Aquifer 1, 2, and 3 can be
fitted better with spherical models and cross-semivariograms for Aquifers 1–2 and Aquifers 2–3 can be
fitted better with Gaussian models. It is noted that the cross-semivariogram of Aquifers 1–3 can only
be fitted with a pure nugget model (not shown in Table 1) which indicates no spatial correlation of
ln(K) between Aquifer 1 and Aquifer 3. The small-scale variations can be represented as the ratio of
the nugget effect to the sill, which is the sum of the variogram models’ partial sill and nugget variance.
As observed in Table 1, the small-scale variations (nugget effects) of the fitted spherical model
for Aquifer 1, Aquifer 2, and Aquifer 3 are 29.4% (0.990/3.370), 24.3% (0.350/1.440) and 23.9%
(=0.390/1.630), respectively. The small-scale variations of the fitted Gaussian model for Aquifers
1–2 and Aquifers 2–3 are 0.3% (0.001/0.392) and 0.4% (0.001/0.261), respectively.

Table 1. Theoretical semivariogram model parameters for aquifers.

Aquifers Model Nugget (C) Sill (S) Range (a) RSS R2

Aquifer 1 Spherical 0.990 3.370 32110.0 1.73 0.74
Aquifer 2 Spherical 0.350 1.440 32130.0 0.85 0.54
Aquifer 3 Spherical 0.390 1.630 10282.0 6.15 0.54

Aquifers 1–2 Gaussian 0.001 0.392 5850.0 0.07 0.53
Aquifers 2–3 Gaussian 0.001 0.261 5050.0 0.02 0.67

Note: RSS: Residual Sums of Squares; unit of a is meter; units of Nugget and Sill are [ln(m/day)]2.

Ranges of the fitted spherical model for Aquifer 1, Aquifer 2, and Aquifer 3 are 32,110.0 m,
32,130.0 m and 10,280.0 m, respectively. Ranges of the fitted Gaussian model for Aquifers 1–2 and
Aquifers 2–3 are 5850.0 m and 5050.0 m, respectively. The comparison of ranges of the fitted spherical
and Gaussian models indicates that the ln(K) values at monitoring wells exhibit greater spatial
continuity in the single aquifer than in the pairs of aquifers. These spatial correlations are explained
by the characteristic horizontal distribution of hydraulic conductivity in a hydrogeological range and
those among aquifers in the study plain—particularly between Aquifers 1–2.
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The cross-semivariogram results also show that hydraulic conductivities of aquifers are spatially
correlated and that such correlations can be treated as additional information in the estimation and
simulation of spatial distributions of hydraulic conductivity and groundwater in a hydrogeological
region when spatial correlations of ln(K) among aquifers is exhibited. Moreover, small-scale
discontinuity, heterogeneity, and spatial variability of ln(K) also cause poor values of R2 and high
values of RSS when fitting semivariogram models of ln(K) in this study.

3.2. Conditional Geostatistical Simulations

We applied the SASIM program in GSLIB to generate 500 sets of ln(K) realizations for Aquifer 1,
Aquifer 2, and Aquifer 3 in the study area. The combinations of simulated realizations of ln(K) for the
three aquifers were ranked with the consideration of the spatial relationships between pairs of aquifers.
Figure 3 shows the impact of the number of the realizations on the average standard deviations of the
top 500 realizations. As observed in Figure 3, the average standard deviation of hydraulic conductivity
in Aquifer 1, Aquifer 2, and Aquifer 3 reaches a plateau when the realization numbers approach
500. We noted that the average standard deviation gradually became stable by realization number
100. Thus, the top 100 combinations of simulated realizations of hydraulic conductivity for Aquifer 1,
Aquifer 2, and Aquifer 3 selected for MODFLOW modeling.

Water 2017, 9, 164 9 of 17 

 

The cross-semivariogram results also show that hydraulic conductivities of aquifers are 
spatially correlated and that such correlations can be treated as additional information in the 
estimation and simulation of spatial distributions of hydraulic conductivity and groundwater in a 
hydrogeological region when spatial correlations of ln(K) among aquifers is exhibited. Moreover, 
small-scale discontinuity, heterogeneity, and spatial variability of ln(K) also cause poor values of R2 
and high values of RSS when fitting semivariogram models of ln(K) in this study. 

Table 1. Theoretical semivariogram model parameters for aquifers. 

Aquifers Model Nugget (C) Sill (S) Range (a) RSS R2 
Aquifer 1 Spherical 0.990 3.370 32110.0 1.73 0.74 
Aquifer 2 Spherical 0.350 1.440 32130.0 0.85 0.54 
Aquifer 3 Spherical 0.390 1.630 10282.0 6.15 0.54 

Aquifers 1–2 Gaussian 0.001 0.392 5850.0 0.07 0.53 
Aquifers 2–3 Gaussian 0.001 0.261 5050.0 0.02 0.67 

Note: RSS: Residual Sums of Squares; unit of a is meter; units of Nugget and Sill are [ln(m/day)]2. 

3.2. Conditional Geostatistical Simulations 

We applied the SASIM program in GSLIB to generate 500 sets of ln(K) realizations for Aquifer 
1, Aquifer 2, and Aquifer 3 in the study area. The combinations of simulated realizations of ln(K) for 
the three aquifers were ranked with the consideration of the spatial relationships between pairs of 
aquifers. Figure 3 shows the impact of the number of the realizations on the average standard 
deviations of the top 500 realizations. As observed in Figure 3, the average standard deviation of 
hydraulic conductivity in Aquifer 1, Aquifer 2, and Aquifer 3 reaches a plateau when the realization 
numbers approach 500. We noted that the average standard deviation gradually became stable by 
realization number 100. Thus, the top 100 combinations of simulated realizations of hydraulic 
conductivity for Aquifer 1, Aquifer 2, and Aquifer 3 selected for MODFLOW modeling. 

 
Figure 3. Average standard deviation of natural log hydraulic conductivity (ln(K)) of the top 500 
conditional simulations of (a) Aquifer 1; (b) Aquifer 2; (c) Aquifer 3. 

The kriged estimates of measured ln(K) of Aquifer 1, Aquifer 2, and Aquifer 3 were produced 
using kriging with a polynomial trend three-dimensional model (KT3D) program in GSLIB and 
processed using MODFLOW. Table 2 presents the descriptive statistics of ordinary kriging and SA 
results for ln(K). Compared with measured ln(K), the statistics shown in Table 2 reveal that the 
realizations of ln(K) simulated by SA capture the statistical characteristics of ln(K) data for Aquifer 
1, Aquifer 2 and Aquifer 3. This suggests that the selected top three sets of realizations are able to 
characterize the spatial variability and heterogeneous properties of the hydraulic conductivity. 
  

Figure 3. Average standard deviation of natural log hydraulic conductivity (ln(K)) of the top 500
conditional simulations of (a) Aquifer 1; (b) Aquifer 2; (c) Aquifer 3.

The kriged estimates of measured ln(K) of Aquifer 1, Aquifer 2, and Aquifer 3 were produced
using kriging with a polynomial trend three-dimensional model (KT3D) program in GSLIB and
processed using MODFLOW. Table 2 presents the descriptive statistics of ordinary kriging and SA
results for ln(K). Compared with measured ln(K), the statistics shown in Table 2 reveal that the
realizations of ln(K) simulated by SA capture the statistical characteristics of ln(K) data for Aquifer 1,
Aquifer 2 and Aquifer 3. This suggests that the selected top three sets of realizations are able to
characterize the spatial variability and heterogeneous properties of the hydraulic conductivity.

Table 2. Statistics of measured, kriged and simulated ln(K).

Mean Min Max SD. 25th 75th Skewness Kurtosis

Aquifer 1

Measured 3.07 −6.21 6.23 2.48 2.53 4.31 −2.24 6.011
Kriging 3.56 −1.63 4.60 0.80 3.38 3.98 −3.20 15.104
Rank1 3.77 −5.12 6.23 1.71 3.17 4.66 −2.40 9.986
Rank2 3.55 −5.12 6.23 1.71 3.15 4.30 −2.50 9.911
Rank3 3.78 −5.12 6.23 1.72 3.17 4.71 −2.44 10.599

Aquifer 2

Measured 3.27 −1.00 4.54 1.04 2.98 3.95 −2.05 6.770
Kriging 3.26 1.02 4.27 0.58 3.04 3.63 −1.01 1.613
Rank1 3.32 −1.00 4.54 1.05 3.03 3.97 −1.92 5.184
Rank2 3.29 −1.00 4.54 1.04 3.01 3.95 −1.91 5.356
Rank3 3.32 −1.00 4.54 1.07 3.01 3.98 −1.93 5.071
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Table 2. Cont.

Mean Min Max SD. 25th 75th Skewness Kurtosis

Aquifer 3

Measured 2.99 −1.57 5.15 1.26 2.36 3.82 −1.243 3.031
Kriging 3.16 0.69 4.46 0.55 2.87 3.48 −0.581 1.672
Rank1 3.12 −1.57 5.15 1.25 2.49 3.87 −1.151 2.857
Rank2 3.08 −1.57 5.15 1.24 2.43 3.88 −1.081 2.567
Rank3 3.03 −1.57 5.15 1.24 2.37 3.86 −1.052 2.313

Note: Rank#: Top ranked simulations of ln(K); unit of hydraulic conductivity (K) is m/day.

Figure 4a–c show the experimental semivariograms of measured, kriged, and simulated values
of ln(K) for Aquifer 1, Aquifer 2, and Aquifer 3, respectively. Figure 4d,e demonstrates the
cross-semivariograms of measured, kriged, and simulated values of ln(K) for Aquifers 1–2 and
Aquifers 2–3. Figure 4f shows the cross-semivariograms of measured, kriged, and simulated values of
ln(K) between Aquifer 1 and Aquifer 3, and shows no spatial relation between Aquifer 1 and Aquifer 3.
As observed in Figure 4, the experimental semivariograms and cross-semivariograms of measured
ln(K) are consistent with the experimental semivariograms and cross-semivariograms of the top three
ranked simulated ln(K)s for Aquifer 1, Aquifer 2, and Aquifer 3, respectively.Water 2017, 9, 164 11 of 17 
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Figure 4. Variograms of measured ln(K) and simulated ln(K) for (a) Aquifer 1; (b) Aquifer 2;
(c) Aquifer 3; (d) Aquifers 1–2; (e) Aquifers 2–3; (f) Aquifers 1–3. Note: unit of hydraulic conductivity
(K) is m/day.

The comparisons of semivariograms are based on the analysis of 500 realizations each for
Aquifers 1, 2, and 3. For cross-semivariogram cases, the number of possible combinations is
5003. A rank-and-select process is also applied to eliminate the worst combinations and to reduce
the number to 100. Comparing measured semivariograms with the top three ranked simulated
semivariograms for each aquifer, the sums of absolute differences between measured and simulated
experimental semivariograms divided by the experimental semivariogram of measured data of
hydraulic conductivity were all <0.143 for Aquifer 1, <0.147 for Aquifer 2, and <0.073 for Aquifer 3.
The mean absolute relative error (MARE) between measured and realizations of experimental
cross-semivariograms of hydraulic conductivity were all <0.115 for Aquifers 1–2, and <0.117 for
Aquifers 2–3. The SASIM-generated realizations and the top 100 combinations are well-fitted to the
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measured semivariograms and cross-semivariograms, which can represent the characteristic of spatial
statistic provided by measured data. On the other hand, estimations using ordinary kriging did not
capture the semivariograms of the measured K values. The semivariogram and statistical analyses of
estimates and simulations show that the realizations of ln(K) produced by the SASIM and the proposed
two-step approach generated results that were consistent with spatial correlations and global statistics
of ln(K) measurements.

3.3. Comparison of Simulated Heads Derived from Spatial Distributions of Ln(K) of Kriged Estimate and of the
Selected Top Three Sets of Realizations

Figures 5–7 show the simulated heads derived from kriged estimates of ln(K) and from the
selected top three sets of realizations of ln(K) for Aquifer 1, Aquifer 2, and Aquifer 3, respectively. The
contours and the grey cells in the Figures 5–7 represent the simulated heads and ln(K), respectively.
As shown in Table 2, the standard deviation of kriged estimate of ln(K) is much smaller than that of
measured ln(K) and simulated ln(K), which can be observed by the smoother surfaces in Figures 5a, 6a
and 7a.
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3.4. Uncertainty Analysis of Spatial Distributions of ln(K) in Multiple Aquifers

For ln(K), 93 of 100 combinations were used for the uncertainty analysis because 7 of 100 ln(K)
failed to adequately simulate heads. The calculated NSE index for the three aquifers, Aquifer 1,
Aquifer 2, and Aquifer 3 are demonstrated in Figure 8. Table 3 lists the number of non-behavioral
parameter sets for the three aquifers, Aquifer 1, Aquifer 2, and Aquifer 3. As observed in Figure 8 and
Table 3, the number of non-behavioral parameter sets for NSE index less than 0.60, 0.65, and 0.7 are less
than 7 for the three aquifers Aquifer 1, Aquifer 2, respectively. However, we noted that the number
of non-behavioral parameter sets for NSE index less than 0.65 and 0.7 exceeds 10 sets for Aquifer 3.
The above results suggest that MODFLOW consistently simulated hydraulic heads based on the
top 100 ln(K) combinations. The NSE values mostly ranged from 0.75 to 0.95 in the calibration for
groundwater levels in Aquifers 1, 2, and 3 except Aquifer 3 wherein the semivariogram presented a
pure nugget.
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Table 3. The number of non-behavioral parameter sets for the three aquifers, Aquifer 1, Aquifer 2, and
Aquifer 3.

NSE Index Aquifers 1, 2 and 3 Aquifer 1 Aquifer 2 Aquifer 3

<0.60 3 4 4 3
<0.65 4 4 4 10
<0.70 5 6 6 28

4. Discussion

4.1. Semivariogram and Cross-Semivariogram Analyses

This study took the log-normal value of K as previous studies [3–5,43] have demonstrated
that hydrogeological parameters (i.e., hydraulic conductivity) exhibit log-normal distributions.
The variability of ln(K) was determined using geostatistical measurements of relevant values, such as
mean, variance (sill), and range [44]. A good fit between a semivariogram model and a field-sampled
experimental semivariogram typically means that the model is a good representation of a field system
and that geostatistical approaches are valid [3]. The semivariogram range of ln(K) in Aquifer 3 was
approximately 0.32 times that of the ranges in Aquifer 1 and Aquifer 2. As indicated by Sampler [45],
the field test errors and small-scale variability could possibly cause nugget effects. The results of the
semivariogram analysis revealed that the distributions of hydraulic conductivity in Aquifer 1 and
Aquifer 2 are more spatially continuous than in Aquifer 3 (e.g., greater ranges of semivariograms).
Additionally, the distribution of hydraulic conductivity in Aquifer 3 is more heterogeneous and
complex than those in Aquifer 1 and Aquifer 2. This spatial continuity and heterogeneity of hydraulic
conductivity is confirmed by the hydrogeological formation characteristics in each aquifer, as shown
in Figure 2b,c. The variography results are similar to the conclusions of Simo et al. [4] namely, nugget
effects are probably related to strong local variations at a short scale in the heterogeneous formations.
Differing from the approach of Simo et al. [4] who used thickness-weighting, the proposed approach
is suitable in cases lacking three-dimensional data sets, and cases where spatial correlation (or high
heterogeneity) in vertical hydraulic conductivities to simulate hydraulic conductivities is lacking.
The variography results indicated that small sets of ln(K) realizations were successfully obtained from
large sets of realizations by ranking the differences cross-variograms derived from the measured ln(K)
and the simulated ln(K) realizations for Aquifers 1–2 and Aquifers 2–3. However, it should be noted
that when using our proposed approach, cross-semivariogram calculation problems arise if samples
taken from paired aquifer locations do not correspond with each other.

4.2. Conditional Geostatistical Simulations

Much of the research on stochastic groundwater hydrology has focused on evaluating the
effects of variability of hydraulic conductivity on dependent variables such as hydraulic head [8].
Physical-based numerical groundwater flow models such as MODFLOW are frequently applied to
refine hydrogeological characterizations and make informed groundwater management decisions [9].
This study did not pursue a single, slickly varying, expected value of hydraulic conductivity that
honors both hydraulic conductivity and hydraulic head measurements. Rather, it sought sets of equally
likely realizations of hydraulic conductivity, all realizations of which are plausible representations
of reality as they are conditional upon available data and exhibit the same horizontal variability
aquifers as observed in the field. Stochastic methods are popular techniques for estimating, simulating
and delineating representative heterogeneous field distributions of hydraulic conductivity with a
limited number of groundwater samples [9]. If hydraulic conductivity is stochastically represented,
then the governing equations of physical numerical groundwater flow models become stochastic
partial differential equations [6]. All realizations of hydraulic conductivity are processed through a
groundwater flow and transport simulator [6]. In this study, unlike the studies of Bianchi et al. [10] and
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Ko et al. [5], SA algorithm conditionally generated multiple realizations of ln(K) for all aquifers and
provided probable combinations of simulated ln(K) for all aquifers where ln(K) values were spatially
correlated. The results indicated that the conditioned simulated hydraulic conductivity of multiple
aquifers honored the spatial correlations (semivariograms) of measured hydraulic conductivity, and
honored the spatial relations among the hydraulic conductivities of aquifers as additional information
used for simulating the hydraulic conductivity in multiple aquifers.

4.3. Assessment of Ranking Realizations and Uncertainty of Groundwater Modeling

In this study, GLUE was used to assess the results of a stochastic groundwater flow model
similar to the study of Hassan et al. [27]. Differing from the studies of Hassan et al. [27] and
Jackson et al. [32], this study’s GLUE results with a NSE of 0.6 (>0.5 in Jackson et al. [32]; >0.65
in Ritter and Muñoz-Carpena [42]) indicated that most of the top 100 realizations based on the above
simulation approach, which were selected by spatial relations among the hydraulic conductivities of
aquifers, were behavioral parameter sets. The results highlight the importance of the spatial relations
among the hydraulic conductivities of aquifers in the simulated hydraulic conductivities ln(K). When
the values of the NSE increased from 0.6 to 0.7, the number of non-behavioral parameter sets increased
slightly, except for Aquifer 3 wherein the semivariogram presented a pure nugget which is evidence
of a highly heterogeneous physical formation at Aquifer 3. The use of GLUE with our proposed
simulation approach in assessing and conditioning groundwater modeling results and uncertainties
is suitable, however, GLUE approaches have been criticized and evaluated for not being formally
Bayesian [27,31–33,46].

In stochastic modeling, flow and transport equations are solved numerically for each realization.
The practical number of conditional realizations that is required to characterize true field conditions
varies according to the specific conditions of the problem [24]. Goovaerts [25] used a set of 50 alternative
realizations generated by SA algorithm to evaluate a measure of uncertainty in the spatial distribution
of permeability. Goovaerts [20] stated that using more than 20 of 100 realizations generally only slightly
increased the size of the spatial uncertainty. Recently, Warner et al. [24] applied turning bands and
kriging methods to generate 30 realizations to represent uncertainty in hydraulic conductivity in their
case. Ko et al. [5] indicated that when the number of realizations was greater than 30, their groundwater
simulation means and standard deviations were similar. The common approach is to generate many
realizations which are then processed using a transfer function, and the responses are then used to rank
realizations of attribute values from the most to the least optimistic [20]. The GLUE analysis results
indicated that top 100 combinations using the proposed approach consistently represented hydraulic
conductivities and groundwater models in the study area that are similar to the results of the above
studies. The proposed approach could minimize the number of groundwater simulations needed to
successfully achieve behavioral simulations when reduced between calibration and evaluation runs.
However, Ritter and Muñoz-Carpena [42] indicated that the NSE of “very good” or “good” model
efficiencies are 0.75 and 0.65, respectively. The number of combinations that presented behavioral
parameter sets in the study case was 72 when the NSE value was greater than 0.70. Further studies
should assess thresholds of NSE values for GLUE analysis.

5. Conclusions

This study presented a framework that integrates geostatistical simulation with conditioning
spatial correlations of hydrogeological parameters among aquifers, as well as a physical groundwater
numerical model to generate spatial distributions of hydraulic conductivities and groundwater for
aquifers in the Pingtung Plain, Taiwan. The proposed approach provides 500 sets of equally likely
realizations of hydraulic conductivity, all of which are plausible representations of reality as they
are conditional on available data, and present the same horizontal variability and variability among
aquifers, as observed in the field. The approach successfully obtained 100 sets of hydraulic conductivity
based on spatial statistics, and physically simulated hydraulic heads based on simulated hydraulic
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conductivity in a way that honored the measured head data. The GLUE results indicated that
MODFLOW consistently simulated hydraulic heads based on the top 100 ln(K) combinations using the
proposed simulation approach, which implies that the small set of realizations of hydraulic conductivity
should be considered in future groundwater modeling and uncertainty analysis. The proposed
approach could minimize the number of simulations, and effectively achieve behavioral simulations
when reduced between calibration and evaluation runs. Additionally, the proposed approach is
suitable for cases lacking three-dimensional data sets, and cases lacking spatial correlation (i.e., with
high heterogeneity) in vertical hydraulic conductivities so as to simulate hydraulic conductivities and
groundwater levels. For future studies, it is essential to develop an integrated process or software
program based on our proposed approach, a more applicable and original option than the current
procedure. Moreover, improved validation techniques are needed.

Acknowledgments: The authors would like to thank the National Science Council of the Republic of China,
Taiwan, for financially supporting this research under Contract No. NSC89-2313-B-034-001.

Author Contributions: The scope of this study was developed by Yu-Pin Lin, Yu-Wen Chen and Ming-Shen Yeh.
The first manuscript draft was written by Yu-Pin Lin and was substantially revised by Yu-Pin Lin, Yu-Wen Chen,
Liang-Cheng Chang, Ming-Sheng Yeh, Guo-Hao Huang and Joy R. Petway.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mahmud, K.; Mariethoz, G.; Baker, A.; Sharma, A. Integrating multiple scales of hydraulic conductivity
measurements in training image-based stochastic models. Water Resour. Res. 2015, 51, 465–480. [CrossRef]

2. Lin, Y.P.; Tan, Y.C.; Rouhani, S. Identifying spatial characteristics of transmissivity using simulated annealing
and kriging methods. Environ. Geol. 2001, 41, 200–208. [CrossRef]

3. Lee, S.Y.; Carle, S.F.; Fogg, G.E. Geologic heterogeneity and a comparison of two geostatistical models:
Sequential gaussian and transition probability-based geostatistical simulation. Adv. Water Resour. 2007, 30,
1914–1932. [CrossRef]

4. Simo, A.T.G.; Marache, A.; Lastennet, R.; Breysse, D. Reconstructing hydraulic conductivity field for
hydrogeological modeling in an urban environment. Eng. Geol. 2013, 158, 119–134. [CrossRef]

5. Ko, N.Y.; Ji, S.H.; Koh, Y.K.; Choi, J.W. Evaluation of two conceptual approaches for groundwater flow
simulation for a rock domain at the block-scale for the Olkiluoto site, Finland. Eng. Geol. 2015, 193, 297–304.
[CrossRef]

6. Kupfersberger, H.; Deutsch, C.V. Ranking stochastic realizations for improved aquifer response uncertainty
assessment. J. Hydrol. 1999, 223, 54–65. [CrossRef]

7. Gómez-Hernónez, J.J.; Sahuquillo, A.; Capilla, J. Stochastic simulation of transmissivity fields conditional to
both transmissivity and piezometric data-I. Theory J. Hydrol. 1997, 203, 162–174. [CrossRef]

8. Kitanidis, P.K. Groundwater flow in heterogeneous formations. In Subsurface Flow and Transport: The Stochastic
Approach; Dagan, G., Neuman, S.P., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 83–91.

9. Coppola, E.A.; Rana, A.J.; Poulton, M.M.; Szidarovszky, F.; Uhl, V.W. A neural network model for predicting
aquifer water level elevations. Ground Water 2005, 43, 231–241. [CrossRef] [PubMed]

10. Bianchi, M.; Kearsey, T.; Kingdon, A. Integrating deterministic lithostratigraphic models in stochastic
realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and
groundwater fluxes. J. Hydrol. 2015, 531, 557–573. [CrossRef]

11. Blouin, M.; Martel, R.; Gloaguen, E. Accounting for aquifer heterogeneity from geological data to
management tools. Groundwater 2013, 51, 421–431. [CrossRef] [PubMed]

12. Gómez-Hernónez, J.J.; Wen, X.H. To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology.
Adv. Water Resour. 1998, 21, 47–61. [CrossRef]

13. Deutsch, C.V.; Journel, A.G. Geostatistical Software Library and User’s Guide; Oxford University Press: New
York, NY, USA, 1992.

14. Jones, N.L.; Walker, J.R.; Garle, S.F. Hydrogeologic unit flow characterization using Transition probability
geostatistics. Ground Water 2005, 42, 285–289. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/2014WR016150
http://dx.doi.org/10.1007/s002540100383
http://dx.doi.org/10.1016/j.advwatres.2007.03.005
http://dx.doi.org/10.1016/j.enggeo.2013.03.013
http://dx.doi.org/10.1016/j.enggeo.2015.05.003
http://dx.doi.org/10.1016/S0022-1694(99)00113-4
http://dx.doi.org/10.1016/S0022-1694(97)00098-X
http://dx.doi.org/10.1111/j.1745-6584.2005.0003.x
http://www.ncbi.nlm.nih.gov/pubmed/15819944
http://dx.doi.org/10.1016/j.jhydrol.2015.10.072
http://dx.doi.org/10.1111/j.1745-6584.2012.00982.x
http://www.ncbi.nlm.nih.gov/pubmed/22924605
http://dx.doi.org/10.1016/S0309-1708(96)00031-0
http://dx.doi.org/10.1111/j.1745-6584.2005.0007.x
http://www.ncbi.nlm.nih.gov/pubmed/15819951


Water 2017, 9, 164 16 of 17

15. McKenna, S.A.; Doherty, J.; Hart, D.B. Non-uniqueness of inverse transmissivity field calibration and
predictive transport modeling. J. Hydrol. 2003, 281, 265–280. [CrossRef]

16. Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: New York, NY, USA, 1978.
17. Xu, C.G.; He, H.S.; Hu, Y.M.; Chang, Y.; Li, X.Z.; Bu, R.C. Latin hypercube sampling and geostatistical

modeling of spatial uncertainty in a spatially explicit forest landscape model simulation. Ecol. Model. 2005,
185, 255–269. [CrossRef]

18. Pardo-Iguzquiza, E.; Chica-Olmo, M. Geostatistics with the Matern semivariogram model: A library of
computer programs for inference, kriging and simulation. Comput. Geosci. 2008, 34, 1073–1079. [CrossRef]

19. Goovaerts, P. Stochastic simulation of categorical variables using a classification algorithm and simulated
annealing. Math. Geol. 1996, 28, 909–921. [CrossRef]

20. Goovaerts, P. Impact of the simulation algorithm, magnitude of ergodic fluctuations and number of
realizations on the spaces of uncertainty of flow properties. Stoch. Env. Res. Risk A 1999, 13, 161–182.
[CrossRef]

21. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by
fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]

22. Hastings, W.K. Monte Carlo sampling methods using Markov Chain and their applications. Biometrika 1970,
57, 97–109. [CrossRef]

23. Caers, J. Automatic histogram and variogram reproduction in simulated annealing simulation. Math. Geol.
2001, 33, 167–190. [CrossRef]

24. Warner, J.W.; Tamayo-Lara, C.; Khazaei, E.; Manghi, F. Stochastic mangemetn modeling of a pump and treat
system at the Rocky Mountain Arsenal near Denver, Colorado. J. Hydrol. 2006, 328, 523–537. [CrossRef]

25. Goovaerts, P. Accounting for estimation optimality criteria in simulated annealing. Math. Geol. 1998, 30,
511–534. [CrossRef]

26. Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction.
Hydrol. Process. 1992, 6, 279–298. [CrossRef]

27. Hassan, A.E.; Bekhit, H.M.; Chapman, J.B. Uncertainty assessment of a stochastic groundwater flow model
using GLUE analysis. J. Hydrol. 2008, 362, 89–109. [CrossRef]

28. Huang, C.W.; Lin, Y.P.; Chiang, L.C.; Wang, Y.C. Using CV-GLUE procedure in analysis of wetland model
predictive uncertainty. J. Environ. Manag. 2014, 140, 83–92. [CrossRef] [PubMed]

29. Chu, H.J.; Lin, Y.P.; Huang, C.W.; Hsu, C.Y.; Chen, H.Y. Modelling the hydrologic effects of dynamic land-use
change using a distributed hydrologic model and a spatial land-use allocation model. Hydrol. Process. 2010,
24, 2538–2554. [CrossRef]

30. Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of
complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [CrossRef]

31. Mirzaei, M.; Huang, Y.F.; El-Shafie, A.; Shatirah, A. Application of the generalized likelihood uncertainty
estimation (GLUE) approach for assessing uncertainty in hydrological models: A review. Stoch. Env. Res.
Risk A 2015, 29, 1265–1273. [CrossRef]

32. Jackson, C.R.; Wang, L.; Pachocka, M.; Mackay, J.D.; Bloomfield, J.P. Reconstruction of multi-decadal
groundwater level time-series using a lumped conceptual model. Hydrol. Process. 2016, 30, 3107–3125.
[CrossRef]

33. Marchant, B.; Mackay, J.; Bloomfield, J. Quantifying uncertainty in predictions of groundwater levels using
formal likelihood methods. J. Hydrol. 2016, 540, 699–711. [CrossRef]

34. Wang, Y.C.; Lin, Y.P.; Huang, C.W.; Chiang, L.C.; Chu, H.J.; Ou, W.S. A system dynamic model and sensitivity
analysis for simulating domestic pollution removal in a free-water surface constructed wetland. Water Air
Soil Poll. 2012, 223, 2719–2742. [CrossRef]

35. Gamma Design Software. Geostatistics for the Environmental Sciences GS+, version 7.0; Gamma Design
Software: Plainwell, MI, USA, 2004.

36. Chang, L.C.; Liu, C.W. Assessment and Management of Regional Groundwater Resources; Water Resources Agency,
Ministry of Economic Affairs: Taipei, Taiwan, 2002.

37. McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model:
U.S. Geological Survey Open-FIle Report 83-875; USGS Survey: Reston, VA, USA, 1984.

38. McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite Difference Ground-Water Flow Model;
U.S. Geological Survey: Reston, VA, USA, 1988.

http://dx.doi.org/10.1016/S0022-1694(03)00194-X
http://dx.doi.org/10.1016/j.ecolmodel.2004.12.009
http://dx.doi.org/10.1016/j.cageo.2007.09.020
http://dx.doi.org/10.1007/BF02066008
http://dx.doi.org/10.1007/s004770050037
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1023/A:1007583217899
http://dx.doi.org/10.1016/j.jhydrol.2005.12.007
http://dx.doi.org/10.1023/A:1021738027334
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1016/j.jhydrol.2008.08.017
http://dx.doi.org/10.1016/j.jenvman.2014.03.005
http://www.ncbi.nlm.nih.gov/pubmed/24726969
http://dx.doi.org/10.1002/hyp.7667
http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1007/s00477-014-1000-6
http://dx.doi.org/10.1002/hyp.10850
http://dx.doi.org/10.1016/j.jhydrol.2016.06.014
http://dx.doi.org/10.1007/s11270-011-1062-8


Water 2017, 9, 164 17 of 17

39. Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, G.M. MODFLOW-2000, the U.S. Geological Survey
Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process; U.S.
Geological Survey: Reston, VA, USA, 2000.

40. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I–A discussion of principles.
J. Hydrol. 1970, 10, 282–290. [CrossRef]

41. Henderson, D.; Jacobson, S.H.; Johnson, A.W. The Theory and Practice of Simulated Annealing. In Handbook
of Metaheuristics; Glover, F., Gary, A., Kochenberger, A., Eds.; Springer: Berlin, Germany, 2003; pp. 287–319.

42. Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for
reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [CrossRef]

43. Bailey, R.T.; Baù, D. Estimating geostatistical parameters and spatially-variable hydraulic conductivity within
a catchment system using an ensemble smoother. Hydrol. Earth Syst. Sci. 2012, 16, 287–304. [CrossRef]

44. Nilsson, B.; Højberg, A.L.; Refsgaard, J.C.; Troldborg, L. Uncertainty in geological and hydrogeological data.
Hydrol. Earth Syst. Sci. 2006, 3, 2675–2706. [CrossRef]

45. Sampler, F.J. Application of geostatistics in subsurface hydrology. In Subsurface Flow and Transport: A
Stochastic Approach; Dagan, G., Neuman, S.P., Eds.; Cambridge University Press: Cambridge, UK, 1997;
pp. 44–61.

46. Wu, J.; Zeng, X. Review of the uncertainty analysis of groundwater numerical simulation. Chin. Sci. Bull.
2013, 58, 3044–3052. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2012.12.004
http://dx.doi.org/10.5194/hess-16-287-2012
http://dx.doi.org/10.5194/hessd-3-2675-2006
http://dx.doi.org/10.1007/s11434-013-5950-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Spatial Correlations 
	Geostatistical Simulation 
	Modular Groundwater Flow Model 
	Generalised Likelihood Uncertainty Estimation (GLUE) 

	Results 
	Semivariogram and Cross-Semivariogram Analyses 
	Conditional Geostatistical Simulations 
	Comparison of Simulated Heads Derived from Spatial Distributions of Ln(K) of Kriged Estimate and of the Selected Top Three Sets of Realizations 
	Uncertainty Analysis of Spatial Distributions of ln(K) in Multiple Aquifers 

	Discussion 
	Semivariogram and Cross-Semivariogram Analyses 
	Conditional Geostatistical Simulations 
	Assessment of Ranking Realizations and Uncertainty of Groundwater Modeling 

	Conclusions 

