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Abstract: Melt runoff (MR) contributes significantly to the total runoff in many river basins.
Knowledge of the meltwater contribution (MCR, defined as the ratio of MR to the total runoff)
to the total runoff benefits water resource management and flood control. A process-based land
surface model, Noah-MP, was used to investigate the spatiotemporal characteristics of MR and MCR
in the Upper Changjiang River (as known as Yangtze River) Basin (UCRB) located in southwestern
China. The model was first calibrated and validated using snow cover fraction (SCF), runoff, and
evapotranspiration (ET) data. The calibrated model was then used to perform two numerical
experiments from 1981 to 2010: control experiment that considers MR and an alternative experiment
that MR is removed. The difference between two experiments was used to quantify MR and MCR.
The results show that in the entire UCRB, MCR was approximately 2.0% during the study period;
however, MCR exhibited notable spatiotemporal variability. Four sub-regions over the Qinghai-Tibet
Plateau (QTP) showed significant annual MCR ranging from 3.9% to 6.0%, while two sub-regions
in the low plain regions showed negligible annual MCR. The spatial distribution of MCR was
generally consistent with the distribution of glaciers and elevation distribution. Mann-Kendall
(M-K) tests of the long-term annual MCR indicated that the four sub-regions in QTP exhibited
increasing trends ranging from 0.01%/year to 0.21%/year during the study period but only one
displayed statistically significant trend. No trends were found for the peak time (PT) of MR and
MCR, in contrast, advancing trend were observed for the center time (CT) of MR, ranging from
0.01 months/year to 0.02 months/year. These trends are related to the changes of air temperature
and precipitation in the study area.
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1. Introduction

Precipitation in the form of rainfall can trigger runoff generation process when it reaches the land
surface and a specific threshold is satisfied, e.g., the rainfall intensity exceeds the infiltration capacity of
the soil or rainfall occurs in an area with saturated soil. In contrast, precipitation in the form of snowfall
is stored on the land surface and does not release water until atmospheric conditions reach a specific
combined threshold and melting occurs. Melt runoff (MR), i.e., the runoff that is generated by melt of
seasonal snow packs and glaciers, contributes significantly to overall runoff in many basins worldwide,
especially during warm, dry summers. Runoff constitutes the primary freshwater resources in many
areas [1,2], such as the Indus Basin [3], the Tien Shan Basin [4], the Colorado River Basin [1], and
others. However, MR can also result in flood events during the spring and summer [5,6]. These events
complicate reservoir operation and flood control. The response of snow/glaciers to climate change
(mainly changing temperature and precipitation) which affect the MR and the entire hydrological cycle
is becoming more complicated [7,8].

The contribution of MR (MCR, expressed as the ratio of MR to the total runoff) to the total
runoff is a commonly adopted indicator used to represent the importance of MR to total runoff [3].
Although considerable challenges exist due to the complexity of hydrological processes, researchers
have studied these processes in depth and proposed several analysis methods to investigate MCR at
large scales [9]. These approaches can be divided into two categories: observation-based methods
and model-based methods. Observation-based methods use the ground measured or remotely
sensed data to obtain runoff mass [10,11] or chemistry [12,13] information to quantify MCR based on
certain assumptions [9]. Observation-based methods are straightforward; however, the availability,
accuracy, and representativeness of data are not always guaranteed, especially in remote regions or
over large areas. By comparison, model-based methods use numerical models ranging from simple
empirical models to sophisticated process-based models that simulate the key variables related to MCR.
Model-based methods are widely used to study MCR because they can reproduce major hydrological
components after proper calibration and validation, and they provide detailed information that is not
available by observations [14–16]. Another obvious advantage of the model-based approach is the
ability to project future MR scenarios under changing environmental conditions [3,4,17]. Among these
models, Land Surface Models (LSMs) have been developed to understand the water, energy and carbon
cycles of Earth [18]. Many models emphasize on snow/glacier processes due to their important roles
in weather and climate [19]. Therefore, snow-related processes including accumulation, sublimation
and melt are generally represented using physically based schemes in LSMs by explicitly considering
various controlling factors, e.g., climate, topography, vegetation, etc. Therefore, LSMs are preferred for
investigating MR and MCR, especially over large areas [1,15,20].

The Changjiang River (A.K.A. Yangtze River), originating in the glaciers of the Qinghai-Tibet
Plateau (QTP) and flowing easts to the East China Sea, is the longest river in China. The river supports
numerous anthropogenic activities in China; therefore, flood control and water resources management
have long been major concerns of local authorities. Researchers have noted the importance of meltwater
to the Changjiang River and performed related studies (e.g., [20–24]). However, these studies are
limited to the source region (refers to the area above the Zhimenda runoff gauging station) of the
Changjiang River Basin. Because the Changjiang River Basin covers different topographic and climate
zones, the meltwater contributions to runoff over the large area of the Changjiang River Basin are
unknown. Climate change is expected to affect the timing and magnitude of runoff of the Changjiang
River, and meltwater is an important factor in these processes [25]. Moreover, in addition to the
Three Gorges Reservoir, many reservoirs are being constructed or planned on the main stream and
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tributaries of the Changjiang River. Understanding the spatiotemporal characteristics of MR can help
improve water resources management, flood control and climate change adaptation in the Changjiang
River Basin.

The overall objectives of this paper are to investigate the spatiotemporal characteristics of MR and
associated MCR in the Changjiang River Basin using the process-based land surface model, Noah-MP.
We restrict our study to the upper reach of the Changjiang River Basin (UCRB) because it is mainly
located in the QTP region where snow, glaciers and meltwater tend to have larger effects on runoff,
and the area is more sensitive to climate change [26]. Additionally, reservoirs being planned and
constructed are mainly located in this area.

2. Materials and Methods

2.1. Study Area

UCRB covers a large area of approximately 1 million km2 from the source region on the QTP to
Yichang in Hubei Province. The total length of the main stream is 4504 km (Figure 1). The distribution
of glaciers extracted from “The second Chinese glacier inventory” [27] is also shown in Figure 1.
The corresponding glacierized area is approximately 1687.2 km2. Due to the large geographic extent of
UCRB (24.5◦ N–27.8◦ N; 90.6◦ E–111.5◦ E), there are large differences with respect to topographic and
hydrometeorological factors. For example, the averaged elevations of the source region and Jialing
river basin (a subregion of the UCRB, see below for details) are 4760 m and 1265 m, respectively.
By comparison, the average annual air temperatures in these two regions are −5 ◦C and 16 ◦C,
respectively. Such differences lead to diverse hydrometeorological conditions in the UCRB. To better
analyze the various hydrometeorological processes, we divided the basin into 10 sub-regions based on
the drainage network and runoff gauging stations. Note that the sub-regions defined in this paper are
slightly different from those listed in the hydrological yearbook released by the Bureau of Hydrology,
Ministry of Water Resources of China. Table 1 lists the characteristics of each sub-region, including the
name, area, land cover and runoff gauging stations.

Figure 1. Map of the Upper Changjiang River Basin (see Section 2.1 for details). Blue shaded areas are
the glaciers extracted from “The second Chinese glacier inventory” [27].
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Table 1. Characteristics of the ten sub-regions in the Upper Changjiang River Basin. Dominant land
cover type was retrieved from [28], glacier area was retrieved from [27], and temporal series of runoff
are shown at six runoff gauging stations.

Index Name Area (km2) Glacier Area (km2) Dominant Land Cover Runoff Gauging Station Temporal Coverage of Runoff Data

1 JSJSY 248,516.0 1278.3 Grasslands Shigu 1998-2010
2 YLJ 146,311.0 102.2 Grasslands Tongzilin 2006–2010
3 DDH 75,992.5 289.3 Grasslands / /
4 MJ 59,682.5 16.5 Mixed Forests Gaochang 1992–2010
5 TJ 26,383.7 / Croplands Fushun 2002–2010
6 JLJ 159,018.0 0.9 Evergreen Broadleaf Forest Beibei 1981–1987; 1992–2010
7 JSJXY 85,193.2 / Evergreen Broadleaf Forest / /
8 CJSYGL 80,755.2 / Evergreen Broadleaf Forest Yichang 1981–2010
9 CSH 19,382.9 / Evergreen Broadleaf Forest / /
10 WJ 87,061.4 / Woody Savannas / /

2.2. Model Input

2.2.1. Atmospheric Forcings

Seven atmospheric variables required by the model were retrieved from the China Meteorological
Forcing Dataset (CMFD [29]) (precipitation, downward short wave radiation, downward long wave
radiation, wind speed at 2 m, air temperature at 2 m, air pressure and specific humidity at 2 m).
The dataset was produced by merging a variety of data sources including ground observations
from the China Meteorological Administration (CMA), Princeton reanalysis data, Global Land Data
Assimilation System (GLDAS) dataset, etc. CMFD data were available between 1979 and 2015 with
spatial and temporal resolutions of 0.1◦ and 3 h, respectively.

2.2.2. Land Data

Land cover and soil types are two important land surface characteristics that determine model
parameters. The land cover dataset is the 0.5 km MODIS-based Global Land Cover Climatology
dataset released by Broxton et al. [28] based on 10 years (2001–2010) of MODIS land cover (MCD12Q1,
Collection 5.1) products. As reported by Broxton et al. [28], it provides more realistic land cover
classification over long-term period. The soil dataset we chose is “the Soil Database of China for Land
Surface Modeling” developed by Shangguan et al. [30]. It was derived from 8979 soil profiles and the
Soil Map of China (1:1,000,000), which provides soil types at a spatial resolution of 30′′.

2.3. Observed and Remote Sensing-Based Data

We used the observed data including runoff, snow cover fraction (SCF), and evapotranspiration
(ET) data to calibrate and validate the model.

2.3.1. Runoff

Runoff data are collected and processed by the Bureau of Hydrology of the Changjiang Water
Resources Commission. Based on the data availability, we chose six runoff gauging station in this
study (Figure 1). Among these stations, the Yichang station is located at the outlet of the entire UCRB;
however, runoff at the station is strongly affected by the reservoirs including the Three Georges
Reservoir. To eliminate this effect, we used the computed natural runoff series at the Yichang runoff
gauging station in this study. The natural runoff is computed by taking into consideration the reservoirs
and anthropic activities. The remaining five runoff gauging stations control the corresponding
sub-regions (Table 1). We adopted the measured runoff directly at these stations for calibration
and validation, since no computed natural runoff available.

The temporal resolution of the original data varies from several hours to several days. Therefore,
we derived monthly runoff using the time-weighted average method.
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2.3.2. Snow Cover Fraction

We adopted the MODIS/Terra monthly SCF product (MOD10CM Version 6) to evaluate the
model performance in modeling snow cover dynamics. The 0.05◦ estimation of the SCF is generated
by spatially and temporally aggregating the daily normalized difference snow index (NDSI) at a 500 m
spatial resolution [31]. MOD10CM provides information from March 2000 to present; however, there
is no data available for four months (August 2000, June 2001, March 2002 and December 2003).

2.3.3. Evapotranspiration

Zhang et al. [32] derived an ET dataset (ET_Zhang) based on a remote sensing ET algorithm,
providing global monthly ET records from 1983 to 2006 at an 8 km spatial resolution. Studies using
the ET_Zhang dataset in the Changjiang River Basin have confirmed its accuracy [32,33]. In this
paper, we used the ET_Zhang product for model evaluation and introduce constraints in addition to
traditional runoff data.

2.4. Modeling and Analysis Scheme

2.4.1. Noah-MP LSM

We employed the Noah-MP (Multi-Physics) LSM in this study. Noah-MP is an augment version of
the Noah LSM [34] developed by Niu et al. [35] and Yang et al. [36] to improve the representations of
various processes, including vegetation, snow [37], frozen soil [38] and hydrology schemes [39,40], etc.
Additionally, Noah-MP has different parameterizations for several key land surface processes (Table 2);
therefore, it can be used to conduct ensemble model simulations. Various studies have confirmed the
performance of Noah-MP in reproducing energy and water fluxes at various scales and under different
hydrometeorological conditions [41–43].

A snowpack can be divided into up to three layers in Noah-MP, and a series of processes including
accumulation, compact, and melting are resolved by physically-based schemes (see [35] for details).
More specifically, snowmelt is simulated by energy balance scheme and melt in the ith snow layer
occurs when the internal temperature exceeds the freezing threshold temperature. The meltwater
flows downward to the next snow layer and eventually reaches the land surface, where it is treated in
the same way as rainfall by the model.

Runoff modeled by Noah-MP comprises both surface and subsurface runoff, which are
represented mainly by a TOPMODEL-based saturation-excess runoff scheme [39]. This scheme is
suitable in the UCRB because of its humid and semi-humid climate.

Table 2. Options selected for key land surface processes parameterizations in Noah-MP.

Parametrization Option Used in This Study

Canopy stomatal resistance Ball-Berry
Soil moisture factor for stomatal resistance Noah

Runoff and groundwater TOPMODEL with groundwater
Surface layer drag coefficient M-O

Super cooled liquid water Non-iterative
Frozen soil permeability Linear effects (weaker)

Radiation transfer Modified two-stream
Ground snow surface albedo CLASS

Precipitation partition BATS
Snow/soil temperature time scheme Semi-implicit

2.4.2. Model Setup

The spatial and temporal resolutions of the modeling were determined based on the CMFD
forcings, i.e., 0.1◦ and 3 h. To match the spatial resolution of the CMFD data, we spatially resampled
the land cover and soil datasets from their original resolutions to 0.1◦, using a majority resampling
technique that assigns a dominant land cover/soil type to each 0.1◦ grid cell. We downloaded
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the default parameters for each land cover/soil type from http://www.ral.ucar.edu/research/
land/technology/noahmp_lsm.php. These parameters were calibrated globally using Modified
IGBP MODIS 20-category vegetation (land-use) data and Hybrid STATSGO/FAO soil texture data.
Options selected for key land surface processes parameterizations are listed in Table 2.

Before calibrating and validating the model, we spun up the model by repeatedly running 100 times
simulations using 1979 and 1980 atmospheric forcings. This process created an equilibrium state of the
model and reproduced a snow “reservoir” that defined as glaciers in the model [44], since glaciers are
not treated in detail as it was done within the work of Prasch et al. [45], and Mauser and Prasch [46].

2.4.3. Model Calibration and Validation

In this paper, we mainly focus on the runoff and snow processes because they are directly related
to our analysis of MR and MCR.

Note that surface runoff routing is not parametrized in the Noah-MP model; however, the bias
is negligible because we mainly focus on runoff at the monthly scale and the mean residence time of
surface runoff is less than 10 days. At each runoff gauging station, we identified the grid cells that
comprise the associated drainage area and extracted the corresponding modeled runoff. The spatially
averaged runoff in these grid cells is compared to the measured runoff for calibration.

Noah-MP is capable of modeling a variety of snow-related variables including the snow water
equivalent (SWE), snow depth and SCF. However, few in-situ measurements are publicly available in
the study area. Therefore, we adopted a remotely-sensed snow products for calibration. Comparing
with SWE and snow depth products, the SCF products provides a relative accurate estimation [47,48].
Therefore, we performed SCF calibration at the sub-region scale by spatially averaging the SCF values
from Noah-MP and MOD10CM.

Due to the large computational demand and limited resources, it is impossible to perform
automatic calibration in this study. Alternatively, based on two indices, i.e., the Nash-Sutcliffe
coefficient (NSE) and correlation coefficient (r), we relied on the traditional trial and error approach
for calibration.

NSE = 1−

n
∑

i=1
(Qobs,i −Qsim,i)

2

n
∑

i=1
(Qobs,i −Qobs)

2
(1)

r =
n(

n
∑

i=1
Qsim,iQobs,i)−

n
∑

i=1
Qsim,i

n
∑

i=1
Qobs,i√

[n(
n
∑

i=1
Q2

sim,i)− (
n
∑

i=1
Qsim,i)2][n(

n
∑

i=1
Q2

obs,i)− (
n
∑

i=1
Qobs,i)2]

(2)

where Qobs,i and Qsim,i are the observed and modeled runoff (mm·month−1) at time step i, respectively,
and n is the total time step.

Table 3 shows the calibrated parameters based on the observed runoff (from 1981 to 2000) and the
MODIS derived SCF (from 2001 to 2005). According to the work of Cai et al. [41] and Niu et al. [39],
melting factor (M) (see [37] for details) and threshold temperature of precipitation phases (Ts) are two
sensitive parameters controlling snow dynamics while decay factor ( f ), maximum subsurface runoff
coefficient (Rsb,max) and soil saturated hydraulic conductivity (Ksat) are sensitive parameters in runoff
simulations. Due to the computational constraints, we only calibrated a lumped value (area average) in
UCRB rather than spatially distributed values. We tested different multiplication factors of Ksat, which
has a default spatial distribution (see model setup for details), to determine the optimized values.

The performance of the model in the UCRB was further validated using runoff (from 2001 to 2010)
and MODIS SCF (from 2006 to 2010) data. To provide a comprehensive evaluation, we also included
the ET_Zhang product for comparison.

http://www.ral.ucar.edu/research/land/technology/noahmp_lsm.php
http://www.ral.ucar.edu/research/land/technology/noahmp_lsm.php


Water 2017, 9, 165 7 of 21

Table 3. The parameters calibrated in this study for the snow cover fraction and runoff, and the
optimized parameters values.

Parameters Definition Controlling Process Optimized Value

f Decay factor Surface and subsurface runoff partition 8.0
(-)

Rsb,max Maximum subsurface runoff coefficient Subsurface runoff 5.0
(10−4 mm·s−1)

Ksat Saturated hydraulic conductivity Subsurface runoff Default values × 10.0
(mm·s−1)

M Melting factor (-) Snow melting 1.5
(-)

Ts Rain/snowfall threshold Snow accumulation 2.5
(◦C)

2.4.4. Melt Runoff and Its Contribution to Total Runoff

Based on the parameterization schemes of different models, there are generally two approaches
to quantifying MR and MCR. Models such as SRM [49] simulate the runoff generated by meltwater
separately, from which MCR can be easily estimated [3,22]. In contrast, models such as Noah-MP compute
the melt and rainfall runoff together, making it difficult to separate MR from total runoff. However,
models can be used to conduct numerical experiments and isolate behaviors that are difficult to isolate
in nature. To quantify MCR in the UCRB, we conducted two numerical experiments using Noah-MP.
We treated the validated simulation as a baseline experiment (Exp0) that the water flux incident at the soil
surface consists of both rainfall and simulated meltwater. We then ran the model for a second time (Exp1)
with simulated meltwater removed from the grid cell (we set meltwater to 0 after it was simulated by
Noah-MP), and under such condition, the water flux incident at the soil surface is equal to rainfall.

We assume that the difference in runoff between the two experiments (Exp1-Exp0) is due to MR,
and MCR can be estimated accordingly:

MCRi =
RExp0,i − RExp1,i

RExp0,i
∗ 100 (3)

where RExp0,i and RExp1,i are the runoff values (mm·month−1) simulated by Exp0 and Exp1,
respectively, in the ith month.

2.5. Statistical and Trend Analyses

In this paper, we adopted two indices to evaluate the timing of MR and MCR. The first included
the peak time (PT) for both MR and MCR, which is determined by identifying the month corresponding
to the maximum MR or MCR in the year. The other index is “center time” (CT) for MR only. CT has
been widely used to quantify the time of MR in related studies [17,50,51] as follows:

CT =

n
∑

i=1
tiqi

n
∑

i=1
qi

(4)

where ti is time in months starting from January, qi is the corresponding melt runoff (mm/month) in
the ith month, and n is the total number of months.

Although Stewart et al. [17] used total runoff from each water year to derive CT, we used MR
directly because the UCRB is not dominated by snow and also because we can obtain MR values from
numerical simulations, which can provide more accurate information regarding the timing.

With respect to trend detection, we employed the non-parametric Mann-Kendall (M-K) [52,53]
test to evaluate the long-term trends in MR and MCR. Both Theil-Sen trend estimator and M-K trend
significance (P) can be estimated for a given time series. In this paper, we only considered P > 0.95 as
statistically significant.
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3. Results

3.1. Model Calibration and Validation

We first calibrated the snow processes by matching the MOD10CM SCF products in the calibration
period from 2001 to 2005. Figure 2a–j (left part) shows the calibrated SCF values, and Table 3 shows
the optimized parameters of M and Ts. The figure shows that the model produces good results in
terms of the correlation coefficient r with a maximum value of 0.85 for MJ, which indicates that the
modeled SCF varies in accordance with MOD10CM SCF. However, the NSE coefficient reflected lower
accuracy and the NSE values of JSJSY, JSJXY and CSH were negative. The relatively low NSE values
can be attributed to both observation and model biases. Pu et al. [47] reported an overall accuracy of
90% for MODIS 8-day composite SCF estimation but a relatively high bias in regions where the snow
depth was shallow, which is the case in JSJXY and CSH. In the validation period from 2006 to 2010
(Figure 2a–j (right part)), a good agreement between the modeled and observed values was further
confirmed by both NSE and r, and no negative NSE avalues were produced during this period.

Figure 2. Comparison between the modeled and remote sensing retrieved (MOD10CM) spatial average
snow cover fraction (SCF) in then sub-regions (a–j) during the calibration period (2001 to 2005) and the
validation period (2006 to 2010). The monthly climatology SCF averaged between 2001 and 2010 (k–t)
is also shown.
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To provide a clearer comparison, we plotted the climatology of SCF averaged over the entire
10 years beginning from 2001 (Figure 2k–t). These plots show that the modeled SCF can capture the
overall variation in SCF estimated from MODIS data in all 10 sub-regions considering the challenge of
modeling snow processes in the study area and the uncertainties associated with the remotely sensed
SCF product.

After calibrating the snow-related parameters, we calibrated the runoff-related parameters using
observed runoff data. Because the temporal coverage of the runoff data varied at six runoff gauging
stations (Table 1), we chose the Gaochang, Beibei, and Yichang stations to perform the calibration using
data from 1981 to 2000. Runoff data collected at all six stations beginning from 2001 were then used
for validation. Figure 3c,e,f (left part) illustrate that the model can effectively reproduce the runoff
variations during the calibration period at the Gaochang, Beibei and Yichang station in terms of both
NSE (∼ 0.88) and r (∼ 0.95). The validation period (Figure 3a–f (right part)) exhibits good agreements
between the modeled and observed values; thus, the parameters we calibrated are suitable in the study
area (Table 3). Runoff can reflect the interactions between various hydrological processes, and accurate
runoff simulations can indirectly reflect the performance of these uncalibrated processes. The NSE
and r values are 0.91 and 0.98 at the Yichang station, which represents the integrated runoff from the
entire UCRB.

Figure 3. Comparison between modeled and observed runoff at six runoff gauging stations (a–f) during
the calibration period (1981 to 2000) and validation period (2001 to 2010).
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To provide a more comprehensive validation of the modeling results, we used the ET_Zhang
dataset to validate the ET simulation. Figure 4a–i shows overall good agreements between modeled
ET and the ET_Zhang estimated ET in ten sub-regions based on RMSE and r values. ET and runoff are
two major components of precipitation partition, and the accurate simulations of ET and runoff reflect
the effectiveness of the model we calibrated for the UCRB.

Figure 4. Comparison between modeled and remote sensing-retrieved (ET_Zhang) spatial average
evapotranspiration (ET) in ten sub-regions (a–i) from 2001 to 2006.

3.2. Overall Statistics of Melt Runoff

Figure 5a–j presents the monthly MCR calculated in the 10 sub-regions during the entire study
period. The figure shows that JSJSY, YLJ, DDH and MJ are the four sub-regions with the most significant
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melt runoff. These four sub-regions are located in regions of the QTP with relatively high elevation
and low temperatures. However, the MCR in CSH and WJ is negligible. In the following sections,
we mainly focus on analyses of JSJSY, YLJ, DDH and MJ.

Based on Figure 5, we estimate the average MCR values in JSJSY, YLJ, DDH and MJ are 6.0%,
3.9%, 5.3% and 4.0%, respectively, from 1981 to 2010. On average, meltwater accounts for 2.0% of
natural runoff at the Yichang runoff gauging station.

Figure 5. Modeled monthly melt runoff contribution to total runoff (MCR, %) in ten sub-regions
(a–j, blue line) from 1981 and 2010. The corresponding monthly climatology MCR values averaged
over the same period (k–t, blue line) are also shown, and the corresponding monthly climatology melt
runoff (MR, mm/month) is illustrated for comparison (k–t, black line).

3.3. Temporal Characteristics of Melt Runoff

As shown in Figure 5a–j, the MCR values of different sub-regions shows significant inter-month
variability, indicating the seasonal variation of MCR. We plotted the monthly climatology MCR values
based on 30 years of simulation (Figure 5k–t) to illustrate the temporal pattern of MCR on an annual
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basis. In all sub-regions, MCR generally starts to increase in February (Figure 5k–p) or January
(Figure 5q–t) which corresponds with the snow melt season in this area. As reported by Qin et al. [54],
snow cover on the QTP normally begins to appear in mid-September and reaches an initial peak in
January, which is in accordance with our SCF results shown in Figure 2k–n. In some sub-regions,
two MCR peaks occur during a year in JSJSY, YLJ, DDH. The first peak occurs in July, June and May,
respectively in these three sub-regions, with MCR values being as large as 15%. By further analyzing
the corresponding climatology temporal variation in MR (Figure 5k–m; black dashed line), we found
that the lag time between the MCR peaks of JSJSY and YLJ resulted from MR variation, which is related
to the air temperature differences. However, the lag time between YLJ and DDH is mainly due to
the variation in rainfall runoff since their MR peaks are both in June. In addition to the notable peak
during the summer, a small winter peak can be observed in JSJSY, YLJ, and DDH around November.
In the other seven sub-regions, a single MCR peak can be observed between March and May based on
mean air temperature differences.

To investigate the long-term variation in MCR, we computed the annual MCR values in JSJSY,
YLJ, DDH, and MJ (Figure 6a–d; blue solid line), and these values were used to perform M-K tests.
The results show that all these four sub-regions experienced MCR increases during the study period
(Figure 6a–d; red dashed line); however, only MJ shows a statistically significant increasing trend
at 0.11%/year (P > 0.95). The PT of MCR shows no obvious variation at the monthly time scale
(Figure 6e–h; red dashed line).

We also performed the M-K tests for MR. The long-term trend (Figure 7a–d; red dashed line) is
different from that of MCR. Both JSJSY and MJ exhibits an statistically significant increasing trend
of 0.02 mm/year and 0.04 mm/year, respectively. The PT of MR in all four sub-regions remains
unchanged (Figure 7e–h; red dashed line), while CT of MR shows a slight and insignificant decreasing
trend that reflects the advance of melt runoff (Figure 7i–l; red dashed line).

Figure 6. Modeled interannual variation in (a–d, blue solid line) melt runoff contribution to total
runoff (MCR, %) and (e–h, blue solid line) the corresponding peak time of MCR (PT, month) in
four sub-regions (JSJSY, YLJ, DDH, and MJ) with the most notable MCR values from 1981 to 2010.
The Mann-Kendall (M-K) trends for MCR (a–d, red dashed line) and PT (e–h, red dashed line) are also
shown, and the Theil-Sen trend estimator (Trend) and corresponding M-K trend significance (P) are
listed above each panel.
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Figure 7. Modeled interannual variation in (a–d, blue solid line) melt runoff (MR, mm/year), (e–h, blue
solid line) the peak time of MR (PT, month), and (i–l, blue solid line) the center of MCR (CT, month)
in the 4 sub-regions (JSJSY, YLJ, DDH, and MJ) with the most notable MCR values from 1981 to 2010.
The Mann-Kendall (M-K) trend calculated for MR (a–d, red dashed line), PT (e–h, red dashed line), and
CT (i–l, red dashed line) are also shown, and the Theil-Sen trend estimator (Trend) and coresponding
M-K trend significance (P) are listed above each panel.

3.4. Spatial Characteristics of Melt Runoff

Figure 8 presents the monthly averaged spatial distribution of MCR, from which the melt runoff
development can be easily identified. As previously shown in Figure 5, substantial MCR occurs
between April and July. By comparing Figure 8 to Figure 1, we found that the MCR in the study area
generally corresponded to the distribution of glaciers near Tanggula Mountain Range and Hengduan
Mountain Range.

In JSJSY, MCR begins to increase in March in the downstream area near the Shigu runoff gauging
station. It can be attribute to the relatively low elevation of this area, resulting in higher air temperatures
which trigger the melting process earlier. The MCR in the upper reaches begins to increase in June,
when most melting occurs in the glacierized area of the Tanggula Range (e.g., Mt. Geladandong).
This MCR pattern is in accordance with the results reported by [23] who found that the continental-type
glaciers in this region generally melt from June to August. Due to the high temperature in July,
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widespread melting occurs in JSJSY and causes the first MCR peak during the year. Then, October
melting in the middle reaches near Mt. Shaluli leads to the second peak.

In YLJ, melting begins near the glacierized Mt. Gongga Region in March and in the upper reaches
in May. MCR develops very quickly and peaks in June before decreasing. Then, MCR near two
glacierized areas, Mt. Shaluli and the Mt. Gongga Region of Hengduan Mountain Range, starts to
increase again in October, contributing to the second peak of MCR in this region.

In DDH and MJ, MCR generally occurs near the glacierized area of the Hengduan Mountain
Range (e.g., Mt. Gongga and Mt. Yaomei) in April, July, and August. Additionally, widespread melting
occurs in May and June, generally in the upper reaches. MCR values in these two sub-regions are very
small after August.

Figure 8. Modeled monthly spatial distribution of melt runoff contribution to total runoff (MCR, %)
in the entire Upper Changjiang River Basin from 1981 to 2010.
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4. Discussion

4.1. Importance of Melt Runoff in the Upper Changjiang River Basin

We used a process-based LSM to quantify MCR in the UCRB for the period between 1981 to 2010.
The overall multi-year average MCR in the entire UCRB is about 2%, mainly due to large downstream
areas which receive little snow. However, sub-regions JSJSY, YLJ, DDH, and MJ have relatively large
multi-year average MCR values of 6.0%, 3.9%, 5.3%, and 4.0%, respectively. Thirty years of monthly
climatology MCR values suggest that the melt runoff constitutes up to 15% of the total runoff during
summer, indicating the important role of melt runoff in these areas. The MCR becomes even more
important during warm and dry years. For example, the MCR in JSJSY reached a notable peak value
of 37.25% during 2001 when the precipitation was below the normal level [55]. As such, meltwater
plays an important role in regulating river runoff and sustaining a more stable runoff variation [56].
Moreover, all major rivers in JSJSY, including the Togto, Dam Chu, Garchu, and Bi Chu, originate from
and are supported by glaciers located in the source region [23]. For this reason, MR helps sustain the
well-being of the ecosystems and environment in this region.

Previous studies of melt runoff mainly focused on the source region (e.g., [20–24]), because it is
regarded as the “water tower” [57]. However, our results indicate that YLJ, DDH, and MJ have MCR
values that are comparable to those of the source region. Moreover, based on our results that CT is
advancing in the study area, MR should be taken into consideration for the flood control operations of
these reservoirs to reduce the release of useful melt runoff during winter and early spring [17].

4.2. Effects of Climate and Land Cover Changes

As confirmed by many studies e.g., ([58–60]), climate change in the UCRB has already influenced
the glaciers and associated runoff in this region [22,24,56].

Our study found a statistically significant increasing trend of both MR and MCR in MJ.
Previous studies generally suggested that the increasing temperature and decreasing precipitation
were responsible for the decreased runoff in MJ [61,62]. A warmer climate tends to intensify the melting
process of glacier/snow and increase MR. These factors, together with the precipitation decrease,
increased MCR, which is consistent with our results.

Unlike the trends observed in MJ, our study indicates that MR increases and MCR decreases in
JSJSY, which can be attributed to the increases in temperature and precipitation in this region [63], i.e.,
the increase in MR is offset by an increase in rainfall runoff. Additionally, glaciers in JSJSY are mainly
cold-type or polar-type with relatively slower dynamic responses to global warming [24].

Additionally, we observed a slight advancement of CT, which is consistent with the overall
warming in the UCRB. As reported by Wang et al. [51], shift can be observed in the snow melt period
in the source region of the Changjiang River. The start time of melting advances 0.9–3 days/10a,
or approximately 0.003–0.01 months/year, which is in accordance with our results in JSJSY. However,
the current trend is not statistically significant according to our results.

Besides climate, MCR is also influenced by land cover. On one hand, previous studies showed
that vegetation affects snow accumulation by interception and sublimation, and affects snowmelt by
alerting the energy balance of land surface [64–66]. However, the relationship between snow and
vegetation is highly variable and complicated, depending on climatic, topographic and vegetation
conditions [65,67,68]; On the other hand, vegetation modifies runoff yield mainly by interception
and ET [69,70]. The effects of land cover change on MCR cannot be evaluated since we adopted the
constant land cover during the entire study period. Moreover, from Section 3.4 we can see that glaciers
and elevation have more significant effects on MCR.

4.3. Uncertainties in this Study

MR and MCR are difficult to measure at large scale, such as the UCRB scale and few studies have
focused on the entire UCRB. Previous studies mainly focused on the source region of Changjiang.
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For comparison, we also evaluated the MCR in the the source region and obtained a value of 8.9%,
which is similar to those reported by Liu, et al. [22], Yang and Ming-Ko [71], and Shen et al. [23] of
11%, 9.2%, and 9%, respectively. However, other studies presented different results. For example,
Zhang et al. [20] reported that MR accounted for up to 28.7% of the total runoff in the source
region. Therefore, these results suggest that uncertainties may exist in quantifying MCR based
on numerical models.

4.3.1. Atmospheric Forcings

Accurate atmospheric forcings are critical for land surface modeling [72], and precipitation is the
most sensitive variable [73,74]. The CMFD forcings we used in this paper have been widely used for
modeling in China due to their high spatiotemporal resolution and relatively high accuracy. To evaluate
the overall accuracy of the forcings in the UCRB, we compared the CMFD fields to corresponding
measurements fom the China Meteorological Administration (CMA) ground observational sites.
Eighty CMA sites are located in our study area, and data from these sites can be obtained online
(http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY_CES_V3.0.html). Figure 9
illustrates the grid-to-site comparison of air temperature and precipitation from 1981 to 2010 based on
extracting the CMFD values according to the locations of CMA sites at both the daily and monthly
time scales. The results show that although the CMFD air temperatures agree well with those of CMA
sites, the CMFD precipitation is biased, especially at the daily time scale. However, by comparing with
the study evaluating the Global Land Data Assimilation System (GLDAS) forcings over China [75],
we found CMFD forcings providing better air temperature and precipitation fields over the study area,
in both accuracy and resolution of the data. Additionally, our analyses in this paper are performed at
monthly or annual time scales, therefore the overall accuracy of analyses can still be guaranteed.

Figure 9. Scatter plot between China Meteorological Administration (CMA) ground sites measured and
the corresponding China Meteorological Forcing Dataset (CMFD) grid retrieved variables of (a) daily
and (b) monthly air temperature; and (c) daily and (d) monthly precipitation.

http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY_CES_V3.0.html
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4.3.2. Snow-Related Parameterizations

Although the overall parameterizations of snow in Noah-MP are physically based, several
simplifications and generalizations of processes still exist in the model [35,37], which is the case
in many other LSMs [76]. Studies have documented the wide spread of model results [19,76,77]
when applied to the same numerical experiments, indicating the discrepancies and uncertainties in
different parameterizations implemented. Regarding MCR, Siderius et al. [15] reported different
MCR of Ganges estimated from four different models, particularly in upstream area. Essery et al. [77]
suggested that proper model calibration can benefit the snow simulations in many models. In this
study, we calibrated two most sensitive snow-related parameters using the remotely-sensed MODIS
SCF data. However, due to the lack of ground-based snow data (e.g., snow water equivalent and snow
depth), it was impossible to calibrate other parameters e.g., liquid water holding capacity, which are
important to snow processes [37].

4.3.3. Quantification of Melt Water Contribution to Total Runoff

In this paper, we conducted two numerical experiments to isolate the MR and estimate MCR.
The actual hydrological processes are highly nonlinear and complex [78]; therefore, the direct removal
of meltwater from the simulations may affect processes such as infiltration and ET and contribute to
the runoff differences between the two experiments. However, we assume the bias in this approach is
small in the UCRB because the meltwater volume is relatively small compared to that of rainfall runoff.

Studies have proposed different approaches to quantify MCR; however, uncertainties also exist
in these approaches. For example, Immerzeel et al. [3] adopted the Normalized Melt Index (NMI) to
investigate MCR, but the runoff coefficient of MR was difficult to estimate because observed data were
generally unavailable. Additionally, Siderius et al. [15] used the ratio of melt inputs to rainfall inputs
as an indicator, but meltwater of previous month may have been incorrectly considered as rainfall in
the subsequent month.

5. Conclusions

In this paper, we adopted the Noah-MP LSM to investigate the spatiotemporal characteristics of
MR and MCR in UCRB. Remotely-sensed SCF (2001–2005) and ground-measured runoff (1981–2001,
whenever available) data were used to calibrate five most sensitive parameters in the Noah-MP model.
Further validation against SCF, runoff and ET observations confirmed the performance of the Noah-MP
model in the study area. We then used the calibrated model to conduct two numerical experiments to
quantify MR and MCR in UCRB from 1981 to 2010, and the following conclusions were drawn from
this study.

1. On average, MR accounted for about 2.0% of natural runoff at the Yichang gauging station, which
controls the entire UCRB. More specifically, JSJSY, YLJ, DDH and MJ, the four sub-regions of
UCRB, had the most significant MCR values of 6.0%, 3.9%, 5.3% and 4.0%, respectively during
the study period. By comparison, the MCR of values in CSH and WJ were negligible.

2. The MCR values in different sub-regions showed significant seasonal variability. From a monthly
climatology perspective, MCR generally begins to increase in January or February in all
sub-regions. In JSJSY, YLJ, and DDH, double MCR peaks were observed in summer and winter
while only a single peak was observed in the remaining sub-regions. The PT varied by sub-regions,
mainly due to air temperature gradients.

3. M-K tests indicated that the annual MCR values of JSJSY, YLJ, DDH, and MJ showed increasing
trends during the study period; however, only that of MJ was statistically significant, with
a value of 0.11%/year (P = 1.00). The annual MR values of both JSJSY and MJ displayed
statistically significant increasing trends of 0.02 mm/year (P = 0.96) and 0.04 mm/year (P = 0.98),
respectively. No trends were found for PT values of MR and MCR, in contrast, advancing trend
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were observed for th CT values of MR in JSJSY, YLJ, DDH, and MJ, and the corresponding values
were 0.01 months/year, 0.02 months/year, 0.01 months/year and 0.01 months/year, respectively.

4. The spatial distribution of MCR values in the study area generally consistent with the distribution
of glaciers and elevation. In JSJSY, YLJ, DDH, and MJ, MCR generally begins to increase near
glacierized areas of Tanggula Range and Hengduan Mountain Range. MCR was then influenced
by the melting of the seasonal snow pack in the upper stream area.

5. The uncertainties in this study may result from the atmospheric forcings, the snow related
parameterizations in the Noah-MP model, and the approach we adopted to quantify the MCR.

According to our study, MR is important in the UCRB, especially in JSJSY, YLJ, DDH, and MJ,
which are located on the QTP, especially during warm and dry years. Climate change has already
affected the snow-related processes in the UCRB, especially in MJ, which exhibited significant increase
in both MR and MCR. Melt water should be considered in flood control operations and water resource
management in these regions.
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