
water

Article

Depth-Averaged Non-Hydrostatic Hydrodynamic
Model Using a New Multithreading Parallel
Computing Method

Ling Kang and Zheng Jing *

School of Hydropower and Information Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; kling@hust.edu.cn
* Correspondence: jingzhenghust@hust.edu.cn

Academic Editors: Yung-Tse Hung and Michele Mossa
Received: 22 November 2016; Accepted: 1 March 2017; Published: 5 March 2017

Abstract: Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic
model can accurately simulate flows that feature vertical accelerations. The model’s low
computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic
hydrodynamic model based on a multithreading parallel computing method. The horizontal
momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the
free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step
method is used to solve the model equations. A parallel strategy based on block decomposition
computation is utilized. The original computational domain is subdivided into two subdomains
that are physically connected via a virtual boundary technique. Two sub-threads are created and
tasked with the computation of the two subdomains. The producer–consumer model and the thread
lock technique are used to achieve synchronous communication between sub-threads. The validity
of the model was verified by solitary wave propagation experiments over a flat bottom and slope,
followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel
computing method proposed here was found to effectively enhance computational efficiency and
save 20%–40% computation time compared to serial computing. The parallel acceleration rate and
acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing
method makes a contribution to the popularization of non-hydrostatic models.

Keywords: hydrodynamics; non-hydrostatic; parallel computing; wave propagation

1. Introduction

The propagation of sea waves from the abyssal zone to the shoal involves a series of complex
physical processes such as wave refraction, wave diffraction, and shoaling. Many researchers
have explored these physical mechanisms by reproducing wave propagation and transformation
experimentally and have analyzed the prototype experiments using mathematical models [1–3],
including the Boussinesq-type equation [4,5], a potential flow model based on the Laplace equation,
and a non-hydrostatic hydrodynamic model.

Based on the hydrostatic assumptions, the hydrodynamic models can be split into hydrostatic and
non-hydrostatic categories. Non-hydrostatic models consider the effect of dynamic pressure on the flow
field, and are thus appropriate for situations with significant vertical acceleration; hydrostatic models
are not. Thus non-hydrostatic models can more accurately reveal the discipline of flow movement, and
are particularly well suited to complex numerical simulations of wave propagation. Non-hydrostatic
models have substantial research value, as they contribute to a better understanding of the wave
conditions in inshore areas and provide technical support for inshore breakwater and coastal works

Water 2017, 9, 184; doi:10.3390/w9030184 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water

Water 2017, 9, 184 2 of 19

designs. Current non-hydrostatic models are plagued by two major issues: (1) managing the dynamic
pressure variable (non-hydrostatic) and (2) relatively unfavorable computational efficiency.

Managing the dynamic pressure variable is the key to successful non-hydrostatic modeling.
In most non-hydrostatic models, it is assumed that the pressure of the surface grid conforms to the
hydrostatic distribution and the dynamic pressure variables are placed at the center of the surface
grid [6,7]. Thus these models do not completely deviate from the hydrostatic assumption. To enable
the model to strictly meet the zero dynamic pressure boundary conditions at the free water surface,
Stelling and Zijlema proposed that the dynamic pressure variable should be placed at the center of
the upper and lower interface of the grid [8]. This allows zero dynamic pressure boundary conditions
to be directly satisfied when the dynamic pressure at the water surface is assumed to be zero. They
built a 3D model based on this dynamic pressure layout; the model can accurately simulate the
frequency dispersion characteristics and the nonlinear effect of short wave with only two layers in the
vertical direction. In another study, Bai and Cheung uniformly divided the water into two layers and
parameterized the dynamic pressure at the interface between the layers [9,10]. The θ method was used
to discretize the momentum equation based on the structured grid. This model can accurately simulate
the complex solitary wave propagation over a fringing reef. Another so called non-hydrostatic top-layer
treatment method was proposed by Yuan and Wu [11], in which the dynamic pressure variables are
still placed at the center of the surface grid and the vertical momentum equation is integrated from the
center of the top layer to the free surface, so the top-layer pressure can be explicitly expressed by the
hydrostatic pressure component and vertical acceleration. This method also satisfies the zero dynamic
pressure condition. Later, they further extended the non-hydrostatic top-layer treatment method to the
Cartesian co-ordinate [12]. Namin et al. used a hydrostatic representation to define the pressure term
in the top layer so that it can be evaluated in terms of the neighboring horizontal velocity components
alone [13]. With this treatment, they developed a 2D vertical numerical model to simulate a range of
unsteady flow problems involving relatively strong vertical accelerations.

Non-hydrostatic models are now more commonly utilized for 3D simulation [6,14,15]. The 3D
model can truly reflect changes in the flow field of the natural fluid in 3D directions. The number
of computational grids necessary for such large-scale fluid domains such as seas is often very large,
therefore, making it effectually impossible to solve the 3D model equations. Over the past decade,
many efforts have been devoted to develop 3D non-hydrostatic models with a few vertical layers.
Yuan and Wu developed an implicit method for solving the 3D fully non-hydrostatic model [12].
The 3D model has been proven capable of accurately simulating a range of free-surface flow problems
using a very small number of vertical layers. Later, they examined the accuracy and efficiency of
their fully non-hydrostatic model by simulating a range of surface-wave propagation problems [16].
Bai and Cheung developed a new multi-layer non-hydrostatic model and examined its linear and
nonlinear wave properties in relation to the Boussinesq approach [17]. Young et al. developed a
higher-order non-hydrostatic σ model with only two vertical layers, and verified its accuracy via
laboratory data [18]. Furthermore, researchers have also developed a number of 2D horizontal models
and vertical models. Due to the reduction of one spatial dimension, the amount of computational
work of the 2D non-hydrostatic models decreases significantly and the computational efficiency
increases significantly. Zhou and Stansby established the first vertical 2D non-hydrostatic model [7].
Stelling and Busnelli used a vertical 2D non-hydrostatic model to successfully simulate the hydraulic
jump [19], which cannot be simulated by a hydrostatic model. Their results also demonstrated that the
non-hydrostatic model has higher accuracy and broader application prospects than the hydrostatic
model. Ling Kang, one author of this paper, derived depth-averaged 2D horizontal non-hydrostatic
model equations and verified the validity of the model using a series of benchmark tests [20]. These 2D
models have higher computational efficiency than the 3D models, but complex and time-consuming
iterative methods (e.g., the gradient method) are necessary to solve the large-scale Pressure Poisson
Equations (PPEs), thus, the low computational efficiency problem inherent to the non-hydrostatic
model has not been effectively resolved.

Water 2017, 9, 184 3 of 19

The above shows that computational efficiency is one of the critical factors for determining
whether the non-hydrostatic model can substitute the hydrostatic models as the next-generation tool
for simulating the flow in large-scale environments. The solution to this problem is transferring
the numerical computation from a single-core environment to a multi-core environment. To this
end, parallel computation has become a popular approach when researching non-hydrostatic models.
Non-hydrostatic model codes have typical serial characteristics. The parallelization of the serial
codes is very difficult, so there have been relatively few attempts to do so. Jacek et al. developed a
parallelization method for an unstructured-grid 3D non-hydrostatic model based on a new parallel
streamline backtracking algorithm. The parallel performance was investigated on shared-memory,
massive parallel computing servers; the results showed that their method does substantially enhance
computational efficiency [21]. Hérault et al. simulated paddle-generated waves in a basin and a
dam-break wave based on the GPU parallel technique and the SPH (Smoothed Particle Hydrodynamics)
method. Their simulation speed was one to two orders of magnitude faster than the equivalent
CPU code [22]. Bleichrodt et al. presented a 2D barotropic vorticity model on a GPU using
a CUDA implementation. The speed-up for this model is impressive: up to a factor of 50 for
the highest resolutions [23]. These parallel computational methods do significantly improve the
computational efficiency of the non-hydrostatic model and yield a desirable speed-up ratio, but they
are largely dependent on high-performance cluster groups or GPU, which come with a high technical
threshold. Many researchers who are familiar with non-hydrostatic models are not experts in fluid
computing. Reproducing or modifying the complicated frontier parallelization methods requires
very demanding technical conditions and consumes a great deal of resources (money, time, talent
cultivation). In addition, current parallel programs—whether they function via a shared memory
mode (such as OpenMP) or the message passing mode (such as MPI)—are typically developed in the
Linux System or Unix System. There have been few researchers to attempt to establish these models
in the Windows environment. Nesterov proposed a simple parallelization technique with MPI in
Windows for 2D ocean circulation models [24]. Windows users outnumber the users of other operating
systems, but most of the open-source parallelized CFD codes do not run on Windows. It is not easy for
Windows users with only basic coding knowledge to reproduce or modify the extant parallelization
methods on a computer with a minimum of memory and hardware. Thus, to further popularize
non-hydrostatic models, it is imperative to design a simple, efficient parallel computing method in the
Windows system for researchers who are experts in CFD models with basic coding knowledge.

From the above, this paper proposes a non-hydrostatic hydrodynamic model based on a
multithreading parallel computing method suited to the Windows system. A parallel strategy based
on block decomposition computation is utilized. Based on the Windows multithreading mechanism,
two sub-threads are created and tasked computation of the two subdomains. The producer–consumer
model and the thread lock technique are used to achieve synchronous communication between
sub-threads. The validity of the model was verified by solitary wave experiments and sinusoidal wave
experiments. The computational efficiency is discussed.

2. Mathematical Model

2.1. Governing Equations

To improve the hydrostatic hydrodynamic model, the pressure term in the 3D Navier–Stokes (N–S)
equations is separated into hydrostatic and non-hydrostatic components. The horizontal momentum
equations and the continuity equation are integrated from bottom to free surface. The vertical
momentum equation only retains the dynamic pressure gradient term. Coupling with the kinematic
boundary conditions at the water bottom and free surface, the author of this paper has proposed a
plane 2D, depth-integrated non-hydrostatic hydrodynamic model: Equations (1)–(5). Details can be
seen in the literature [20]. This depth-integrated model is essentially applicable in coastal regions up
to the shore [25]. According to Stelling and Zijlema [8], this non-hydrostatic model using one layer

Water 2017, 9, 184 4 of 19

approximates at most the lowest order effect of linear wave dispersion, namely, it is valid when the
wave is weakly dispersive (µ = kH < 1, where k and H are the wave number and still water depth,
respectively). Highly dispersive cases are not considered in this paper.

∂U
∂x

+
∂V
∂y

+
∂w
∂z

= 0 (1)

∂η

∂t
+

∂(UH)

∂x
+

∂(VH)

∂y
= 0 (2)

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

= −g
∂η

∂x
− 1

2ρ
∂qb
∂x

− qb
2Hρ

∂(η− h)
∂x

(3)

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

= −g
∂η

∂y
− 1

2ρ
∂qb
∂y

− qb
2Hρ

∂(η− h)
∂y

(4)

∂w
∂t

= − 1
ρ

∂q
∂z

(5)

Equation (1) is the continuity equation; Equation (2) is the free surface equation; Equations (3) and
(4) are the horizontal momentum equations (the Coriolis, the wind shear, and bottom friction forces
are ignored); Equation (5) is the vertical momentum equation (the convective and viscosity terms
are ignored). t is time (s); U and V (m/s) are the depth-averaged velocity in the x and y directions,
respectively; w is the velocity in the z direction (m/s); ρ is water density (kg/m3); q is the dynamic
(non-hydrostatic) pressure; H is the total water depth (m), H = h + η; h is the still water depth (m); η is
the surface elevation above the still-water level (m).

2.2. Initial Condition and Boundary Condition

The initial condition of velocity and water level are set to zero and the still-water level, respectively;
“No slip condition” is applied to the solid wall boundary condition; Velocity U at the inflow are
specified based on the analytical solutions or experimental data. The analytical solution of solitary
wave and sinusoidal wave can be found in the literature [26]; Velocity U at the outflow are specified
using Sommerfeld’s radiation condition considering that it does not produce a reflection wave when
flow is passing through the outflow [27]:

∂ f
∂t

+
√

gH
∂ f
∂x

= 0, (6)

where f = U, V, η.

3. Numerical Solution

A structured C-grid scheme is used for discretization of the computational domain. The governing
equations are solved by the finite difference method (FDM). Figure 1 shows the layout of variables.
i and j denote the cell grid center in the x and y direction; U and V are defined at the center of the grid
faces (i ± 1/2, j) and (i, j ± 1/2); η, h, and H are located at the center of the grid; The dynamic pressure
q is located at the center of the top and bottom surfaces; the dynamic pressure at the bottom qb is at the
center of the bottom surface; the dynamic pressure at the free surface is set to be zero in order to satisfy
the zero dynamic pressure condition; WS and WB, which are the vertical velocity at the free surface
and bottom, are located at the center of the top and bottom surfaces, respectively.

Water 2017, 9, 184 5 of 19

Water 2017, 9, 184 4 of 19

0U V w
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂ (1)

η () () 0∂ ∂ ∂+ + =
∂ ∂ ∂

UH VH
t x y (2)

η 1 (η)
2ρ 2 ρ

∂ ∂ ∂ ∂ ∂ ∂ −+ + = − − −
∂ ∂ ∂ ∂ ∂ ∂

b bU U U q q hU V g
t x y x x H x (3)

η 1 (η)
2ρ 2 ρ

∂ ∂ ∂ ∂ ∂ ∂ −+ + = − − −
∂ ∂ ∂ ∂ ∂ ∂

b bV V V q q hU V g
t x y y y H y (4)

1w q
t zρ

∂ ∂= −
∂ ∂ (5)

Equation (1) is the continuity equation; Equation (2) is the free surface equation; Equations (3)
and (4) are the horizontal momentum equations (the Coriolis, the wind shear, and bottom friction
forces are ignored); Equation (5) is the vertical momentum equation (the convective and viscosity
terms are ignored). t is time (s); U and V (m/s) are the depth-averaged velocity in the x and y directions,
respectively; w is the velocity in the z direction (m/s); ρ is water density (kg/m3); q is the dynamic
(non-hydrostatic) pressure; H is the total water depth (m), H = h + η; h is the still water depth (m);
η is the surface elevation above the still-water level (m).

2.2. Initial Condition and Boundary Condition

The initial condition of velocity and water level are set to zero and the still-water level,
respectively; “No slip condition” is applied to the solid wall boundary condition; Velocity U at the
inflow are specified based on the analytical solutions or experimental data. The analytical solution of
solitary wave and sinusoidal wave can be found in the literature [26]; Velocity U at the outflow are
specified using Sommerfeld’s radiation condition considering that it does not produce a reflection
wave when flow is passing through the outflow [27]:

0f fgH
t x

∂ ∂+ =
∂ ∂

, (6)

where f = U, V, η.

3. Numerical Solution

A structured C-grid scheme is used for discretization of the computational domain. The
governing equations are solved by the finite difference method (FDM). Figure 1 shows the layout of
variables. i and j denote the cell grid center in the x and y direction; U and V are defined at the center
of the grid faces (i ± 1/2, j) and (i, j ± 1/2); η, h, and H are located at the center of the grid; The dynamic
pressure q is located at the center of the top and bottom surfaces; the dynamic pressure at the bottom
qb is at the center of the bottom surface; the dynamic pressure at the free surface is set to be zero in
order to satisfy the zero dynamic pressure condition; WS and WB, which are the vertical velocity at
the free surface and bottom, are located at the center of the top and bottom surfaces, respectively.

Figure 1. Layout of variables. Figure 1. Layout of variables.

All the terms except the dynamic pressure gradient term in Equations (3) and (4) are solved
explicitly by a central difference scheme. The dynamic pressure gradient term is solved by the
Crank–Nicolson scheme. Superscripts n and (n + 1) denote the time levels n and (n + 1), respectively;
∆t denotes the time step; and ∆x and ∆y denote the length and width of the grid cell, respectively.
The discrete form of Equations (3) and (4) can be written as:

Un+1
i+1/2,j = Un

i+1/2,j −
∆t

2∆x Un
i+1/2,j(U

n
i+3/2,j − Un

i−1/2,j)−
∆t

2∆y Vn∗
i+1/2,j(U

n
i+1/2,j+1 − Un

i+1/2,j−1)

−g ∆t
∆x (η

n
i+1,j − ηn

i,j)−
∆t

2ρ∆x
(qn

b_i+1,j+qn
b_i,j)(η

n
i+1,j−ηn

i,j−hi+1,j+hi,j)

Hn
i+1,j+Hn

i,j

− 1
2

∆t
2ρ∆x (q

n
b_i+1,j − qn

b_i,j)−
1
2

∆t
2ρ∆x (q

n+1
b_i+1,j − qn+1

b_i,j)

(7)

Vn+1
i,j+1/2 = Vn

i,j+1/2 −
∆t

2∆x Un∗
i,j+1/2(V

n
i+1,j+1/2 − Vn

i−1,j+1/2)−
∆t

2∆y Vn
i,j+1/2(V

n
i,j+3/2 − Vn

i,j−1/2)

−g ∆t
∆y (η

n
i,j+1 − ηn

i,j)−
∆t

2ρ∆y
(qn

b_i,j+1+qn
b_i,j)(η

n
i,j+1−ηn

i,j−hi,j+1+hi,j)

Hn
i,j+Hn

i,j+1

− 1
2

∆t
2ρ∆y (q

n
b_i,j+1 − qn

b_i,j)−
1
2

∆t
2ρ∆y (q

n+1
b_i,j+1 − qn+1

b_i,j)

, (8)

where
Un∗

i,j+1/2 =
1
4
(Un

i−1/2,j + Un
i+1/2,j + Un

i−1/2,j+1 + Un
i+1/2,j+1) (9)

Vn∗
i+1/2,j =

1
4
(Vn

i,j−1/2 + Vn
i,j+1/2 + Vn

i+1,j−1/2 + Vn
i+1,j+1/2). (10)

A two-step method is used for solving Equations (7) and (8):

1. The first step

In the first step, taking Equation (7) as an example, Equation (7) retains the convective term,
the water level gradient term, the combination term of dynamic pressure and water level and
the dynamic pressure gredient term at the current time (superscript n), resulting in Equation (11).
The intermediate value of the velocity (denoted as Un+1/2) can be calculated by solving Equation (11).

Un+1/2
i+1/2,j = Un

i+1/2,j −
∆t

2∆x Un
i+1/2,j(U

n
i+3/2,j − Un

i−1/2,j)−
∆t

2∆y Vn∗
i+1/2,j(U

n
i+1/2,j+1 − Un

i+1/2,j−1)

−g ∆t
∆x (η

n
i+1,j − ηn

i,j)−
∆t

2ρ∆x
(qn

b_i+1,j+qn
b_i,j)(η

n
i+1,j−ηn

i,j−hi+1,j+hi,j)

Hn
i+1,j+Hn

i,j

− 1
2

∆t
2ρ∆x (q

n
b_i+1,j − qn

b_i,j)

(11)

2. The second step

Based on the calculated Un+1/2 and Vn+1/2 in the first step, Equations (7) and (8) only retain the
dynamic pressure gredient term at time level n+1, resulting in Equations (12) and (13).

Un+1
i+1/2,j = Un+1/2

i+1/2,j −
1
2

∆t
2ρ∆x

(qn+1
b_i+1,j − qn+1

b_i,j) (12)

Water 2017, 9, 184 6 of 19

Vn+1
i,j+1/2 = Vn+1/2

i,j+1/2 −
1
2

∆t
2ρ∆y

(qn+1
b_i,j+1 − qn+1

b_i,j) (13)

The Keller-box scheme is used to discretize the vertical momentum equation Equation (5) [28].
This scheme has three steps. First, by the forward differencing scheme at the centre of the bottom face,
the dynamic pressure gradient term can be approximated as:

Wn+1
B_i,j − Wn

B_i,j

∆t
= − 1

ρ

0 − qn+1
b_i,j

Hn
i,j

=
1
ρ

qn+1
b_i,j

Hn
i,j

. (14)

Second, the dynamic pressure gradient term is discretized at the center of the upper face by the
backward differencing scheme as follows:

Wn+1
S_i,j − Wn

S_i,j

∆t
= − 1

ρ

0 − qn+1
b_i,j

Hn
i,j

=
1
ρ

qn+1
b_i,j

Hn
i,j

. (15)

Finally, we take the average of Equations (14) and (15) as the final discrete form of Equation (5)
as follows:

Wn+1
S_i,j =

2∆t
ρHn

i,j
qn+1

b_i,j + Wn
S_i,j − Wn+1

B_i,j + Wn
B_i,j, (16)

where WB
n+1 is evaluated in terms of the kinematic boundary condition at the bottom [29]:

Wn+1
B_i,j = − 1

2∆x (hi,j − hi−1,j)(U
n+1/2
i,j +

∣∣∣Un+1/2
i,j

∣∣∣)− 1
2∆x (hi+1,j − hi,j)(U

n+1/2
i,j −

∣∣∣Un+1/2
i,j

∣∣∣)
− 1

2∆y (hi,j − hi,j−1)(V
n+1/2
i,j +

∣∣∣Vn+1/2
i,j

∣∣∣)− 1
2∆y (hi,j+1 − hi,j)(V

n+1/2
i,j −

∣∣∣Vn+1/2
i,j

∣∣∣) . (17)

The continuity equation Equation (1) is discretized as:

Un+1
i+1/2,j − Un+1

i−1/2,j

∆x
+

Vn+1
i,j+1/2 − Vn+1

i,j−1/2

∆y
+

Wn+1
S_i,j − Wn+1

B_i,j

Hn
i,j

= 0. (18)

Substituting Equations (12), (13), (16) and (17) into Equation (18) gives Equation (19):

GSi,j · qn+1
b_i,j−1 + GLi,j · qn+1

b_i−1,j + GCi,j · qn+1
b_i,j + GRi,j · qn+1

b_i+1,j + GNi,j · qn+1
b_i,j+1 = GBi,j. (19)

GS, GL, GC, GR, GN, and GB are the simplified expressions of known variables and are not given
here due to their complexity. They form a five-diagonal linear system, namely the Pressure Poisson
Equations (PPEs). qb

n+1 could be calculated by solving the PPEs using a Bi-CTSTAB method [30].
Substituting qb

n+1 into Equations (12), (13), and (16) gives Un+1, Vn+1, and WS
n+1. The free surface η

can be updated from the discrete form of Equation (2):

ηn+1
i,j = ηn

i,j − 0.5 ∆t
∆x

[
Un+1

i+1/2,j · (Hn
i,j + Hn

i+1,j)− Un+1
i−1/2,j · (Hn

i−1,j + Hn
i,j)
]

−0.5 ∆t
∆y

[
Vn+1

i,j+1/2 · (Hn
i,j + Hn

i,j+1)− Vn+1
i,j−1/2 · (Hn

i,j−1 + Hn
i,j)
] . (20)

The above solution procedure of the non-hydrostatic model can be summarized in flow chart
form in Figure 2.

Water 2017, 9, 184 7 of 19
Water 2017, 9, 184 7 of 19

Figure 2. Solution steps of the non-hydrostatic model (serial computing).

4. Parallel Computing Method

4.1. Parallelization Analysis

Parallel computing allows a problem to be solved by multiple computational resources in a
collaborative manner. The first step in parallelizing the serial code is, naturally, assessing the
possibility of parallelization. As shown in Figure 2, the non-hydrostatic model program code is a
typical sequential structure. The smooth execution of one step needs to be supported by the results
calculated in the previous step. That being said, each sub-step contains computations of several grids,
and the computations of these grids are relatively independent. Several computing resources (like
processors) can be tasked with the computation of a certain number of grids, i.e., block calculation is
possible. Based on the parallel strategy of block calculation, this paper proposes a multi-threading
parallel computing method for the non-hydrostatic model. The computational domain is divided into
two subdomains in the x direction (Figure 3, Subdomains A and B; Subdomain A includes A1, A2, etc.
and Subdomain B includes B1, B2, etc.), the computation of which is completed by sub-threads. The
parallel strategy of block calculation is similar to that in Zijlema’s study [25]. Synchronous
communication between processors is the key to the success of any parallel computing program.
Zijlema’s study briefly mentioned the SWASH software includes parallelization using standard MPI
communication, however. This paper discusses the manner in which synchronous communication
between sub-threads is achieved with a producer–consumer model and thread lock technique.

4.2. Domain Decomposition and Virtual Grid Technique

Domain decomposition is performed to assign the parallel computational tasks. The number of
subdomains is associated with the number of threads. The principle of division is that one thread
corresponds to one subdomain. As mentioned above, two subdomains (A and B)—and thus two
threads—are created here. One thread is responsible for the computation of Subdomain A or B, not
their son regions, e.g., A1 (or A2), B1 (or B2). As domain decomposition blocks the physical connection
between Subdomain A and Subdomain B, it is imperative to seek an effective approach for
quantifying the inherent connection. A virtual grid technique is used here to link the two subdomains.
Take red dashed box in Figure 3 as an example (the box concludes Subdomain A1, vitual region1 and
Subdomain B1), a virtual grid is virtually added at the right boundary of Subdomain A1 and the left

Figure 2. Solution steps of the non-hydrostatic model (serial computing).

4. Parallel Computing Method

4.1. Parallelization Analysis

Parallel computing allows a problem to be solved by multiple computational resources in a
collaborative manner. The first step in parallelizing the serial code is, naturally, assessing the possibility
of parallelization. As shown in Figure 2, the non-hydrostatic model program code is a typical sequential
structure. The smooth execution of one step needs to be supported by the results calculated in
the previous step. That being said, each sub-step contains computations of several grids, and the
computations of these grids are relatively independent. Several computing resources (like processors)
can be tasked with the computation of a certain number of grids, i.e., block calculation is possible.
Based on the parallel strategy of block calculation, this paper proposes a multi-threading parallel
computing method for the non-hydrostatic model. The computational domain is divided into two
subdomains in the x direction (Figure 3, Subdomains A and B; Subdomain A includes A1, A2, etc. and
Subdomain B includes B1, B2, etc.), the computation of which is completed by sub-threads. The parallel
strategy of block calculation is similar to that in Zijlema’s study [25]. Synchronous communication
between processors is the key to the success of any parallel computing program. Zijlema’s study
briefly mentioned the SWASH software includes parallelization using standard MPI communication,
however. This paper discusses the manner in which synchronous communication between sub-threads
is achieved with a producer–consumer model and thread lock technique.

4.2. Domain Decomposition and Virtual Grid Technique

Domain decomposition is performed to assign the parallel computational tasks. The number of
subdomains is associated with the number of threads. The principle of division is that one thread
corresponds to one subdomain. As mentioned above, two subdomains (A and B)—and thus two
threads—are created here. One thread is responsible for the computation of Subdomain A or B,
not their son regions, e.g., A1 (or A2), B1 (or B2). As domain decomposition blocks the physical
connection between Subdomain A and Subdomain B, it is imperative to seek an effective approach for
quantifying the inherent connection. A virtual grid technique is used here to link the two subdomains.

Water 2017, 9, 184 8 of 19

Take red dashed box in Figure 3 as an example (the box concludes Subdomain A1, vitual region1 and
Subdomain B1), a virtual grid is virtually added at the right boundary of Subdomain A1 and the left
boundary of Subdomain B1 respectively. The grid cells of the whole computational domain can then be
classed into two types: Real grids, i.e., A(1)–A(N) and B(1)–B(M); and virtual cells, i.e., A(N’) and B(1’).
The real grids can be divided into two types: Boundary grids A(N) and B(1); and non-boundary grids
A(1)–A(N-1) and B(2)–B(M).

Water 2017, 9, 184 8 of 19

boundary of Subdomain B1 respectively. The grid cells of the whole computational domain can then
be classed into two types: Real grids, i.e., A(1)–A(N) and B(1)–B(M); and virtual cells, i.e., A(N’) and
B(1’). The real grids can be divided into two types: Boundary grids A(N) and B(1); and non-boundary
grids A(1)–A(N-1) and B(2)–B(M).

Figure 3. Domain decomposition and variable assignment of virtual grids.

Next, values are assigned to the virtual grid variables. Virtual grid A(N’) of the upstream
Subdomain A1 mirrors the boundary grid B(1) of the downstream Subdomain B1. The horizontal
velocity U between A(N) and A(N’) should be equal to U between B(1’) and B(1), which can be
ensured through an iterative process (Similarly to the treatment of boundary conditions in nested
domains). Other variables of A(N’) should be equal to the corresponding variables of B(1). Similarly,
the virtual grid B(1’) of the downstream Subdomain B1 mirrors the boundary grid A(N) of the
upstream Subdomain A1. This creates a physical connection between the upstream and downstream
subdomains. The above steps are repeated until the variables of all virtual regions (Virtual Region 2,
3, etc.) have been assigned. As the new boundaries of Subdomain A and Subdomain B, the virtual
grids provide necessary boundary conditions for the non-hydrostatic mathematical model. Thus the
variables of the all actual grids can be solved by non-hydrostatic model equations and boundary
condition equations, as discussed in Sections 2 and 3.

4.3. Step-Wise Parallel Computing Method Procedure

(1) The main thread creates two sub-threads: Thread A and thread B. Both threads are responsible
for the computation of Subdomain A and Subdomain B, respectively.

(2) The main thread creates two containers, box1 and box2, as the buffer cache of communication
information to facilitate the subsequent thread communication.

(3) All variables in the subdomains are initialized after each time step begins. The virtual grids are
assigned by reading the containers. Take Thread A as an example, where the assignment of
virtual grid A(N’) of Subdomain A1 is achieved by reading box2. Subdomain A2, A3, etc. are
processed in a similar way.

(4) Each sub-thread executes the serial program module (Figure 2) to calculate all the results of the
real grids in each subdomain.

(5) The calculated results of the boundary grids are written to the corresponding containers. Again,
take Thread A as an example: The calculated results of A(N) of Subdomain A1 are written to

Figure 3. Domain decomposition and variable assignment of virtual grids.

Next, values are assigned to the virtual grid variables. Virtual grid A(N’) of the upstream
Subdomain A1 mirrors the boundary grid B(1) of the downstream Subdomain B1. The horizontal
velocity U between A(N) and A(N’) should be equal to U between B(1’) and B(1), which can be
ensured through an iterative process (Similarly to the treatment of boundary conditions in nested
domains). Other variables of A(N’) should be equal to the corresponding variables of B(1). Similarly,
the virtual grid B(1’) of the downstream Subdomain B1 mirrors the boundary grid A(N) of the upstream
Subdomain A1. This creates a physical connection between the upstream and downstream subdomains.
The above steps are repeated until the variables of all virtual regions (Virtual Region 2, 3, etc.) have
been assigned. As the new boundaries of Subdomain A and Subdomain B, the virtual grids provide
necessary boundary conditions for the non-hydrostatic mathematical model. Thus the variables of the
all actual grids can be solved by non-hydrostatic model equations and boundary condition equations,
as discussed in Sections 2 and 3.

4.3. Step-Wise Parallel Computing Method Procedure

(1) The main thread creates two sub-threads: Thread A and thread B. Both threads are responsible
for the computation of Subdomain A and Subdomain B, respectively.

(2) The main thread creates two containers, box 1 and box 2, as the buffer cache of communication
information to facilitate the subsequent thread communication.

(3) All variables in the subdomains are initialized after each time step begins. The virtual grids
are assigned by reading the containers. Take Thread A as an example, where the assignment of
virtual grid A(N’) of Subdomain A1 is achieved by reading box 2. Subdomain A2, A3, etc. are
processed in a similar way.

Water 2017, 9, 184 9 of 19

(4) Each sub-thread executes the serial program module (Figure 2) to calculate all the results of the
real grids in each subdomain.

(5) The calculated results of the boundary grids are written to the corresponding containers. Again,
take Thread A as an example: The calculated results of A(N) of Subdomain A1 are written to
box 1, thus providing data support to Thread B for the next time step’s computation. Subdomain
A2, A3, etc. are processed in a similar way.

(6) Finally, the current computational results are saved and Steps 3–5 are repeated to start the next
time step’s computation. The process repeats until all the velocity and water level at each time
step in the whole domain have been obtained.

The solution steps of the non-hydrostatic model (parallel computing) are shown in flow chart
form in Figure 4.

Water 2017, 9, 184 9 of 19

box1, thus providing data support to Thread B for the next time step’s computation. Subdomain
A2, A3, etc. are processed in a similar way.

(6) Finally, the current computational results are saved and Steps 3–5 are repeated to start the next
time step’s computation. The process repeats until all the velocity and water level at each time
step in the whole domain have been obtained.

The solution steps of the non-hydrostatic model (parallel computing) are shown in flow chart
form in Figure 4.

Figure 4. Solution steps of the non-hydrostatic model (parallel computing).

4.4. Key Techniques and Program Codes

The key techniques involved in the parallel computing method include thread creation, control
of the sub-threads by the main thread, and synchronous communication between sub-threads.

“ThreadStart()”, a function in the Windows API Library, can be directly called for thread
creation. The main thread should also create two containers, box1 and box2, to provide necessary
Buffer Cache data for the subsequent thread communication. The main thread commands the sub-
threads to perform certain operations via instruction codes specific to the given scenario, such as
notifying the sub-thread when reading container data, when writing data to the container, when
suspending and waiting for other threads, or when discontinuing the thread. To facilitate the container
operations performed by the sub-threads, two state identifiers are also created by the main thread,
readerFlag1 and readerFlag2, which are primarily used for judging whether the sub-thread can read
from the container or write to the container. The core codes of the main thread are described below.

Figure 4. Solution steps of the non-hydrostatic model (parallel computing).

4.4. Key Techniques and Program Codes

The key techniques involved in the parallel computing method include thread creation, control of
the sub-threads by the main thread, and synchronous communication between sub-threads.

“ThreadStart()”, a function in the Windows API Library, can be directly called for thread creation.
The main thread should also create two containers, box 1 and box 2, to provide necessary Buffer
Cache data for the subsequent thread communication. The main thread commands the sub-threads
to perform certain operations via instruction codes specific to the given scenario, such as notifying
the sub-thread when reading container data, when writing data to the container, when suspending
and waiting for other threads, or when discontinuing the thread. To facilitate the container operations
performed by the sub-threads, two state identifiers are also created by the main thread, readerFlag1
and readerFlag2, which are primarily used for judging whether the sub-thread can read from the
container or write to the container. The core codes of the main thread are described below.

Water 2017, 9, 184 10 of 19

Box 1. Core Codes of the Main Thread.

static void Main(string[] args) // main program starts
{
// define a container type (structure)
struct BOX
{

public double BoxU; // the type of the stored data is flow velocity U
public double BoxV; // the type of the stored data is flow velocity V

public double BoxIta; // the type of the stored data is water level η
...
}
// two examples of the containers, box1 and box2, are created
BOX box1;
BOX box2;
// two state identifiers are set
bool readerFlag1 = true; // box1 is readable and not writable when it is true
bool readerFlag2 = true; // box2 is readable and not writable when it is true
// two sub-threads are created: Thread A and Thread B
Thread A = new Thread (new ThreadStart (ThreadA));
Thread B = new Thread (new ThreadStart (ThreadB));
}

As shown in Figure 4, both threads have two communications within one time step. The first
communication occurs during initialization of the variables, and the second occurs after serial program
module execution. Synchronous communication between the sub-threads is the key to the success
of the parallel computing program. As its name implies, the synchronous communication between
sub-threads relates to two major factors: Communication between threads, and communication
synchronism. Based on containers (box 1 and box 2) that the main thread creates, communication
between threads is achieved via the producer–consumer model. The producer–consumer model is
described as follows: The producer creates data of a certain type and stores them in the container;
the consumer reads from the container. This will be discussed in greater detail below.

As Figure 4 shows, the next time step’s computation of one sub-thread relies on the previous
step’s results of the other sub-thread. As the running speeds of the two sub-threads also differ, bugs
may occur if thread communication synchronism cannot be guaranteed. For example, if Thread A
is planning to write to box 1 at one point while thread B is reading from box 1, an operation conflict
of the container by different sub-threads occurs. To solve the problem, the thread lock technique is
utilized to guarantee communication synchronism and avoid repetitive operations of the container
executed by various threads. Based on the state identifiers (readerFlag1 and readerFlag2) created by
the main thread, the keyword “lock”, the function “Monitor.Wait()”, and the function “Monitor.Pulse()”
are used here to realize thread interlocking, thread waiting, and thread notification. Take Thread
A’s first communication as an example, where thread A is planning to read from box 2: It first
judges whether box 2 is readable based on readerFlag2, and if box 2 is not readable, the function
“Monitor.Wait()” allows Thread A to suspend and wait. If box 2 is readable, relevant codes are locked
by the keyword “lock” and box 2 is occupied exclusively by Thread A. Thread B is then forced to
suspend and wait if also wants to operate box 2. After Thread A has read from box 2 completely,
the function “Monitor.Pulse()” is used to remove the thread lock. The status of readerFlag2 is also
changed to allow it to notify the other thread in the waiting queue to resume. The sub-thread codes
are described below.

Water 2017, 9, 184 11 of 19

Box 2. Core codes of sub-threads (Example: Thread A).

public void ThreadA()
{
// start the initialization of variables as Thread A plans to read from box2
lock (this) // box2 can only be operated by thread A

{
if (!readerFlag2) // Thread A will suspend and wait if box2 is not readable
{

Monitor.Wait(this);
}
else // the box2 is assigned to the virtual grid A(N’) if box2 is readable
{

A(N’)_n = box2; // the box2 is assigned to A(N’) (current time step n)
readerFlag2 = false; // readerFlag2 is supposed to be false after reading
Monitor.Pulse(this); // relieve occupation of box2 and notify Thread B to resume

}
}

Serial.start; // start to execute serial computing module
// serial computing is completed, result is written to box1
lock (this) // box1 can only be operated by thread A

{
if (readerFlag1) // Thread A will suspend and wait if box1 is not writable
{

Monitor.Wait(this);
}
else // the virtual grid A(N) is assigned to the box2 if box1 is writable
{

box1 = A(N)_n + 1; // A(N’) (next time step n+1) is assigned to the box1
readerFlag1 = true; // indicating that box1 is readable
Monitor.Pulse(this); // relieve occupation and notify Thread B to resume

}
}

}

The thread communication and thread lock techniques mentioned above ensure that each
sub-thread first reads data from the container once in one time step, then the serial computing
module is executed and the results of the boundary grids are written to the corresponding container.
No computation of the next time step is performed before the final writing work of the two sub-threads
is complete. This guarantees that the parallel computing procedures run in an orderly manner until all
computational results are determined. The multithreading parallel computing method proposed in
this paper can be implemented on the majority of computers. It maximizes CPU resources and comes
with several advantages such as low cost, high feasibility, and high efficiency.

5. Model Verification

The process of wave propagation on an underwater submerged breakwater is very complex. This
process was employed to test the performance of the proposed model in simulating high-frequency
short wave motion. It is commonly used to verify non-hydrostatic models. The proposed model was
used for four experiments on solitary wave propagation over a flat bottom, solitary wave experiment by
Madsen [31], sinusoidal wave experiment by Beji [1], and sinusoidal wave experiment by Nadaoka [32].
All parallel programs were executed under double-thread conditions (i.e., with the computational
domain divided into two equal parts in the x direction). Comparison between the parallel computing
program and serial computing program of the non-hydrostatic model indicated that there is little
difference between the computational results under both modes. The maximum deviation is less
than 3%. This high consistency may be attributable to the favorable performance of the virtual grid
technique. So no further computational results under the serial mode are discussed here; the result of

Water 2017, 9, 184 12 of 19

the non-hydrostatic model is simply stated as the computational result under the parallel computing
mode due to the similarity between the two. A potential reason for the deviation between the serial
and parallel results is the floating point precision issue.

5.1. Solitary Wave Propagation over a Constant Water Depth Channel

When bottom friction and flow viscosity are ignored, the waveform and wave amplitude remain
unchanged during solitary wave propagation over a flat bottom. This is accompanied by significant
dynamic pressure variation. To test the performance of the model, a 100 m long, 2 m wide, and 2 m
deep channel is considered. At the beginning, a solitary wave with the wave amplitude of 0.2 m is at
x = −20 m from the left. The simulation time is 30 s; ∆x = 2 m; ∆y = 1 m; ∆t = 0.005 s.

Figure 5 presents the analytical solution of the real waveform and waveforms simulated by the
hydrostatic model and non-hydrostatic model at different points in time (t = 5, 10, 15, and 20 s). Figure 6
presents the analytical velocity U and U simulated by the hydrostatic model and non-hydrostatic
model at different locations (x = 20, 40, 60, and 80 m). The simulated results of the non-hydrostatic
model are in good agreement with the analytical solution, which demonstrates that the non-hydrostatic
model can accurately simulate solitary wave propagation over the flat bottom. The simulated results of
the hydrostatic model roughly coincide with the analytical solution, however, the simulated value of
the wave peak, its occurrence time, and its occurrence position significantly deviate from the analytical
solution. The deviation also grows increasingly more significant over time. As shown in Figure 5,
the simulated value of the wave peak obtained via hydrostatic model deviates by 25% from the
analytical solution when t = 20 s.

Water 2017, 9, 184 12 of 19

parallel computing program and serial computing program of the non-hydrostatic model indicated
that there is little difference between the computational results under both modes. The maximum
deviation is less than 3%. This high consistency may be attributable to the favorable performance of
the virtual grid technique. So no further computational results under the serial mode are discussed
here; the result of the non-hydrostatic model is simply stated as the computational result under the
parallel computing mode due to the similarity between the two. A potential reason for the deviation
between the serial and parallel results is the floating point precision issue.

5.1. Solitary Wave Propagation over a Constant Water Depth Channel

When bottom friction and flow viscosity are ignored, the waveform and wave amplitude remain
unchanged during solitary wave propagation over a flat bottom. This is accompanied by significant
dynamic pressure variation. To test the performance of the model, a 100 m long, 2 m wide, and 2 m
deep channel is considered. At the beginning, a solitary wave with the wave amplitude of 0.2 m is at
x = −20 m from the left. The simulation time is 30 s; Δx = 2 m; Δy = 1 m; Δt = 0.005 s.

Figure 5 presents the analytical solution of the real waveform and waveforms simulated by the
hydrostatic model and non-hydrostatic model at different points in time (t = 5, 10, 15, and 20 s).
Figure 6 presents the analytical velocity U and U simulated by the hydrostatic model and non-
hydrostatic model at different locations (x = 20, 40, 60, and 80 m). The simulated results of the non-
hydrostatic model are in good agreement with the analytical solution, which demonstrates that the
non-hydrostatic model can accurately simulate solitary wave propagation over the flat bottom. The
simulated results of the hydrostatic model roughly coincide with the analytical solution, however,
the simulated value of the wave peak, its occurrence time, and its occurrence position significantly
deviate from the analytical solution. The deviation also grows increasingly more significant over time.
As shown in Figure 5, the simulated value of the wave peak obtained via hydrostatic model deviates
by 25% from the analytical solution when t = 20 s.

Figure 5. Simulated waveform by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
analytical waveform (circled) at different points in time (t = 5, 10, 15, and 20 s).

Figure 6. Simulated velocity U by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) at different locations (x = 20, 40, 60, and 80 m).

Figure 5. Simulated waveform by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
analytical waveform (circled) at different points in time (t = 5, 10, 15, and 20 s).

Water 2017, 9, 184 12 of 19

parallel computing program and serial computing program of the non-hydrostatic model indicated
that there is little difference between the computational results under both modes. The maximum
deviation is less than 3%. This high consistency may be attributable to the favorable performance of
the virtual grid technique. So no further computational results under the serial mode are discussed
here; the result of the non-hydrostatic model is simply stated as the computational result under the
parallel computing mode due to the similarity between the two. A potential reason for the deviation
between the serial and parallel results is the floating point precision issue.

5.1. Solitary Wave Propagation over a Constant Water Depth Channel

When bottom friction and flow viscosity are ignored, the waveform and wave amplitude remain
unchanged during solitary wave propagation over a flat bottom. This is accompanied by significant
dynamic pressure variation. To test the performance of the model, a 100 m long, 2 m wide, and 2 m
deep channel is considered. At the beginning, a solitary wave with the wave amplitude of 0.2 m is at
x = −20 m from the left. The simulation time is 30 s; Δx = 2 m; Δy = 1 m; Δt = 0.005 s.

Figure 5 presents the analytical solution of the real waveform and waveforms simulated by the
hydrostatic model and non-hydrostatic model at different points in time (t = 5, 10, 15, and 20 s).
Figure 6 presents the analytical velocity U and U simulated by the hydrostatic model and non-
hydrostatic model at different locations (x = 20, 40, 60, and 80 m). The simulated results of the non-
hydrostatic model are in good agreement with the analytical solution, which demonstrates that the
non-hydrostatic model can accurately simulate solitary wave propagation over the flat bottom. The
simulated results of the hydrostatic model roughly coincide with the analytical solution, however,
the simulated value of the wave peak, its occurrence time, and its occurrence position significantly
deviate from the analytical solution. The deviation also grows increasingly more significant over time.
As shown in Figure 5, the simulated value of the wave peak obtained via hydrostatic model deviates
by 25% from the analytical solution when t = 20 s.

Figure 5. Simulated waveform by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
analytical waveform (circled) at different points in time (t = 5, 10, 15, and 20 s).

Figure 6. Simulated velocity U by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) at different locations (x = 20, 40, 60, and 80 m).

Figure 6. Simulated velocity U by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) at different locations (x = 20, 40, 60, and 80 m).

5.2. Madsen’s Solitary Wave Experiment

Madsen made an experimental setup to study the solitary wave shoaling over a submerged
bar [31], as shown in Figure 7. There was a slope which was 200 cm far from the left side of the

Water 2017, 9, 184 13 of 19

channel. The solitary wave propagates from a constant depth h1 = 7.62 cm to a smaller constant depth
h2 = 3.81 cm through a slope. There were four stations, A, B, C and D (x = 159.36, 276.2, 365.1, 423.52 cm),
observing the free surface. The initial position of the wave crest was at x = −80 cm, and its amplitude
was 0.9144 cm. The size of the simulation region is 600 cm and the simulation time is 10 s; ∆x = ∆y =
5 cm; ∆t = 0.001 s.

Water 2017, 9, 184 13 of 19

5.2. Madsen’s Solitary Wave Experiment

Madsen made an experimental setup to study the solitary wave shoaling over a submerged
bar [31], as shown in Figure 7. There was a slope which was 200 cm far from the left side of the channel.
The solitary wave propagates from a constant depth h1 = 7.62 cm to a smaller constant depth
h2 = 3.81 cm through a slope. There were four stations, A, B, C and D (x = 159.36, 276.2, 365.1,
423.52 cm), observing the free surface. The initial position of the wave crest was at x = −80 cm, and its
amplitude was 0.9144 cm. The size of the simulation region is 600 cm and the simulation time is 10 s;
Δx = Δy = 5 cm; Δt = 0.001 s.

Figure 7. Sketch of the experiment setup of Madsen.

Figure 8 presents the measured values and the simulated values of the non-hydrostatic and
hydrostatic models at four monitoring stations: Stations A, B, C, and D. Oscillation occurs in the
hydrostatic simulated results at Stations B, C, and D. The main reason for dispersion is that solitary
wave splits into a series of short waves when it is under dynamic pressure. After the short waves
pass through these three monitoring stations, decreased dynamic pressure, declined dispersion, and
disappeared oscillation occur. Clearly, then, the hydrostatic model cannot correctly simulate the short
wave and its dispersion effect as the influence of the dynamic pressure is not considered. The
simulated results of the non-hydrostatic model closely coincide with the measured data and the
simulated results of the 2D non-hydrostatic model previously developed by the author of this
paper [20]. In short, it effectively simulates the process of solitary wave propagation from the abyssal
zone to the shoal water.

Figure 8. Simulated η/h1 by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations A, B, C, and D.

Figure 7. Sketch of the experiment setup of Madsen.

Figure 8 presents the measured values and the simulated values of the non-hydrostatic and
hydrostatic models at four monitoring stations: Stations A, B, C, and D. Oscillation occurs in the
hydrostatic simulated results at Stations B, C, and D. The main reason for dispersion is that solitary
wave splits into a series of short waves when it is under dynamic pressure. After the short waves
pass through these three monitoring stations, decreased dynamic pressure, declined dispersion, and
disappeared oscillation occur. Clearly, then, the hydrostatic model cannot correctly simulate the short
wave and its dispersion effect as the influence of the dynamic pressure is not considered. The simulated
results of the non-hydrostatic model closely coincide with the measured data and the simulated results
of the 2D non-hydrostatic model previously developed by the author of this paper [20]. In short,
it effectively simulates the process of solitary wave propagation from the abyssal zone to the
shoal water.

Water 2017, 9, 184 13 of 19

5.2. Madsen’s Solitary Wave Experiment

Madsen made an experimental setup to study the solitary wave shoaling over a submerged
bar [31], as shown in Figure 7. There was a slope which was 200 cm far from the left side of the channel.
The solitary wave propagates from a constant depth h1 = 7.62 cm to a smaller constant depth
h2 = 3.81 cm through a slope. There were four stations, A, B, C and D (x = 159.36, 276.2, 365.1,
423.52 cm), observing the free surface. The initial position of the wave crest was at x = −80 cm, and its
amplitude was 0.9144 cm. The size of the simulation region is 600 cm and the simulation time is 10 s;
Δx = Δy = 5 cm; Δt = 0.001 s.

Figure 7. Sketch of the experiment setup of Madsen.

Figure 8 presents the measured values and the simulated values of the non-hydrostatic and
hydrostatic models at four monitoring stations: Stations A, B, C, and D. Oscillation occurs in the
hydrostatic simulated results at Stations B, C, and D. The main reason for dispersion is that solitary
wave splits into a series of short waves when it is under dynamic pressure. After the short waves
pass through these three monitoring stations, decreased dynamic pressure, declined dispersion, and
disappeared oscillation occur. Clearly, then, the hydrostatic model cannot correctly simulate the short
wave and its dispersion effect as the influence of the dynamic pressure is not considered. The
simulated results of the non-hydrostatic model closely coincide with the measured data and the
simulated results of the 2D non-hydrostatic model previously developed by the author of this
paper [20]. In short, it effectively simulates the process of solitary wave propagation from the abyssal
zone to the shoal water.

Figure 8. Simulated η/h1 by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations A, B, C, and D.
Figure 8. Simulated η/h1 by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations A, B, C, and D.

Water 2017, 9, 184 14 of 19

5.3. Beji’s Sinusoidal Wave Experiment

Beji made an experimental setup to study the sinusoidal wave travelling over a submerged bar [1],
as shown in Figure 9. The flume is 35 m long, 0.8 m wide, and 0.4 m deep. At the left there was a
wave generator making sinusoidal wave trains. Behind the bar, there was a slope as a wave absorber
to absorb the waves coming from the left. There were four stations, 1, 2, 3, and 4 (x = 10.5, 12.5, 13.5,
14.5 m), observing the free surface. The sinusoidal wave had a wave amplitude and period of 0.01 m
and 2.02 s, respectively. The size of the simulation region is 30 m (x = 0~30 m) and the simulation time
is 40 s; ∆x = 0.05 m; ∆y = 0.1 m; ∆t = 0.005 s.

Water 2017, 9, 184 14 of 19

5.3. Beji’s Sinusoidal Wave Experiment

Beji made an experimental setup to study the sinusoidal wave travelling over a submerged
bar [1], as shown in Figure 9. The flume is 35 m long, 0.8 m wide, and 0.4 m deep. At the left there
was a wave generator making sinusoidal wave trains. Behind the bar, there was a slope as a wave
absorber to absorb the waves coming from the left. There were four stations, 1, 2, 3, and 4 (x = 10.5,
12.5, 13.5, 14.5 m), observing the free surface. The sinusoidal wave had a wave amplitude and period
of 0.01 m and 2.02 s, respectively. The size of the simulation region is 30 m (x = 0~30 m) and the
simulation time is 40 s; Δx = 0.05 m; Δy = 0.1 m; Δt = 0.005 s.

Figure 9. Sketch of the experimental setup of Beji.

Figure 10 presents the observed water level at Stations 1–4, as well as the simulated results of the
non-hydrostatic and hydrostatic models. The simulated value of the hydrostatic model significantly
differs from the observed value and violent oscillation occurs in the simulated water level, thus, the
simulation is inaccurate. Conversely, the simulated value of the non-hydrostatic model excellently
coincides with the observed data, indicating that the non-hydrostatic model proposed in this paper
accurately simulates sinusoidal wave propagation along submerged breakwater.

Figure 9. Sketch of the experimental setup of Beji.

Figure 10 presents the observed water level at Stations 1–4, as well as the simulated results of the
non-hydrostatic and hydrostatic models. The simulated value of the hydrostatic model significantly
differs from the observed value and violent oscillation occurs in the simulated water level, thus,
the simulation is inaccurate. Conversely, the simulated value of the non-hydrostatic model excellently
coincides with the observed data, indicating that the non-hydrostatic model proposed in this paper
accurately simulates sinusoidal wave propagation along submerged breakwater.

Water 2017, 9, 184 14 of 19

5.3. Beji’s Sinusoidal Wave Experiment

Beji made an experimental setup to study the sinusoidal wave travelling over a submerged
bar [1], as shown in Figure 9. The flume is 35 m long, 0.8 m wide, and 0.4 m deep. At the left there
was a wave generator making sinusoidal wave trains. Behind the bar, there was a slope as a wave
absorber to absorb the waves coming from the left. There were four stations, 1, 2, 3, and 4 (x = 10.5,
12.5, 13.5, 14.5 m), observing the free surface. The sinusoidal wave had a wave amplitude and period
of 0.01 m and 2.02 s, respectively. The size of the simulation region is 30 m (x = 0~30 m) and the
simulation time is 40 s; Δx = 0.05 m; Δy = 0.1 m; Δt = 0.005 s.

Figure 9. Sketch of the experimental setup of Beji.

Figure 10 presents the observed water level at Stations 1–4, as well as the simulated results of the
non-hydrostatic and hydrostatic models. The simulated value of the hydrostatic model significantly
differs from the observed value and violent oscillation occurs in the simulated water level, thus, the
simulation is inaccurate. Conversely, the simulated value of the non-hydrostatic model excellently
coincides with the observed data, indicating that the non-hydrostatic model proposed in this paper
accurately simulates sinusoidal wave propagation along submerged breakwater.

Figure 10. Cont.

Water 2017, 9, 184 15 of 19

Water 2017, 9, 184 15 of 19

Figure 10. Simulated η by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations 1–4.

5.4. Nadaoka’s Sinusoidal Wave Experiment

In addition to Beji, Nadaoka made a smaller experimental setup [32], as shown in Figure 11.
There was a 18.52 m long and 0.3 m deep channel. At the left was a wave generator making sinusoidal
wave trains. Surface elevations were measured at three locations (x = 6.52, 8.52, 11.02 m). The
sinusoidal wave had a wave amplitude and period of 0.01 m and 1.5 s, respectively. The size of the
simulation region is 12 m (x = 0~12 m); the simulation time is 40 s; Δx = Δy = 0.1 m; Δt = 0.01 s.

Figure 11. Sketch of the experimental setup of Nadaoka.

Figure 12 presents the measured values of the water level η at three monitoring stations and the
simulated η via non-hydrostatic and hydrostatic models. The simulated values of the non-hydrostatic
model are in good agreement with the measured values, indicating that the non-hydrostatic model
indeed simulates the short wave dispersion generated as the wave passes through an area with
abrupt changes in terrain. Compared to the simulated results by the hydrostatic model in Beji’s
experiment, more violent oscillation occurs in the simulated η in Nadaoka’s experiment due to the
fact that the incident wave in the latter has a shorter period and higher nonlinearity and diffusivity
compared to that in the former. More significant simulation distortion occurs in the hydrostatic model,
as no dynamic pressure is taken into account.

Figure 10. Simulated η by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations 1–4.

5.4. Nadaoka’s Sinusoidal Wave Experiment

In addition to Beji, Nadaoka made a smaller experimental setup [32], as shown in Figure 11. There
was a 18.52 m long and 0.3 m deep channel. At the left was a wave generator making sinusoidal wave
trains. Surface elevations were measured at three locations (x = 6.52, 8.52, 11.02 m). The sinusoidal
wave had a wave amplitude and period of 0.01 m and 1.5 s, respectively. The size of the simulation
region is 12 m (x = 0~12 m); the simulation time is 40 s; ∆x = ∆y = 0.1 m; ∆t = 0.01 s.

Water 2017, 9, 184 15 of 19

Figure 10. Simulated η by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations 1–4.

5.4. Nadaoka’s Sinusoidal Wave Experiment

In addition to Beji, Nadaoka made a smaller experimental setup [32], as shown in Figure 11.
There was a 18.52 m long and 0.3 m deep channel. At the left was a wave generator making sinusoidal
wave trains. Surface elevations were measured at three locations (x = 6.52, 8.52, 11.02 m). The
sinusoidal wave had a wave amplitude and period of 0.01 m and 1.5 s, respectively. The size of the
simulation region is 12 m (x = 0~12 m); the simulation time is 40 s; Δx = Δy = 0.1 m; Δt = 0.01 s.

Figure 11. Sketch of the experimental setup of Nadaoka.

Figure 12 presents the measured values of the water level η at three monitoring stations and the
simulated η via non-hydrostatic and hydrostatic models. The simulated values of the non-hydrostatic
model are in good agreement with the measured values, indicating that the non-hydrostatic model
indeed simulates the short wave dispersion generated as the wave passes through an area with
abrupt changes in terrain. Compared to the simulated results by the hydrostatic model in Beji’s
experiment, more violent oscillation occurs in the simulated η in Nadaoka’s experiment due to the
fact that the incident wave in the latter has a shorter period and higher nonlinearity and diffusivity
compared to that in the former. More significant simulation distortion occurs in the hydrostatic model,
as no dynamic pressure is taken into account.

Figure 11. Sketch of the experimental setup of Nadaoka.

Figure 12 presents the measured values of the water level η at three monitoring stations and the
simulated η via non-hydrostatic and hydrostatic models. The simulated values of the non-hydrostatic
model are in good agreement with the measured values, indicating that the non-hydrostatic model
indeed simulates the short wave dispersion generated as the wave passes through an area with abrupt
changes in terrain. Compared to the simulated results by the hydrostatic model in Beji’s experiment,
more violent oscillation occurs in the simulated η in Nadaoka’s experiment due to the fact that the
incident wave in the latter has a shorter period and higher nonlinearity and diffusivity compared
to that in the former. More significant simulation distortion occurs in the hydrostatic model, as no
dynamic pressure is taken into account.

Water 2017, 9, 184 15 of 19

Figure 10. Simulated η by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations 1–4.

5.4. Nadaoka’s Sinusoidal Wave Experiment

In addition to Beji, Nadaoka made a smaller experimental setup [32], as shown in Figure 11.
There was a 18.52 m long and 0.3 m deep channel. At the left was a wave generator making sinusoidal
wave trains. Surface elevations were measured at three locations (x = 6.52, 8.52, 11.02 m). The
sinusoidal wave had a wave amplitude and period of 0.01 m and 1.5 s, respectively. The size of the
simulation region is 12 m (x = 0~12 m); the simulation time is 40 s; Δx = Δy = 0.1 m; Δt = 0.01 s.

Figure 11. Sketch of the experimental setup of Nadaoka.

Figure 12 presents the measured values of the water level η at three monitoring stations and the
simulated η via non-hydrostatic and hydrostatic models. The simulated values of the non-hydrostatic
model are in good agreement with the measured values, indicating that the non-hydrostatic model
indeed simulates the short wave dispersion generated as the wave passes through an area with
abrupt changes in terrain. Compared to the simulated results by the hydrostatic model in Beji’s
experiment, more violent oscillation occurs in the simulated η in Nadaoka’s experiment due to the
fact that the incident wave in the latter has a shorter period and higher nonlinearity and diffusivity
compared to that in the former. More significant simulation distortion occurs in the hydrostatic model,
as no dynamic pressure is taken into account.

Figure 12. Cont.

Water 2017, 9, 184 16 of 19
Water 2017, 9, 184 16 of 19

Figure 12. Simulated η by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations 1–3.

5.5. Computing Efficiency Analysis

The computational efficiency of the non-hydrostatic model under the parallel computing mode
and serial computing mode are compared and analyzed in this section. Table 1 presents the CPU time
consumed in different experiments under different space and time step combinations based on serial
and parallel modes. All programs were run on a PC with Intel i7-4790K CPU 4.0 GHz, 8 GB memory.
The codes were compiled with the Visual Studio 2010 IDE (Integrated Development Environment)
and C# language.

Table 1. CPU time of serial computing and parallel computing (four tests).

Test Time Step (s)
Space Step

(m)
Time of Serial
Computing (s)

Time of Parallel
Computing (s)

1 Increase Rate of
Efficiency (%)

5.1 Δt = 0.005
Δx = 1 1.37 0.85 0.38
Δx = 2 0.72 0.43 0.39
Δx = 4 0.31 0.22 0.28

5.2 Δt = 0.001
Δx = 0.025 5.42 3.72 0.31
Δx = 0.05 2.75 1.81 0.34
Δx = 0.1 1.37 0.89 0.35

5.3 Δt = 0.005
Δx = 0.025 80.12 62.36 0.22
Δx = 0.05 40.53 31.09 0.23
Δx = 0.1 22.89 15.64 0.32

5.4 Δt = 0.01
Δx = 0.05 9.25 6.87 0.26
Δx = 0.1 4.75 3.47 0.27
Δx = 0.2 2.37 1.69 0.29

1 Increase rate of efficiency (%): 1 − time of parallel computing/time of serial computing.

As shown in Table 1, the parallel computing program saves 20%–40% computation time
compared to the serial computing program when other conditions are kept uniform. It demonstrates
that the parallel computation method proposed by this paper has higher computational efficiency
compared to the conventional serial computing method. To evaluate the computational efficiency of

Figure 12. Simulated η by the non-hydrostatic (solid line) and hydrostatic model (dotted line);
experimental data (circled) from Stations 1–3.

5.5. Computing Efficiency Analysis

The computational efficiency of the non-hydrostatic model under the parallel computing mode
and serial computing mode are compared and analyzed in this section. Table 1 presents the CPU time
consumed in different experiments under different space and time step combinations based on serial
and parallel modes. All programs were run on a PC with Intel i7-4790K CPU 4.0 GHz, 8 GB memory.
The codes were compiled with the Visual Studio 2010 IDE (Integrated Development Environment) and
C# language.

Table 1. CPU time of serial computing and parallel computing (four tests).

Test Time Step (s) Space Step (m) Time of Serial
Computing (s)

Time of Parallel
Computing (s)

1 Increase Rate of
Efficiency (%)

5.1 ∆t = 0.005
∆x = 1 1.37 0.85 0.38
∆x = 2 0.72 0.43 0.39
∆x = 4 0.31 0.22 0.28

5.2 ∆t = 0.001
∆x = 0.025 5.42 3.72 0.31
∆x = 0.05 2.75 1.81 0.34
∆x = 0.1 1.37 0.89 0.35

5.3 ∆t = 0.005
∆x = 0.025 80.12 62.36 0.22
∆x = 0.05 40.53 31.09 0.23
∆x = 0.1 22.89 15.64 0.32

5.4 ∆t = 0.01
∆x = 0.05 9.25 6.87 0.26
∆x = 0.1 4.75 3.47 0.27
∆x = 0.2 2.37 1.69 0.29

1 Increase rate of efficiency (%): 1 − time of parallel computing/time of serial computing.

As shown in Table 1, the parallel computing program saves 20%–40% computation time compared
to the serial computing program when other conditions are kept uniform. It demonstrates that the
parallel computation method proposed by this paper has higher computational efficiency compared to
the conventional serial computing method. To evaluate the computational efficiency of the parallel

Water 2017, 9, 184 17 of 19

computing method as systematically as possible, two indexes are introduced: parallel acceleration rate
and parallel efficiency. The parallel acceleration rate is defined as SP = Ts/TP, where Ts represents
the time consumed by the serial computing program and TP represents the time consumed by joint
parallel computation of P threads (P = 2). Parallel efficiency is defined as the ratio of speed-up to the
number of threads, EP = SP/P. According to the data shown in Table 1, averaged SP and EP of the
parallel non-hydrostatic program in the four experiments are approximately 1.45 and 72%. In regards
to the double threads, the most ideal conditions comprise a speed-up ratio of 2 and parallel efficiency
of 100%. It is important to note, however, that communication between threads and waiting consume
time during the actual operation of the program. Thus, the actual computational efficiency does not
reach the theoretical maximum value.

Table 2 presents the average CPU time per time step per grid of four efficient 2D non-hydrostatic
hydrodynamic models: The proposed model, SWASH [25], Guo’s model [33] and Zijlema’s model [34].
The SWASH model employs a stripwise grid partitioning method and message passings are
implemented by MPI. A so-called wavefront approach has been chosen as the parallelization strategy
for the SIP method. The SWASH model was tested on a dedicated Linux cluster with eight nodes, each
of which has two dual-core 64-bit AMD processors (1.8 GHz, 4 MB L2 cache). Guo’s model adopts a
novel alternating direction implicit scheme to avoid the usage of a complicated iteration method, thus
enhancing its calculation efficiency. Guo’s model was carried out on a PC with AMD Athlon 5000+
CPU 2.59 GHZ and 2 GB memory. Zijlema’s model adopts an efficient, preconditioned Krylov subspace
technique to solve the discretized Poisson equation; it was tested on a 2.0 GHz Pentium machine.

Table 2. Average CPU time per time step per grid of the four models.

Model Number of
Computational Cores

Average CPU Time per Time
Step per Grid (µs)

The proposed model 2 0.73
SWASH 2 0.78

Guo’s model 1 1.68
Zijlema’s model 1 15

According to the data shown in Table 2, the proposed model outperforms the other three models.
SWASH not only includes a stripwise grid partitioning method (which is similar to the domain
decomposition method used here) but also parallelization for SIP (an iteration method) via a wavefront
approach. Thus SWASH had a better performance of CPU time than Guo’s model and Zijlema’s model.
The CPU time per time step per grid of SWASH model is comparable to ours. But we tested the
proposed model on a PC with higher configuration, so the CPU time of the proposed model is slightly
smaller than that of SWASH. Guo’s model and Zijlema’s model exploit PPE solutions to minimize
computing time, but both were tested on a single-core PC without parallelization. Compared with
parallelization technique, mathematics methods have limited effect on efficiency improvement of
non-hydrostatic models. Accordingly, their models may be less efficient than the proposed model
with parallelization.

6. Conclusions

This paper proposes a comparatively simple parallelization method based on multithreading
technique in Windows system for a 2D non-hydrostatic hydrodynamic model. With the pressure
divided into hydrostatic and dynamic components, the horizontal momentum equations are obtained
by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum
equation is approximated by the Keller-box scheme. All the terms except the dynamic pressure
gradient term in the horizontal momentum equation are solved explicitly by central difference scheme.
The dynamic pressure gradient term is solved by the Crank–Nicolson scheme. A two-step method
is used to solve the finite difference equation. A parallel strategy based on block decomposition

Water 2017, 9, 184 18 of 19

computation is utilized. The original computational domain is subdivided into two subdomains which
are physically connected via a virtual boundary technique. Two sub-threads are created and tasked
computation of the two subdomains. The producer–consumer model and the thread lock technique
are used to achieve synchronous communication between sub-threads. The validity of the model
was verified by solitary wave propagation experiments over a flat bottom and slope, followed by
two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing
method proposed here was found to effectively enhance computational efficiency and save 20%–40%
computation time compared to serial computing. The parallel acceleration rate and acceleration
efficiency are approximately 1.45% and 72%, respectively. The parallel computing method proposed in
this paper makes a certain contribution to the popularization of non-hydrostatic models. Researchers
who have basic programming knowledge can reproduce or modify the proposed method on a computer
with minimal memory and hardware. Our method may also benefit those readers who are experts
in other water environmental modeling fields (e.g., water temperature models and water quality
models), because it is readily extendable other water environmental models. To further improve the
computational efficiency of the parallel computing program, future studies are yet warranted to reduce
the communication consumption among threads and to achieve expansion from double threads to
multiple threads.

Acknowledgments: This study was supported by the National Key Research and Development Program of China
(No. 2016YFC0402204) and the Hubei Support Plan of Science and Technology of China (No. 2015BCA291).

Author Contributions: Zheng Jing designed the new method; Zheng Jing and Ling Kang conceived and designed
the experiments; Zheng Jing performed the experiments; Ling Kang analyzed the data; Ling Kang contributed
reagents/materials/analysis tools; Zheng Jing wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beji, S.; Battjes, J.A. Experimental investigation of wave propagation over a bar. Coast. Eng. 1993, 19, 151–162.
[CrossRef]

2. Chang, K.A.; Hsu, T.J.; Liu, P.L.F. Vortex generation and evolution in water waves propagating over a
submerged rectangular obstacle Part I. Solitary waves. Coast. Eng. 2001, 44, 13–36. [CrossRef]

3. Blenkinsopp, C.E.; Chaplin, J.R. The effect of crest submergence on wave breaking over submerged slopes.
Coast. Eng. 2008, 55, 967–974. [CrossRef]

4. Peregrine, D.H. Long waves on a beach. J. Fluid Mech. 1967, 27, 815–827. [CrossRef]
5. Beji, S.; Battjes, J.A. Numerical simulation of nonlinear wave propagation over a bar. Coast. Eng. 1994, 23,

1–16. [CrossRef]
6. Casulli, V.; Stelling, G. Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J. Hydraul. Eng.

1998, 124, 678–686. [CrossRef]
7. Zhou, J.G.; Stansby, P.K. An arbitrary Lagrangian-Eulerian σ (ALES) model with non-hydrostatic pressure

for shallow water flow. Comput. Method Appl. Mech. Eng. 1998, 178, 199–214. [CrossRef]
8. Stelling, G.; Zijlema, M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface

flow with application to wave propagation. Int. J. Numer. Meth. Fluids 2003, 43, 1–23. [CrossRef]
9. Bai, Y.F.; Cheung, K.F. Depth-integrated free-surface flow with a two-layer non-hydrostatic formulation.

Int. J. Numer. Meth. Fluids 2012, 69, 411–429. [CrossRef]
10. Bai, Y.F.; Cheung, K.F. Depth-integrated free-surface flow with parameterized non-hydrostatic pressure.

Int. J. Numer. Meth. Fluids 2013, 71, 403–421. [CrossRef]
11. Yuan, H.; Wu, C.H. A two-dimensional vertical non-hydrostatic σ model with an implicit method for

free-surface flows. Int. J. Numer. Meth. Fluids 2004, 44, 811–835. [CrossRef]
12. Yuan, H.; Wu, C.H. An implicit three-dimensional fully non-hydrostatic model for free-surface flows. Int. J.

Numer. Meth. Fluids 2004, 46, 709–733. [CrossRef]
13. Namin, M.M.; Lin, B.; Falconer, R.A. An implicit numerical algorithm for solving non-hydrostatic free-surface

flow problems. Int. J. Numer. Meth. Fluids 2001, 35, 341–356. [CrossRef]

http://dx.doi.org/10.1016/0378-3839(93)90022-Z
http://dx.doi.org/10.1016/S0378-3839(01)00019-9
http://dx.doi.org/10.1016/j.coastaleng.2008.03.004
http://dx.doi.org/10.1017/S0022112067002605
http://dx.doi.org/10.1016/0378-3839(94)90012-4
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678)
http://dx.doi.org/10.1016/S0045-7825(99)00014-6
http://dx.doi.org/10.1002/fld.595
http://dx.doi.org/10.1002/fld.2566
http://dx.doi.org/10.1002/fld.3664
http://dx.doi.org/10.1002/fld.670
http://dx.doi.org/10.1002/fld.778
http://dx.doi.org/10.1002/1097-0363(20010215)35:3<341::AID-FLD96>3.0.CO;2-R

Water 2017, 9, 184 19 of 19

14. Guo, C.; Chen, X.; Vlasenko, V.; Stashchuk, N. Numerical investigation of internal solitary waves from the
Luzon Strait: Generation process, mechanism and three-dimensional effects. Ocean Model. 2011, 38, 203–216.
[CrossRef]

15. Shen, C.Y.; Evans, T.E.; Oba, R.M.; Finette, S. Three-dimensional hindcast simulation of internal soliton
propagation in the Asian Seas International Acoustics Experiment area. J. Geophys. Res. 2009, 114, C01014.
[CrossRef]

16. Yuan, H.; Wu, C.H. Fully nonhydrostatic modeling of surface waves. J. Eng. Mech. 2006, 132, 447–456.
[CrossRef]

17. Bai, Y.; Cheung, K.F. Dispersion and nonlinearity of multi-layer non-hydrostatic free-surface flow.
J. Fluid Mech. 2013, 726, 226–260. [CrossRef]

18. Young, C.C.; Wu, C.H.; Liu, W.C.; Kuo, J.T. A higher-order non-hydrostatic σ model for simulating non-linear
refraction–diffraction of water waves. Coast. Eng. 2009, 56, 919–930. [CrossRef]

19. Stelling, G.; Busnelli, M. Numerical simulation of the vertical structure of discontinuous flows. Int. J. Numer.
Meth. Fluids 2001, 37, 23–43. [CrossRef]

20. Guo, X.; Kang, L.; Jiang, T. A new depth-integrated non-hydrostatic model for free surface flows. Sci. China
Technol. Sci. 2013, 56, 824–830. [CrossRef]

21. Jankowski, J.A. Parallel implementation of a non-hydrostatic model for free surface flows with
semi-Lagrangian advection treatment. Int. J. Numer. Meth. Fluids 2009, 59, 1157–1179. [CrossRef]

22. Hérault, A.; Bilotta, G.; Dalrymple, R.A. SPH on GPU with CUDA. J. Hydraul. Res. 2010, 48, 74–79. [CrossRef]
23. Bleichrodt, F.; Bisseling, R.H.; Dijkstra, H.A. Accelerating a barotropic ocean model using a GPU. Ocean Model.

2012, 41, 16–21. [CrossRef]
24. Nesterov, O. A simple parallelization technique with MPI for ocean circulation models. J. Parallel

Distrib. Comput. 2010, 70, 35–44. [CrossRef]
25. Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and

rapidly varied flows in coastal waters. Coast. Eng. 2011, 58, 992–1012. [CrossRef]
26. Keulegan, G.H.; Patterson, G.W. Mathematical theory of irrotional translation waves. J. Res. Natl. Bur. Stand.

1940, 24, 47–101. [CrossRef]
27. Orlanski, I. Simple boundary-condition for unbounded hyperbolic flows. J. Comput. Phys. 1976, 21, 251–269.

[CrossRef]
28. Keller, H.B. A new difference scheme for parabolic problems. In Numerical Solutions of Partial Differential

Equations II; Hubbard, B., Ed.; Academic Press: New York, NY, USA, 1971; pp. 327–350.
29. Yamazaki, Y.; Kowalik, Z.; Cheung, K.F. Depth-integrated, non-hydrostatic model for wave breaking and

run-up. Int. J. Numer. Meth. Fluids 2009, 61, 473–497. [CrossRef]
30. Yorsef, S. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM Publications: Philadelphia, PA, USA, 2003.
31. Madsen, O.S.; Mei, C.C. The transformation of a solitary wave over uneven bottom. J. Fluid Mech. 1969, 39,

781–791. [CrossRef]
32. Nadaoka, K.; Beji, S.; Nakagawa, Y. A fully-dispersive nonlinear wave model and its numerical solutions.

In Proceedings of the International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1994;
pp. 427–441.

33. Guo, X.; Kang, L. Depth-integrated, non-hydrostatic model using a new alternating direction implicit scheme.
J. Hydraul. Res. 2013, 51, 368–379.

34. Zijlema, M.; Stelling, G.S. Further experiences with computing non-hydrostatic free-surface flows involving
water waves. Int. J. Numer. Meth. Fluids 2005, 48, 169–197. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ocemod.2011.03.002
http://dx.doi.org/10.1029/2008JC004937
http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:4(447)
http://dx.doi.org/10.1017/jfm.2013.213
http://dx.doi.org/10.1016/j.coastaleng.2009.05.004
http://dx.doi.org/10.1002/fld.162
http://dx.doi.org/10.1007/s11431-013-5159-8
http://dx.doi.org/10.1002/fld.1859
http://dx.doi.org/10.1080/00221686.2010.9641247
http://dx.doi.org/10.1016/j.ocemod.2011.10.001
http://dx.doi.org/10.1016/j.jpdc.2009.09.005
http://dx.doi.org/10.1016/j.coastaleng.2011.05.015
http://dx.doi.org/10.6028/jres.024.027
http://dx.doi.org/10.1016/0021-9991(76)90023-1
http://dx.doi.org/10.1002/fld.1952
http://dx.doi.org/10.1017/S0022112069002461
http://dx.doi.org/10.1002/fld.821
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Model
	Governing Equations
	Initial Condition and Boundary Condition

	Numerical Solution
	Parallel Computing Method
	Parallelization Analysis
	Domain Decomposition and Virtual Grid Technique
	Step-Wise Parallel Computing Method Procedure
	Key Techniques and Program Codes

	Model Verification
	Solitary Wave Propagation over a Constant Water Depth Channel
	Madsen’s Solitary Wave Experiment
	Beji’s Sinusoidal Wave Experiment
	Nadaoka’s Sinusoidal Wave Experiment
	Computing Efficiency Analysis

	Conclusions

