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Abstract: The forward-osmosis (FO) processes have received much attention in past years as an
energy saving desalination process. A typical FO process should inclu de a draw solute recovery
step which contributes to the main operation costs of the process. Therefore, investigating the
energy consumption is very important for the development and employment of the forward osmosis
process. In this work, NH3-CO2, Na2SO4, propylene glycol mono-butyl ether, and dipropylamine
were selected as draw solutes. The FO processes of different draw solute recovery approaches
were simulated by Aspen PlusTM with a customized FO unit model. The electrolyte Non-Random
Two-Liquid (Electrolyte-NRTL) and Universal Quasi Chemical (UNIQUAC) models were employed
to calculate the thermodynamic properties of the feed and draw solutions. The simulation results
indicated that the FO performance decreased under high feed concentration, while the energy
consumption was improved at high draw solution concentration. The FO process using Na2SO4

showed the lowest energy consumption, followed by NH3-CO2, and dipropylamine. The propylene
glycol mono-butyl ether process exhibited the highest energy consumption due to its low solubility
in water. Finally, in order to compare the equivalent work of the FO processes, the thermal energy
requirements were converted to electrical work.

Keywords: forward osmosis; process simulation; energy consumption; customized model

1. Introduction

The shortage of freshwater has become a main challenge in the 21st century as a consequence
of world population growth, increasing industrial consumption and pollution, development of
agriculture, climate change, etc. [1,2]. The commercialized desalination technologies such as reverse
osmosis (RO), multi-effect distillation (MED), and multi-stage flash (MSF) have been widely used,
which still have the common problem of high energy consumption [3–5]. In recent years, Forward
Osmosis (FO) has received much attention as a low energy cost desalination technology when
compared with the above traditional processes [6–8]. In FO, the water molecules from the feed
solution move to the draw side through a semipermeable membrane as a result of an osmotic pressure
difference across the membrane. As the osmotic pressure of the draw solution drops due to the
dilution, the draw solute recovery step is often necessary to regain the osmotic pressure after the FO
operation [9].

The recovery of draw solutes in an FO process contributes to the major the energy consumption
of the FO process. The selection of draw solutes significantly affects the performance of an FO process.
Over the past decades, various draw solutes have been proposed [10]. One of the most commonly
used draw solute is ammonia–carbon dioxide (NH3-CO2), which was first commercialized by HTI
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Inc., Powell, OH, USA [11–13]. In the NH3-CO2 FO process, ammonium salts such as ammonium
bicarbonate, ammonium carbonate, and ammonium carbamate are used as draw solutes. After FO, the
ammonium salts in the diluted draw solution can be thermo-decomposed into NH3 and CO2 gases
at elevated temperature, and then the concentrated ammonium salt solution is regenerated from the
mixture of NH3 and CO2 gases. Switchable polarity solvent (SPS), which is capable of changing its
solubility in water by the addition and removal of CO2, was proposed as a new FO draw solute [14–16].
By heating up the SPS solution, CO2 is driven off and the hydrophobic form of SPS is separated from
the diluted draw solution. Other examples of utilizing low-grade heat in draw solute recovery are
the solutes with a lower critical solution temperature (LCST) point that exhibit liquid-liquid phase
separation with water at high temperature. For example, Nakayama et al. demonstrated that some
types of glycol ethers including di(ethylene glycol) n-hexyl ether (DEH), propylene glycol n-butyl
ether (PB) and di(propylene glycol) n-propyl ether (DPP) can be used as draw solutes [17]. LCST ionic
liquids as draw solutes were reported to be able to treat feed solutions with NaCl concentrations of up
to 1.6 mol·L−1 by Cai et al. [18]. Besides using heat sources, the recovery of draw solutes can also be
achieved by cooling. Zhong et al. employed ionic liquid with an upper critical solution temperature as
the draw solute [19]. In the proposed process by Zhong et al., the FO process is operated at 60 ◦C while
the draw solute recovery is carried out via cooling to room temperature. From the above discussions, it
can be seen that many types of draw solutes with different recovery schemes are available for the FO
process. So, it is important to evaluate the performance of the FO process for the selection of draw solutes.

For the FO process with NH3-CO2 draw solute, the modeling results from McGinnis et al. by
chemical modeling software HYSYS showed that the FO process had the lowest equivalent work
requirement among MSF, MED, and RO desalination when a low-grade heat was available [20].
Mazlan et al. compared the energy consumption of FO with nanofiltration (NF) or ultrafiltration (UF)
draw solute recovery and reverse osmosis (RO) [21]. The results suggest that there is practically no
difference in the specific energy consumption of FO-NF (or FO-UF) and RO even if the membrane is
theoretically perfect. The switchable polarity solvent forward osmosis process modelled by Wendt
et al. was found to be a competitive desalination technology that could be applied to a feed solution
with NaCl concentrations of up to 4.0 molal [14]. Park et al. integrated the FO process with the gas
turbine cycle so the recovery step could utilize the waste heat from the turbine to improve the energy
efficiency of the integrated process [22]. According to their simulation results, the FO-gas turbine
system has an advantage on gain output ratio (GOR) and water production capacity compared with
the MSF-gas turbine system. Although there are some existing works on modeling the FO process,
a comprehensive platform is still lacking for the evaluation of the FO performance using different draw
solutes. A directly comparison of the performance of various draw solutes has not been investigated
comprehensively, but this comparison important in the future development of draw solutes.

In the presented work, thermodynamic simulation based on Aspen Plus software was adopted
to model the FO process. Several draw solutes including NH3-CO2, sodium sulfate (Na2SO4), and
organic solutes with LCST points were selected. For each draw solute, different recovery methods
were designed with respect to their properties. For example, the distillation column was used for
the recovery of NH3-CO2 draw solute. The simulations were carried out at different feed and draw
solution concentrations to study the influence of concentrations on the energy consumption of the FO
process using specific draw solutes. The energy consumptions as well as the equivalent works were
calculated to give a basic comparisons among those draw solutes.

2. Materials and Methods

2.1. FO Unit Operation Model

This study was mainly focused on evaluating the energy consumption of the FO process using
certain draw solutes under ideal conditions. Therefore, this work did not involve the analysis of
membrane permeability for reducing the complexity of the simulation. The membrane was assumed to
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be theoretically perfect and completely rejecting the solutes, so internal concentration polarization and
the back-leak of draw solutes were not considered. The following equation was applied to estimate
the theoretical minimum energy consumption for an FO process:

πdraw = π f eed + πmin (1)

where πdraw represents the osmotic pressure of the draw solution side, π f eed is the osmotic pressure of
feed side. πmin is the minimum osmotic pressure difference above which noticeable flow rate could be
observed. The term πmin ensures the osmotic pressure of the draw solution side is always larger than
the feed side.

The mathematical model for the customized FO unit operation was built with the Fortran
programming interface of the Aspen Plus software. The concentrations of inlet streams in the
customized FO model which are the initial concentrations of the feed and draw solutions, were
given by the simulation flowsheet. The concentrations of outlet streams are manipulated by changing
the amount of water migrated from the feed to the draw side, until osmotic equilibrium is reached.
The osmotic pressure was calculated by the activity of water which will be discussed in the next
Section 2.2. Taking the thermodynamic restriction and draw solution recovery into consideration,
the simulation approach with this customized FO unit model can achieve rigorous evaluation of the
energy consumption of the FO process with different draw solutes.

For a better understanding on the influence of draw solutes on the FO performance, the term
“RWATER” was used, as shown below:

RWATER =
moles of water transferred

moles of water in draw solution
(2)

Considering an FO process with draw solution recovery, energy must be used to change the state
of the diluted draw solution, i.e., thermal energy is required for heating up the diluted NH3-CO2

solution for thermal decomposition. In this process, not only does the transferred water result in energy
consumption, so too does the water in the draw solution. If the FO process is operated at steady-state,
the amount of transferred water would be equal to the quantity of produced water. So RWATER can be
used to evaluate the energy efficiency of the FO process. Higher RWATER values means more energy
is used for desalination rather than being wasted on draw solution.

2.2. Osmotic Pressure

The prediction of osmotic pressure is vital for modeling the FO process. The most commonly
used method in the previous studies is based on the van’t Hoff theory, which the osmotic pressure is
calculated by the following equation:

π = nCRT (3)

where n is the van’t Hoff factor representing the number of moles of a solute dissociated in the
solution (for example, n = 2 for NaCl and n = 3 for MgCl2). C is the molar concentration (mol·L−1)
of the solution. R is the gas constant which is equivalent to 8.314 J·mol−1·K−1 and T is the absolute
temperature (in Kelvin). However, the van’t Hoff equation is only suitable for dilute solutions. When
dealing with concentrated solutions or solutions with multi components, noticeable deviations may be
encountered if the van’t Hoff equation is employed to calculate the osmotic pressure. Besides the van’t
Hoff equation, the osmotic pressure is defined as a function of the activity of water in thermodynamics:

π = −
(

RT/Vw
)

ln aw (4)

where Vw is the partial molar volume of water and aw represents the activity of water.
This thermodynamic approach allows the determination of osmotic pressure in concentrated electrolyte
solution and even the solution with multiple solvents.
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The activity of water is calculated by thermodynamic models. The Electrolyte-NRTL [23] (eNRTL)
model was employed for electrolyte systems, while the UNIQUAC [24] model was used for systems
containing organic solvents. The eNRTL model, developed by Chen and his coworkers, has been
successfully applied to many electrolyte systems. Detailed description of the eNRTL model can be
found elsewhere [25,26], so only a brief introduction is presented in this paper. The excess Gibbs free
energy in the eNRTL model is expressed as a sum of three terms:

G∗ex
NRTL
RT

=
G∗ex

PDH
RT

+
G∗ex

Born
RT

+
G∗ex

lc
RT

(5)

where the notation “*” indicates that the excess Gibbs free energy is the unsymmetrical. The subscripted
PDH, Born, and lc represent Pitzer-Debye-Huckel, Born, and local composition contributions, respectively.

There are three types of binary parameters in the eNRTL model: molecule-molecule,
molecule-electrolyte, and electrolyte-electrolyte binary parameters. Here, an “electrolyte” does
not mean the salt dissolved into the solution, but an ion pair composed of a cation and an
anion. For an electrolyte system, the binary parameters are expressed as a and τ. Normally,
the symmetric nonrandom factor parameter a is ranges from 0.1 to 0.5, and often is set to 0.2 for
molecule-electrolyte interaction. While the unsymmetrical binary interaction energy parameter τ is
dependent on temperature:

τ = C +
D
T

+ E
[

T0 − T
T

+ ln
(

T
T0

)]
(6)

The reference temperature T0 is 273.15 K. C, D, and E are adjustable parameters. Thus,
for modeling a draw solution containing electrolytes, the adjustable parameters C, D, and E for
each type of binary interaction energy parameters τ (molecule-molecule, molecule-electrolyte, and
electrolyte-electrolyte) would need to be regressed with respect to experimental thermodynamic data.

Although eNRTL can also be used to calculate the thermodynamic properties of organic solution,
we found that the UNIQUAC model based on group contribution theory was more convenient and
provided better results for calculating the osmotic pressure of water in organic solutions. Besides, the
UNIQUAC model enables us to do a rough estimation of the model parameters from the structure of
organic solvents when there are no experimental data available to do regression. So the UNIQUAC
model was employed for the aqueous propylene glycol mono-butyl ether and dipropylamine solutions.

In the UNIQUAC model, the excess Gibbs free energy is calculated as a sum of a combinatorial
and a residual term:

Gex
UNIQUAC

RT
=

Gex
combinatorial

RT
+

Gex
residual
RT

(7)

And the combinatorial term is expressed as:

Gex
combinatorial

RT
=

(
∑

i
ni

)[
∑

i
xi ln

φi
xi

+
Z
2 ∑

i
qixi ln

θi
φi

]
(8)

The residual term is expressed as:

Gex
residual
RT

= −
(

∑
i

ni

)[
∑

i
qixi ln

(
∑

j
θjτij

)]
(9)

where:
θi =

qixi

∑
j

qjxj
(10)

φi =
rixi

∑
j

rjxj
(11)
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τij = exp
(

aij + bij/T + cij ln T + dijT + eij/T2
)

(12)

qi and ri are the surface area and volume size parameters, which are related to the structure of the
molecule. The coordination number Z is set to 10. aij, bij, cij, dij, and eij are the unsymmetrical binary
adjustable interaction parameters between species i and j.

With suitable model parameters, the activity of water and the osmotic pressure of a certain draw
solution can be calculated. Because the molality concentration (moles per weight of solvent) is more
convenient in thermodynamic calculation, the concentration of feed and draw solutions are expressed
in molality rather than molarity (moles per volume of solution) in the following section.

2.3. FO Process Design

NH3-CO2, Na2SO4, and organic solutes were used in this study and different draw solute recovery
schemes were required with respect to their properties. The FO process diagram using NH3-CO2 as
the draw solute is shown by Figure 1. The original feed and draw solutions were input parameters for
the customized FO unit operation model, where the water in the feed side was transferred into the
draw side according to osmotic pressure equilibrium. Multistage distillation columns decomposed
NH3-CO2 more completely and maximized the water production, but required a heat source of
higher temperature [20]. Assuming an available heat source with the temperature of more than 110 ◦C,
a multistage distillation column was used for the decomposition of the diluted NH3-CO2 draw solution.
The distillation column with 15 stages was modelled by the RadFrac unit operation model in the Aspen
Plus. From the bottom of the distillation column, water with a low amount of ammonia and carbonate
was produced. The NH3 and CO2 gases from the top of the distillation column were cooled down
and then mixed with water to regenerate the draw solution. The eNRTL model was selected for the
calculation of thermodynamic properties, and the model parameters were retrieved from the Aspen
default databank.

Water 2017, 9, 189  5 of 17 

 

i i
i

j j
j

q x
q x

θ =


 (10) 

i i
i

j j
j

r x
r x

φ =


 (11) 

( )2exp / ln /ij ij ij ij ij ija b T c T d T e Tτ = + + + +  (12) 

iq  and ir  are the surface area and volume size parameters, which are related to the structure 

of the molecule. The coordination number Z is set to 10. ija , ijb , ijc , ijd , and ije  are the 

unsymmetrical binary adjustable interaction parameters between species i and j. 
With suitable model parameters, the activity of water and the osmotic pressure of a certain draw 

solution can be calculated. Because the molality concentration (moles per weight of solvent) is more 
convenient in thermodynamic calculation, the concentration of feed and draw solutions are expressed 
in molality rather than molarity (moles per volume of solution) in the following section. 

2.3. FO Process Design 

NH3-CO2, Na2SO4, and organic solutes were used in this study and different draw solute 
recovery schemes were required with respect to their properties. The FO process diagram using NH3-
CO2 as the draw solute is shown by Figure 1. The original feed and draw solutions were input 
parameters for the customized FO unit operation model, where the water in the feed side was 
transferred into the draw side according to osmotic pressure equilibrium. Multistage distillation 
columns decomposed NH3-CO2 more completely and maximized the water production, but required 
a heat source of higher temperature [20]. Assuming an available heat source with the temperature of 
more than 110 °C, a multistage distillation column was used for the decomposition of the diluted 
NH3-CO2 draw solution. The distillation column with 15 stages was modelled by the RadFrac unit 
operation model in the Aspen Plus. From the bottom of the distillation column, water with a low 
amount of ammonia and carbonate was produced. The NH3 and CO2 gases from the top of the 
distillation column were cooled down and then mixed with water to regenerate the draw solution. 
The eNRTL model was selected for the calculation of thermodynamic properties, and the model 
parameters were retrieved from the Aspen default databank. 
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Figure 1. Aspen Plus flowsheet of the forward osmosis (FO) process using NH3-CO2 as the draw solute.

The outline of the FO process using Na2SO4 as the draw solute is displayed in Figure 2.
The Na2SO4 was precipitated out from the diluted draw solution, in the form of glauber salt, via cooling
down to 0 ◦C. The crystallization of the Na2SO4 was simulated by the Crystallizer model in Aspen
Plus. After crystallization, the solids were separated from the solution via filtration for draw solution
recovery. The clear solution was sent to reverse osmosis (RO) for the production of water. For the
calculation of thermodynamic properties, the eNRTL model parameters in the default databank
were used.
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Figure 3 demonstrates the Aspen Plus flowsheet of the FO process using organic solutes with an
LCST point as the draw solutes. The Decenter model in Aspen Plus was employed for the simulation
of a liquid-liquid separator, which enables rigorous calculation of liquid-liquid phase separation by
thermodynamic modelling. After liquid-liquid separation, the water phase was sent into the RO model
for the production of water. The organic phase was recycled as a new draw solution. The UNIQUAC
model parameters for PB were regressed with respect to experimental liquid-liquid equilibrium data,
as the Aspen databank (Aspen Plus, v7.6, Aspen Technology, Inc., Bedford, MA, USA) does not have
such parameters. Unfortunately, we cannot find enough data to obtain the vapor-liquid parameters for
the estimation of osmotic pressure; so previous regressed liquid-liquid parameters were used which
may cause some uncertainty in the simulation. The liquid-liquid parameters in the default databank for
dipropylamine (DP) were employed to calculate its liquid-liquid equilibrium properties. In addition,
the osmotic pressure of DP was calculated by the vapor-liquid parameters for a better result.
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3. Results

3.1. FO Process Using NH3-CO2 as Draw Solute

NH3-CO2 draw solution is regenerated via thermally decomposing the diluted draw solution
into NH3 and CO2 gases at elevated temperature, then absorbing the gases by water to regenerate a
concentrated draw solution [12]. The dissolved NH3 and CO2 gases in solution present in various
forms including NH4

+, NH2COO−, HCO3
−, and CO3

2− ions, together with NH3
(0) and CO2

(0) neutral



Water 2017, 9, 189 7 of 17

molecules. The osmotic pressure of the NH3-CO2 solution is influenced by the distribution of those
species, which can be affected by the concentrations of NH3 and CO2 and also their ratio. An NH3-CO2

solution with a higher NH3 to CO2 ratio composed from ammonia salts like ammonium carbonate and
ammonium carbamate can provide higher driving forces for the FO process due to its higher osmotic
pressure [27]. However, the high pH of those solutions with high NH3 to CO2 ratios might become
a problem for the membrane. NH4HCO3 solutions with the NH3 to CO2 ratio of 1 was preferred
by some other researchers because it is less corrosive to the membrane [13]. In this simulation, the
performance of the FO process was the first concern so a high ratio of 2.4 was selected.

To illustrate the influence of the feed concentration on the process performance, NaCl
concentrations ranged from 0.1 to 1 mol·kg−1. The draw solution was composed of 12 mol·kg−1

NH3 and 5 mol·kg−1 CO2. The results are presented in terms of RWATER and energy consumption
per quantity of produced water. It can be seen in Figure 4 that RWATER and the energy consumption
clearly showed a reverse trend with an increase of feed concentration. RWATER is decreased while the
energy consumption per water increases with increasing NaCl concentration. With the increasing feed
concentration, the osmotic pressure differences across the membrane decreased. As a consequence,
a lower amount of water would be migrated to the draw side before osmotic pressure equilibrium
was reached, which leads to a low RWATER value. The low RWATER values mean that more “extra”
energy was needed to heat up the draw solution.
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the draw solute.

The FO performance at different NH3-CO2 concentrations is illustrated in Figure 5. The feed
concentration was fixed at 0.5 mol·kg−1 NaCl, which has an osmotic pressure of 2.22 MPa.
The concentration of CO2 in the draw solution ranged from 1.0 to 10.0 mol·kg−1, and the NH3 to CO2

ratio was kept at 2.4. It can be seen in Figure 5 that increasing the draw solution concentration would
have a very positive effect on improving the energy efficiency. As discussed above, the increasing
osmotic pressure difference is the main reason for the improved FO performance at higher draw
solution concentrations. The osmotic pressure of the NH3-CO2 solution at different concentrations
was plotted in Figure 6. The osmotic pressure of a draw solution containing 2.4 mol·kg−1 NH3 and
1.0 mol·kg−1 CO2 is 6.20 MPa, which would generate an osmotic pressure difference of 4.00 MPa when
the feed solution contains 0.5 mol·kg−1 NaCl. By increasing the NH3 and CO2 concentrations to 24.0
and 10.0 mol·kg−1, an osmotic pressure difference of 59.2 MPa can be obtained.
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influence on FO performance. The value of RWATER decreased from 9.77 to 1.49 mol·mol−1 while 
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increased almost linearly with increasing Na2SO4 concentration, and the energy consumption sharply 
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3.2. FO Process Using Na2SO4 as Draw Solute

As a draw solute, Na2SO4 would not only generate considerable osmotic pressure, but would
also have a low draw solute back-leak because the SO4

2− ion does not easily penetrate the FO
membrane [28,29]. Because the solubility of Na2SO4 was sharply decreased at the temperature range
of 0 to 32 ◦C, it gives the chance of recycling Na2SO4 via crystallization at a low temperature.

The FO performance at different feed solution concentrations is displayed in Figure 7.
The concentration of draw solution was set 2.9 mol·kg−1, which is close to the maximum solubility of
Na2SO4 in water. Similar to the situation of NH3-CO2, high feed concentration had a negative influence
on FO performance. The value of RWATER decreased from 9.77 to 1.49 mol·mol−1 while energy
consumption increased from 138 to 324 MJ·ton−1 when the concentration of feed solution changed from
0.1 mol·kg−1 NaCl to 1 mol·kg−1. Figure 8 shows the FO performance at draw solution concentrations
from 1 to 2.9 mol·kg−1, with feed solution of 0.5 mol·kg−1 NaCl. The value of RWATER increased
almost linearly with increasing Na2SO4 concentration, and the energy consumption sharply decreased.



Water 2017, 9, 189 9 of 17
Water 2017, 9, 189  9 of 17 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

R
W

A
T

E
R

NaCl (mol/kg)

RWater

Energy

100

150

200

250

300

350

E
ne

rg
y 

(M
J/

to
n)

 
Figure 7. The effect of feed solution concentration on the FO process performance using Na2SO4 as the 
draw solute. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
W

A
T

E
R

Na
2
SO

4
 (mol/kg)

150

200

250

300

350

400

450

500

E
n

e
rg

y 
(M

J/
to

n
)

RWater

Energy

 
Figure 8. The effect of draw solution concentration on the FO process performance using Na2SO4 as 
draw solute. 

3.3. FO Process Using Solvents with LCST Points 

An organic solute with a low critical solution temperature (LCST) point is completely miscible 
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point, the miscible organic-water solution would exhibit the liquid-liquid phase separation. Then two 
liquid phases are formed, including the organic-rich phase with concentrated draw solute, and the 
water-rich phase. Therefore, the draw solute can be separated from water by varying the temperature 
for the liquid-liquid phase separation. The draw solute recovery of organic solutes with an LCST 
point only needs a simple liquid-liquid separator, which would operate more easily than the 
distillation columns for the decomposition of NH3-CO2 solution. Furthermore, the transportation and 
re-condensation of gases can be avoided so that it would make the process operation more easy. As 
a result, organic solutes with LCST points tend to be promising draw solute candidates and receive 
considerable research attention. 

Two organic solvents, namely propylene glycol mono-butyl ether (PB) and dipropylamine (DP), 
were selected as the draw solutes. PB was once evaluated by Nakayama et al. [17] and the advantages 
of using glycol ethers as draw solutes include low viscosities, low pH values, low volatilities, etc. On 
the contrary, the high pH value of the aqueous DP solution might cause potential damage to the 
membrane, and more caution needs to be taken during the operation because of the volatility and 
toxicity of DP. So, DP is not a very good draw solution in the real world, but in this case DP was 
selected to demonstrate the effect of different liquid-liquid equilibriums on the FO performance. 
Figure 9 demonstrates the liquid-liquid equilibrium diagram of the solvent + water systems. The 
feasibility of using the UNIQUAC model to estimate the thermodynamic properties of the organic 
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3.3. FO Process Using Solvents with LCST Points

An organic solute with a low critical solution temperature (LCST) point is completely miscible
with water below the phase transition temperature, making it possible to provide enough osmotic
pressure to withdraw the water from feed solutions [30]. At an elevated temperature above the
LCST point, the miscible organic-water solution would exhibit the liquid-liquid phase separation.
Then two liquid phases are formed, including the organic-rich phase with concentrated draw solute,
and the water-rich phase. Therefore, the draw solute can be separated from water by varying the
temperature for the liquid-liquid phase separation. The draw solute recovery of organic solutes with
an LCST point only needs a simple liquid-liquid separator, which would operate more easily than
the distillation columns for the decomposition of NH3-CO2 solution. Furthermore, the transportation
and re-condensation of gases can be avoided so that it would make the process operation more easy.
As a result, organic solutes with LCST points tend to be promising draw solute candidates and receive
considerable research attention.

Two organic solvents, namely propylene glycol mono-butyl ether (PB) and dipropylamine (DP),
were selected as the draw solutes. PB was once evaluated by Nakayama et al. [17] and the advantages
of using glycol ethers as draw solutes include low viscosities, low pH values, low volatilities, etc.
On the contrary, the high pH value of the aqueous DP solution might cause potential damage to the
membrane, and more caution needs to be taken during the operation because of the volatility and
toxicity of DP. So, DP is not a very good draw solution in the real world, but in this case DP was selected
to demonstrate the effect of different liquid-liquid equilibriums on the FO performance. Figure 9
demonstrates the liquid-liquid equilibrium diagram of the solvent + water systems. The feasibility
of using the UNIQUAC model to estimate the thermodynamic properties of the organic solutions
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was verified by comparing the calculated liquid-liquid equilibrium data with literature data [31,32].
In addition, the calculated results agree well with published results. It can be seen that the solubility of
water in the organic-rich phase of the DP + water mixture shows a greater dependence on temperature
than PB, which suggests that larger RWATER values, thus lower energy consumption, may be obtained
when using DP.
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To investigate the influence of feed concentration on FO performance, the temperature for
separation was kept at 80 ◦C. The results are shown in Figure 10 for PB and Figure 11 for DP. From
the results, it can be expected that the energy consumption of the FO process using organic draw
solute would increase by increasing the feed concentration, because the osmotic pressure difference is
decreased. Comparing the FO performance when using PB as a draw solute with that when using
DP, it is clearly demonstrated that much more energy is required for the PB draw solute. This can be
explained by their difference in liquid-liquid equilibrium behavior. The mole fraction concentration of
the PB draw solution in the organic rich phase is 0.409 at the temperature of 80 ◦C. In addition, it will
reach the osmotic pressure equilibrium at the concentration of 0.381, if the organic rich phase is used
as the draw solution and the feed solution is composed of 0.5 mol·kg−1 NaCl. On the contrary, the
change in concentration for DP draw solution is from 0.751 to 0.579 at the same condition. The higher
concentration of DP in the organic rich phase after phase separation means it can produce a higher
osmotic pressure compared to that of PB. Thus, a greater RWATER value and a better FO performance
were achieved by using DP as draw solute.
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Figure 12. The effect of separation temperature on the FO process performance using DP as the draw 
solute. 

Figure 13 gives a direct comparison of the energy consumptions of the FO processes using 
different draw solutes. It shows that the energy consumptions of FO processes using PB and Na2SO4 
were more sensitive to feed concentration changes. The FO process using PB exhibited the highest 
energy consumption among the four investigated draw solutes, which was about ten times the value 
of the NH3-CO2 process. Compared with NH3-CO2, the Na2SO4 process showed a much lower energy 
value. However, it should be noted that the cooling operation is achieved normally with the 
utilization of electric power which is a high grade energy, while a low-grade heat source was used 
for the decomposition of the NH3-CO2 solution. So, equivalent work is necessary for the comparison 
of total energy consumption, as discussed later. 
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draw solute.

As the organic rich phase is used as a draw solution, the concentration of draw solution using
organic solute with an LCST point is controlled by the separation temperature. The temperature was
manipulated to study its effect on the FO performance using DP as draw solute. It can be seen from the
results shown in Figure 12 that the RWATER value increases with increasing temperature. However,
the energy consumption was first decreased then increased with increasing temperature, and achieve a
minimal value at around 76 ◦C. Although a greater RWATER can be obtained at higher temperatures
because of the more concentrated draw solution. More thermal energy would be required to heat
up the solution. As a consequence of these two effects, an optimized temperature for liquid-liquid
separation might be found for certain FO processes using draw solutes with LCST points.
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for the decomposition of the NH3-CO2 solution. So, equivalent work is necessary for the comparison 
of total energy consumption, as discussed later. 

Figure 12. The effect of separation temperature on the FO process performance using DP as the
draw solute.

Figure 13 gives a direct comparison of the energy consumptions of the FO processes using different
draw solutes. It shows that the energy consumptions of FO processes using PB and Na2SO4 were
more sensitive to feed concentration changes. The FO process using PB exhibited the highest energy
consumption among the four investigated draw solutes, which was about ten times the value of the
NH3-CO2 process. Compared with NH3-CO2, the Na2SO4 process showed a much lower energy
value. However, it should be noted that the cooling operation is achieved normally with the utilization
of electric power which is a high grade energy, while a low-grade heat source was used for the
decomposition of the NH3-CO2 solution. So, equivalent work is necessary for the comparison of total
energy consumption, as discussed later.
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Figure 13. Energy consumption of the FO process using different draw solutes as a function of NaCl 
concentrations. 

3.4. Equivalent Work for FO 

In order to compare the total value of the FO processes using different grades of energy, a 
method of involving the calculation of “equivalent work”, in which the energy consumed was 
assigned an electrical work value, was considered. For the FO processes using NH3-CO2 and organic 
solutes with LCST points, thermal energy is required for the recovery of draw solutions. In the case 
where no low grade heat source is available, fuel energy would be directly charged to the FO process. 
So, the equivalent work is associated to the electrical work produced by the fuel energy [31], which 
can be calculated by the following equation: 

eq d pd pumpW Q Wη= × +  (13) 

dQ  means the thermal energy supplied to the FO process, pdη  is the overall power plant efficiency, 

and pumpW  is the electrical energy requirements for pumping work. 

Figure 14. gives an example where low grade thermal energy from a cogeneration power 
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Figure 13. Energy consumption of the FO process using different draw solutes as a function of
NaCl concentrations.

3.4. Equivalent Work for FO

In order to compare the total value of the FO processes using different grades of energy, a method
of involving the calculation of “equivalent work”, in which the energy consumed was assigned an
electrical work value, was considered. For the FO processes using NH3-CO2 and organic solutes
with LCST points, thermal energy is required for the recovery of draw solutions. In the case where
no low grade heat source is available, fuel energy would be directly charged to the FO process. So,
the equivalent work is associated to the electrical work produced by the fuel energy [31], which can be
calculated by the following equation:

Weq = Qd × ηpd + Wpump (13)

Qd means the thermal energy supplied to the FO process, ηpd is the overall power plant efficiency, and
Wpump is the electrical energy requirements for pumping work.

Figure 14. gives an example where low grade thermal energy from a cogeneration power desalting
plant [32] is available for the FO process. The steam supplied to the FO process is extracted from the
low pressure turbine. In this case, the equivalent work to the thermal energy Qd is relevant to the
electrical work produced by the low pressure turbine:

Weq = Qd × ηLP + Wpump (14)

where ηLP means the low pressure turbine efficiency for producing electrical work. In addition, if
assumed that the ideal Rankine cycle is employed by the low pressure turbine, the equivalent work
can be further calculated as:

Weq = Qd ×
h1 − h2

h1 − h3
× Eturbine + Wpump (15)

where h1 is the enthalpy of the steam used to provide process heat input, h2 is the enthalpy of the
steam at the turbine outlet, and h3 is the enthalpy of the steam at the condenser outlet. In this study,
the condenser temperature was assumed to be 35 ◦C. Eturbine is the turbine efficiency which is assumed
to be 85%.
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For the FO process using Na2SO4, electrical work is required for draw solute recovery.
The equivalent work for the heat removal by the refrigerator system is expressed as:

Weq =
Qd

COP
+ Wpump (16)

where COP (Coefficient of Performance) is the ratio of cooling or heating to energy consumption. COP
is largely dependent on operating conditions, like the cooling and ambient temperatures, coolant
medium, the efficiency of the heat pump, etc. In this study, COP is assumed to be 4.5 for cooling the
diluted draw solution from room temperature to 0 ◦C, and a glycol refrigeration system was used.

The results of equivalent work at different draw solution concentrations are displayed in
Figures 15–17. In those calculations, all the feed solutions consisted of 0.5 mol·kg−1 NaCl. For the
draw solute of NH3-CO2, the boiler temperature was approximated at 100 ◦C under ambient pressure
so low grade steams of 110 and 130 ◦C were used. Because the temperature for liquid-liquid separation
of DP + water solutions was below 80 ◦C, a heat source of 90 ◦C can be used for the FO process
using a draw solute of DP. It can be seen in Figure 15 that the equivalent work was from 60.5 to
117.6 kWh·ton−1 for NH3-CO2 when the heat was directly supplied by fuel energy. When a low grade
steam of 110 ◦C was used, the lowest equivalent work could be 21.1 kWh·ton−1 which suggests that the
grade of heat sources would have a significant influence on the process value. For the case of Na2SO4,
as shown in Figure 16, the minimum of equivalent work was 12.3 kWh·ton−1 if the value of COP was
4.5. The equivalent work of DP using a steam of 90 ◦C, was in the range of 55.0 to 70.6 kWh·ton−1 as
shown in Figure 17. For a direct comparison of the equivalent work of the FO processes using different
draw solutes, the minimum equivalent work for each draw solute (for example, the value for NH3-CO2

process was obtained with 10 mol·kg−1 CO2 and 110 ◦C heat source) are presented in Figure 18.
It can be seen that while a lower temperature steam can be employed for the FO process using DP, the
equivalent work was still larger than the one using NH3-CO2. The FO process using a draw solute of
Na2SO4 exhibited the lowest equivalent work among the draw solutes investigated in this study.

The method developed in this work provides an approach to quickly estimate the energy
consumption of an FO process using certain draw solute, therefore, it would be helpful for screening
the draw solutes. However, it should also be noted that the assumptions in this study are based on
ideal conditions. More factors such as the membrane permeability, long term stability, and the price
of the energy need to be taken into consideration for more practical operations. For example, the FO
process using NH3-CO2 may be more attractive than using Na2SO4 if abundant low grade heat sources
at cheap prices are available.
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4. Conclusions  

The energy requirements of the FO process using various draw solutes were presented under 
different feed and draw solution concentrations. It was found that the increasing feed solution 
concentrations would have a negative effect on process performance. The energy consumption of the 
FO process decreased with increasing draw solution concentration. The NH3-CO2 process had the 
lowest thermal energy requirement among the three FO processes because the draw solute recovery 
was achieved by heating. On the contrary, the FO process using propylene glycol mono-butyl ether 
showed a relatively large energy consumption due to its small solubility in water. The FO process 
using Na2SO4 required the lowest equivalent work, and the cooling efficiency largely depended on 
operating conditions. 

For the future development of draw solutes, the NH3-CO2 system has high potential due to its 
low thermal energy consumption and its ability to treat highly concentrated feed solutions. Although 
Na2SO4 seems to be a promising draw solute on terms of the equivalent work, further studies, such 
as the mass transfer mechanism across the membrane and the crystallization and dissolution rate of 
Na2SO4 salt, are essential. For the development of draw solutes with LCST points, it is important to 
find an organic solute whose solubility in water is strongly dependent on temperature. 
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4. Conclusions

The energy requirements of the FO process using various draw solutes were presented under
different feed and draw solution concentrations. It was found that the increasing feed solution
concentrations would have a negative effect on process performance. The energy consumption of the
FO process decreased with increasing draw solution concentration. The NH3-CO2 process had the
lowest thermal energy requirement among the three FO processes because the draw solute recovery
was achieved by heating. On the contrary, the FO process using propylene glycol mono-butyl ether
showed a relatively large energy consumption due to its small solubility in water. The FO process
using Na2SO4 required the lowest equivalent work, and the cooling efficiency largely depended on
operating conditions.

For the future development of draw solutes, the NH3-CO2 system has high potential due to its
low thermal energy consumption and its ability to treat highly concentrated feed solutions. Although
Na2SO4 seems to be a promising draw solute on terms of the equivalent work, further studies, such
as the mass transfer mechanism across the membrane and the crystallization and dissolution rate of
Na2SO4 salt, are essential. For the development of draw solutes with LCST points, it is important to
find an organic solute whose solubility in water is strongly dependent on temperature.
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