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Abstract: The performance evaluation of a city’s flood control system is essentially based on accurate
storm designs, where a particular challenge is the development of the joint distributions of dependent
rainfall variables. When it comes to the research design for consecutive rainfall, the analytical
investigation is only focused on the maximum of consecutive rainfalls, and it does not consider the
probabilistic relations between the first day of rainfall and the overall rainfall included in consecutive
rainfall events. In this study, the copula method is used to separate the dependence structure of
multi-day rainfall from its marginal distribution and analyse the different impacts of the dependence
structure and marginal distribution on system performance. Three one-parameter Archimedean
copulas, including the Clayton, Gumbel, and Frank families, are fitted and compared for different
combinations of marginal distributions that cannot be rejected by statistical tests. The fitted copulas
are used to generate rainfall events for a system performance analysis, including the conditional
probability and design values for different return periods. The results obtained in this study highlight
the importance of taking into account the dependence structure of one-day and multi-day rainfall in
the context of storm design evaluations and reveal the different impacts of the dependence structure
and the marginal distributions on the probability.
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1. Introduction

Flooding in most cities is caused by rainstorms. Using rainstorm data is an indirect way to
ascertain the design flood compared with the estimate based on discharge data. However, the discharge
series in survey regions is often too short to ascertain the design flood directly, since rainfall detection is
a relatively systematic process and the data sequence is long and complete [1]. Therefore, hydrological
analysis is usually carried out on the basis of rainfall, so as to provide a basis for determining water
supply. In general, rain can be represented by such characteristics as precipitation, rainfall intensity
and rainfall duration [2]. At present, the analysis of torrential rain generally uses the design rainfall
method, which is a univariate analysis based on precipitation (e.g., the designed maximum one-day
precipitation and maximum three-day precipitation). In recent years, researchers realized that the
analysis of torrential rain based on the distribution of univariate extremum has certain restrictions [3].
Thus, they are trying to analyze the correlation between different characteristics of rainstorms by
using multivariable joint distribution, with a view to providing a more comprehensive description of
rainstorm events.

Many approaches have been developed to analyse the frequency of design rainfall in a city’s
flood control system, such as analytical probability methods [4], Bayesian methods [5], first-order
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reliability methods [6], and imprecise probability methods [7]. In these methods, the historical rainfall
series available are separated into rainfall events, and the probability distributions of some rainfall
variables are then used to characterise the stochastic nature of the rainfall. For example, rainfall
depth and duration are often used in the literature [8–10]. However, when it comes to the research
design for consecutive rainfall, the analytical investigation is only focused on the maximum amount of
consecutive rainfall, and it does not consider the probabilistic relations between the first day of rainfall
and the overall rainfall included in consecutive rainfall events. The features of consecutive rainstorms
are analysed in terms of the first day of rainfall and the overall rainfall.

There is increasing attention being given to the use of copulas as a flexible tool to quantify
the dependence structure between correlated variables in the fields of hydrology and water
engineering [11–13]. The use of copulas enables the ability to model the probabilistic dependence
structure independently of marginal distributions, allowing for multivariate random events to be
described using different types of marginal distributions [14]. This represents a significant advantage
compared to conventional multivariate analysis, as many variables of hydrological phenomena cannot
be described using the same type of probability distributions. [15] An important application of copulas
is modelling the stochastic nature of rainfall and flooding using historical data [16]. Copulas also
provide a convenient way to generate samples of correlated rainfall variables, meaning they can be
used for flood frequency analysis in conjunction with the Monte Carlo simulation method [17].

In this study, three-day rainfall events and seven-day rainfall events were selected as the
samples to research, expressed as three-day and seven-day rainfall, with the first day of rainfall
counted as one-day rainfall. The dependence between the first day to the third day of rainfall and
the first to the seventh day of rainfall are represented using Archimedean copulas. The copula
method is demonstrated using conditional probability to design storms for different return periods.
The results show both the suitability and flexibility of the use of Archimedean copulas in simulating the
dependence and the significant impacts of the dependence structure on the performance of designed
storms on a city’s flood control system.

2. Data and Method

2.1. Methodology

2.1.1. Concept of Copulas

Copulas can be used as multivariate cumulative distribution with standard uniform marginal
distributions and represent the dependence structure of random variables. For two random variables
X and Y, their marginal cumulative distribution functions are represented as:

u = FX(x) and v = FY(y) (1)

HXY(x, y) = C(u, v) (2)

where u and v are random variables, C(u, v) is called a copula and can be uniquely determined when
u and v are continuous. It is easy to see that a copula is actually a multivariate distribution function
with a uniform marginal distribution [18]. The marginal distributions can be determined by different
distributions, and the dependence structures are separated from the marginal distributions [19].
For this, complex multivariate distributions can be built to model stochastic phenomena, such as
rainfall, without requiring a better understanding of the marginal distributions. There are many
families of copulas that represent different dependence structures [20]. One-parameter Archimedean
copulas are of special interest for hydrologic analyses, and the general expression of Archimedean
copulas can be written as:

C(u, v) = ϕ−1(ϕ(u) +ϕ(v)) (3)
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where ϕ is a convex decreasing function defined in [0,1], satisfying ϕ(1) = 0 . and lim
t→0
ϕ(t) = ∞.

Different forms of the function ϕ represent different families of Archimedean copulas, for example,
the Gumbel, Frank and Clayton families. These copulas can describe a wide range of dependence
levels, from negative to positive, and have been used to describe rainfall characteristics in previous
studies [21,22]. These are selected to describe the relationship between one-day rainfall and multi-day
rainfall in this study. The formulas of Gumbel, Frank and Clayton are as follows:

Gumbel : C(u1, u2) = exp
(
−
[
(− ln u1)

θ + (− ln u2)
θ
]1/θ

)
(4)

Frank : C(u1, u2) = −
1
θ

ln
(

1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
(5)

Clayton : C(u1, u2) = max
[(

u−θ1 + u−θ2 − 1
)−1/θ

, 0
]

(6)

where u1 and u2 are random variables.

2.1.2. Copula Fitting

For Archimedean copulas, the simplest method to estimate the parameter θ is through a concordance
measurement using Kendall’s τ, which is a rank correlation coefficient that examines the orderings
of two measured quantities. The relationship between the parameter θ and Kendall’s τ exists
for the Gumbel, Frank and Clayton families [23]. In addition to the non-parametric methods
described above, there are some parametric methods available for parameter estimation, such as
the conventional Maximum Likelihood (ML) method, the Inference Function for Margins (IFM)
method [24], the Canonical Maximum Likelihood (CML) method [25], and the Minimum Distance
Methods. The IFM method was used in this study, as it has a better performance compared to the
others based on our preliminary tests. More importantly, it allows the exploration of the impacts
of the choice of the parametrically estimated marginal Cumulative distribution on copula fitting, as
prior research has shown that a number of marginal Cumulative distributions may not be rejected for
rainfall variables under several statistical tests [26,27]. The root mean square error is an indicator of
the goodness of fit, and it can be calculated as:

RMSE =

√
1
n

n

∑
i=1
{C(ui, vi)−Cn(ui, vi)}2, (7)

where Cn is the empirical copula. For this measurement, the smaller the values, the better the copula
fits the data. Formal hypothetical tests are increasingly used to evaluate the goodness-of-fit for different
copulas [28,29]. The Cramér-von Mises statistic is chosen to compare an estimated copula C with the
empirical copula Cn:

Tn =
n

∑
i=1
{C(ui, vi)−Cn(ui, vi)}2. (8)

Higher p-values are desired, as they represent better suitability for the chosen copulas [30,31].
The tail dependence analysis is critical to investigating the magnitude of dependence in the upper

and lower tails of a bivariate distribution [32]. It also helps to identify the most suitable copula by
emphasising the joint occurrence of extreme values [33]. The tail dependence can be represented by
a coefficient. For the Gumbel copula, the upper tail dependence coefficient is:

λU = 2− 2
1
θ (9)

In this study, the following estimator proposed by Frahm was used for non-parameters calculation.
The formula is:
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λU = 2− 2 exp

[
1
n

n

∑
i=1

log

(√
log

1
ui

log
1
vi

/
log

1

max(ui, vi)
2

)]
(10)

where (ui, vi) are random, generated from copulas.

2.1.3. Recurrence Interval

The recurrence interval can reflect the risk of variables directly. There are different return periods
of two variables events [34]; here, the conditions return period and joint return period were used to
calculate the value of one-day rainfall and multi-day rainfall; the joint return period is:

T(x1, x2) =
1

1 + C(F(x1), F(x2))− F(x1)− F(x2)
(11)

The conditions return period used here is:

T(X2 ≥ x2|X1 ≥ x1 ) =
1− F(x1)

1 + C(F(x1), F(x2))− F(x1)− F(x2)
(12)

2.2. Catchment and Data

2.2.1. The Catchment

In this paper, the Qinhuai River basin (approximately lat 32◦2′ N and long 118◦78′ E) is selected
as the studied catchment. The Qinhuai River basin is located downstream of the Yangtze River, which
is in the southwestern part of Jiangsu Province, with a total area of 2658 km2. The region where it is
located ranges from the northern subtropics to mid-subtropical. The long-term annual air temperature
is 15.4 ◦C, and the annual range of air temperatures can reach as high as 40 ◦C. The topography
mainly contains plains, hills and mountains. The highest mountain’s altitude is greater than 2400 m.
The annual average sunshine time is 2240 h, and the annual average precipitation is 1047.8 mm.
The location of the study area, together with the distribution of the meteorological stations used in this
study, is shown in Figure 1.
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2.2.2. Rainfall Data

Daily rainfall data from twenty-one rain stations were used in this research. The distribution of the
twenty-one stations is shown in Figure 1. Because of the material conditions and distribution of these
stations, different stations were used to calculate the rainfall of the area using the Thiessen polygon
method for different years. Here, the fifteen stations are the Qinhuai new river sluice, Wudingmen
Sluice, Chishan New Sluice, Tiansheng Bridge Sluice, Qianhan Village, East Mountain, Jurong, Zhaocun
Reservoir, Anjishan Reservoir, North Mountain Reservoir, Ershengqiao Reservoir, Maoshan Reservoir,
Fangbian Reservoir, Wolongshan Reservoir, and Zhongshan Reservoir, and they were used to obtain the
area rainfall for the years from 2000 to 2010. Fifteen stations, including the Qinhuai New River Sluice,
Wudingmen Sluice, Chishan New Sluice, Tiansheng Bridge Sluice, Qianhan Village, East Mountain,
Jurong, Zhaocun Reservoir, Anjishan Reservoir, Qinlin, Linchang, Tingzi, Xixie, Tianwang, and Aiyuan,
were used to obtain the area rainfall for the years from 1960 to 1999. Five stations, including the East
Mountain, Jurong, Anjishan Reservoir, Tiansheng Bridge Sluice, and Tianwang, were used to obtain
the area rainfall for the years from 1953 to 1959. All the date series about these stations were shown
in Table 1. To study the relationship between one-day area rainfall and multi-day area rainfall for an
urban catchment, all the rainfall events with a duration of three days were separated by the first day of
rainfall and the total three-day rainfall, and the events with a duration of seven days were separated
by the first-day rainfall and the total seven-day rainfall. To guarantee that an individual event was
not affected by any other event, the time interval of two time-adjacent events is one day to ensure
every daily rainfall event is independent. A total of 1980 events and 1345 events were identified from
the rainfall series to study the relationship between the daily area and three-day area rainfall and the
seven-day area rainfall. The events with an amount of 4 mm cannot generate flooding, so the events
which are less than 4 mm are not considered for analysis in the research. This reduced the number of
events to 1307 three-day rainfall and 714 seven-day rainfall events, respectively.

Table 1. Daily precipitation data series.

NO. Name of Rain Station Date Series

1 qinhuai new river sluice 1967–1968, 1981–1982, 1987–2010
2 wudingmen sluice 1961–2010
3 tiansheng bridge sluice 1953–2010
4 qianhan village 1965–1969, 1978–2010
5 east mountain 1953–2010
6 jurong 1953–2010
7 zhaocun reservoir 1955–1960, 1962–2010
8 anjishan reservoir 1953–1910
9 linchang 1965–2001
10 tingzi 1967–2001
11 xixie 1967–2001
12 aiyuan 1967–2001
13 chishan new sluice 1960–2010
14 tianwangsi 1953–1961, 1963–1999
15 qilin 1967–1968, 1978–1999
16 north mountain reservoir 1960–1988, 1991, 1996–2010
17 ershengqiao reservoir 1962–1988, 2000–2010
18 maoshan reservoir 1978–1988, 2004–2010
19 fangbian reservoir 1954, 1957, 1958, 1960–1966, 1991, 1996–2010
20 wolongshan reservoir 2004–2010
21 zhongshan reservoir 1977–1979, 2004–2010
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3. Results and Discussion

3.1. Data Analysis

Figure 2 shows scatter plots for the 1307 events with marginal histograms for one-day area and
three-day rainfall and 714 events with marginal histograms for one-day area and seven-day rainfall.
There is a high frequency of low one-day rainfall, with approximately 50% of the rainfall events having
a very small depth of less than 12 mm. For the daily and three-day rainfall events and the daily and
seven-day rainfall events, the average daily rainfall is both approximately 16.55 mm, but the maximum
is as much as 177.3 mm. Similarly, both the three-day and seven-day rainfall have a high frequency of
low rainfall, although approximately 10% have a rainfall greater than 150 mm for three-day rainfall
and greater than 190 mm for seven-day rainfall. The average three-day rainfall is 28.61 mm, with
a maximum of 242.1 mm. However, the average seven-day rainfall is 43.5 mm, with a maximum
of 354.2 mm. The two variables are related to some extent, with a Kendall’s τ = 0.41 for one-day to
three-day rainfall and τ = 0.36 for one-day to seven-day rainfall. As seen from the marginal histograms,
the two variables do not follow the same marginal distribution. This clearly demonstrates the need to
separate the marginal distributions and the dependence structure in the joint distribution for the two
series so that the marginal distributions may be simulated by different types of distributions.
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3.2. Marginal Distributions

According to previous studies [35], the Generalized Extreme Value (GEV), Generalized Pareto
(GP), Log–log and Gamma methods are used to fit the daily rainfall and multi-day rainfall.
These functions are fitted using the maximum likelihood estimation method that maximises the
log-likelihood function. In the calculation, the maximum number of iterations is specified to be 100,
and the accuracy of the estimation is set to 1.0 × 103.

Three goodness-of-fit tests, including the Kolmogorov-Smirnov (K–S), Anderson Darling (A–D)
and Chi-square (
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here. The smaller the p-values, the more evidence we have against H0. For the series of one-day
and three-day rainfall, the four distributions of one-day rainfall, i.e., GEV, Gamma, Log-Log and
Gamma, cannot be rejected with K–S tests and have a decreasing ranking according to the statistical
values. However, for three-day rainfall, the GP distribution performs best, followed by Log-Log, GEV
and Gamma. Similarly, for the series of one-day and seven-day rainfall, GEV and GP are the best
distribution for one-day and seven-day, respectively, while GP and Gamma are the worst distributions
for one-day and seven-day, respectively. None of the three distributions can be rejected based on K-S
tests. In many cases, it is not possible to determine one single best distribution, particularly when
a relatively short series of data is available [36]. All of the three distributions are used to investigate
the bivariate distribution using copulas.

Table 2. Test statistics for the fitted cumulative distribution for one-day and three-day rainfall.

Date Series Distribution
K–S

p-Value
Kn

one-day rainfall

GEV 0.017 0.833
Gamma 0.023 0.510
Log-Log 0.036 0.429

GP 0.049 0.065

three-day rainfall

GP 0.019 0.910
Log-Log 0.025 0.176

GEV 0.038 0.091
Gamma 0.042 0.091

Table 3. Test statistics for the fitted cumulative distribution for one-day and seven-day rainfall.

Date Series Distribution
K–S

p-Value
Kn

one-day rainfall

GEV 0.022 0.072
Log-Log 0.032 0.047
Gamma 0.043 0.037

GP 0.054 0.006

seven-day
rainfall

GP 0.019 1.003
Log-Log 0.031 0.194

GEV 0.048 0.103
Gamma 0.056 0.111

3.3. Dependence Structure

The selected marginal distributions for one-day and multi-day rainfall are used to fit the
Archimedean copulas using the CML method. Two methods are used to determine the value of
θ. For one-day and three-day rainfall, the parametrically estimated values of parameter θ are provided
in Table 4, along with their 95% confidence intervals. The values for the Gumbel, Frank and Clayton
copulas determined using the non-parametric method are 1.385, 2.592 and 0.701, respectively, from the
connection between θ and τ. The parametric estimates for the Gumbel and Frank copulas are in good
agreement with those from the non-parametric method and are in the relevant 95% confidence intervals.
However, for the Clayton copula, the non-parametric estimate is significantly larger and is outside
the 95% confidence interval. This is possibly because the rainfall data shown in Figure 2 illustrate
greater dependence in the upper tail than in the lower tail. In contrast, the Clayton copula places more
attention on the lower tail than the upper tail. The Gumbel copula is an asymmetric Archimedean
copula with a greater dependence in the upper tail than in the lower tail. The Frank copula is
a symmetric Archimedean copula. Thus, these two copulas are more appropriate for describing the
dependence structure between one-day and three-day rainfall.

The same conclusion is applicable to one-day and seven-day rainfall, with the parametrically
estimated values for parameter θ provided in Table 5 along with their 95% confidence intervals.
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The values for the Gumbel, Frank and Clayton copulas using the parametric method are 1.108, 2.203
and 0.567, respectively. Gumbel and Frank copulas are appropriate for describing the dependence
structure between one-day and seven-day rainfall.

Table 4. Parameters for the copulas and their 95% confidence intervals for one-day and
three-day rainfall.

One-Day
Rainfall

Three-Day
Rainfall Gumbel Confidence

Interval Frank Confidence
Interval Clayton Confidence

Interval

GEV
GP 1.375 [1.285, 1.466] 2.472 [1.971, 2.974] 0.443 [0.317, 0.570]

Log-Log 1.399 [1.309, 1.489] 2.412 [1.916, 2.909] 0.393 [0.273, 0.513]
GEV 1.372 [1.280, 1.465] 2.546 [2.032, 3.059] 0.413 [0.288, 0.539]

Gamma
GP 1.377 [1.280, 1.465] 2.509 [1.997, 3.021] 0.375 [0.257, 0.494]

Log-Log 1.403 [1.284, 1.470] 2.447 [1.940, 2.953] 0.340 [0.227, 0.453]
GEV 1.375 [1.311, 1.496] 2.591 [2.067, 3.114] 0.354 [0.237, 0.471]

Log-Log
GP 1.382 [1.281, 1.470] 2.845 [2.290, 3.400] 0.507 [0.344, 0.671]

Log-Log 1.403 [1.288, 1.476] 2.447 [1.940, 2.953] 0.340 [0.227, 0.453]
GEV 1.385 [1.311, 1.496] 3.063 [2.502, 3.623] 0.473 [0.323, 0.623]

Table 5. Parameters for the copulas and their 95% confidence intervals for one-day and
seven-day rainfall.

One-Day
Rainfall

Seven-Day
Rainfall Gumbel Confidence

Interval Frank Confidence
Interval Clayton Confidence

Interval

GEV
GP 1.100 [1.028, 1.173] 2.101 [1.964, 2.240] 0.399 [0.373, 0.425]

Log-Log 1.119 [1.046, 1.193] 2.050 [1.916, 2.186] 0.354 [0.331, 0.377]
GEV 1.098 [1.026, 1.170] 2.164 [2.032, 2.307] 0.372 [0.347, 0.396]

Log-Log
GP 1.102 [1.029, 1.175] 2.133 [1.993, 2.274] 0.338 [0.315, 0.360]

Log-Log 1.122 [1.049, 1.197] 2.080 [1.944, 2.218] 0.306 [0.286, 0.326]
GEV 1.100 [1.028, 1.173] 2.202 [2.058, 2.348] 0.319 [0.298, 0.340]

Gamma
GP 1.106 [1.033, 1.179] 2.418 [2.260, 2.578] 0.456 [0.426, 0.486]

Log-Log 1.122 [1.049, 1.197] 2.080 [1.944, 2.218] 0.306 [0.286, 0.326]
GEV 1.108 [1.035, 1.181] 2.604 [2.433, 2.776] 0.426 [0.398, 0.454]

Tables 6 and 7 show the resulting RMSE and Cramér-von Mises statistical values. For the series
of one-day rainfall and three-day rainfall, GEV distribution does not have the best performance in
the terms of copula fitting when Gamma has the best, although the GEV distribution is the best in
terms of the marginal distribution fitting according to the statistics. However, GP is the best three-day
distribution and also has good performance in copula fitting; besides, when Log-Log is selected as
one-day, Log-Log is better than GP as the three-day distribution. The same conclusion can be drawn
from another series. This implies that it is important to consider the goodness-of-fit of both the
marginal distributions and the copulas to achieve the best overall performance when constructing
a joint distribution of multiple variables. For the three distributions for multi-day rainfall, there are no
significant differences in the copula fittings. The Gumbel and Frank copulas are in good agreement.

Figures 3 and 4 show the Q-Q plots for the Gumbel and empirical copulas for different marginal
distribution combinations. The cumulative probability of the empirical copula is represented by x-axis,
and the y-axis represents the values of the Gumbel copula. The diagonal straight line represents
a perfect match between the parametrically estimated copula and the empirical copula. Generally,
the Q-Q plots confirm the results revealed from the statistical values in Tables 6 and 7. That is, for
one-day and three-day rainfall, the Gamma vs. GP pairs provide the best copula fitting results, which
are chosen as the base case to compare the impact of marginal distributions and copulas whereas the
Log–log vs. GEV pair is chosen as the base case to compare the impacts of the marginal distributions
and copulas, but Log-log vs. GP is the worst pair. For one-day and seven-day rainfall, the Gamma vs.
GP pairs provide the worst copula fitting results, whereas the Log–log vs. GP pair proved to be better.
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Table 6. Goodness-of-fit of the copulas for different combinations of marginal distributions of one-day
and three-day rainfall.

One-Day
Rainfall

Three-Day
Rainfall

Gumbel Frank Clayton

RMSE Tn RMSE Tn RMSE Tn

GEV
GP 0.014 0.111 0.015 0.119 0.013 0.102

Log-Log 0.016 0.147 0.016 0.140 0.013 0.099
GEV 0.015 0.138 0.020 0.212 0.016 0.166

Gamma
GP 0.011 0.062 0.014 0.103 0.016 0.168

Log-Log 0.013 0.091 0.015 0.127 0.017 0.169
GEV 0.014 0.102 0.019 0.208 0.020 0.242

Log-Log
GP 0.061 2.078 0.074 3.041 0.048 1.421

Log-Log 0.013 0.091 0.015 0.127 0.017 0.169
GEV 0.059 2.017 0.079 3.481 0.048 1.458

Table 7. Goodness-of-fit of the copulas for different combinations of marginal distributions of one-day
and seven-day rainfall.

One-Day
Rainfall

Seven-Day
Rainfall

Gumbel Frank Clayton

RMSE Tn RMSE Tn RMSE Tn

GEV
GP 0.013 0.111 0.012 0.124 0.011 0.102

Log-Log 0.014 0.147 0.013 0.121 0.011 0.099
GEV 0.014 0.138 0.016 0.201 0.014 0.166

Log-Log
GP 0.010 0.062 0.011 0.204 0.014 0.168

Log-Log 0.011 0.091 0.012 0.205 0.015 0.169
GEV 0.012 0.102 0.015 0.293 0.018 0.242

Gamma
GP 0.052 1.918 0.060 1.726 0.042 1.421

Log-Log 0.011 0.091 0.012 0.205 0.015 0.169
GEV 0.053 2.017 0.064 1.771 0.042 1.458
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(one-day) vs. Log-log (three-day). 

Figure 3. Q-Q plots for the Gumbel and empirical copulas for different marginal distribution
combinations of one-day rainfall and three-day rainfall. (a) Gamma (one-day) vs. GP (three-day);
(b) Gamma (one-day) vs. Log-log (three-day); (c) Log-log(one-day) vs. GP (three-day); (d) Log-log
(one-day) vs. Log-log (three-day).

To understand the structure of dependence, Figure 5 visualises the cumulative distribution
and probability distribution function of the Gumbel copula on the basis of the Gamma vs. GP and
Log-log vs. GP combination for the two series. The variables u and v represent the transformed
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random variables X and Y in the unit hypercube, respectively, and have the same ranks as X and Y.
Figure 4a,b show the fitted copula using a shaded surface. The strong dependence in the upper tail is
clearly illustrated in Figure 4c,d.
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Figure 5. Three-dimensional plots for the theoretically fitted Gumbel copula. (a) fitted copula using
a shaded surface of one-day and three-day; (b) fitted copula using a shaded surface of one-day and
seven-day; (c) upper tail correlation of one-day and three-day; (d) upper tail correlation of one-day
and seven-day.

Upper tail dependence is also important when considering copula. Table 8 shows the coefficients
for Gumbel copulas of the series of one-day rainfall and three-day rainfall. As can be seen from
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the table, the estimated coefficient values are very close to the theoretical ones. More importantly,
this implies that the choice of marginal distribution has little influence on tail dependence, which is
mainly controlled by copulas as expected.

Selecting the suitable copula and its marginal distribution is a complex process that needs to
consider all parts including statistics, graphical approaches, tail dependence analysis and comparison
to empirical copulas. Incomplete research of copulas may fail to identify the inappropriate copulas
and their marginal distribution, leading to an overestimate or underestimate of probability.

Table 8. The upper tail dependence coefficients for Gumbel copulas.

One-Day GEV Gamma Log-Log

Three-day GP Log-Log GEV GP Log-Log GEV GP Log-Log GEV
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3.4. Conditional Probability

To reflect the connection between the one-day and multi-day rainfall, the conditional probability of
multi-day rainfall can be calculated based on the reappearing period of one-day rainfall, and different
copulas are used here to see the difference between them. Figure 6 shows the conditional probability
of three-day and seven-day rainfall, which is when a one-day rainfall occurs over an x-year return
period, the probability of three-day rainfall and seven-day rainfall occurs. For the series of one-day
and three-day, Gamma vs. GP pairs are used, and for one-day and seven-day, Log-log vs. GP are used.
Figure 6a–c show that when the one-day rainfall is over a value, the probability of three-day rainfall
increases with the decrease in the value of precipitation, the conclusion is also correct with respect to
seven-day rainfall. When the precipitation of a three-day rainfall is fixed, its probability increases with
the same tendency as that of the precipitation of one-day rainfall. However, for fixed precipitation
of one-day rainfall, the probability of seven-day rainfall changes according to the crosscurrent of the
precipitation. However, the seven-day rainfall changes little compared to the three-day rainfall when
the one-day rainfall changes.

In fact, from Figure 6 we can also see that for different conditional probabilities, the result of
Gumbel is stable, which is in step with the results in Tables 6 and 7. However, the curve of Clayton is
unsteady, as the non-parametric estimate of the Clayton copula is significantly larger and is outside
the 95% confidence interval. Note that according to the copula fitting results, the Clayton copula is not
appropriate to describe the dependence structure, because the Clayton copula places more attention
on the lower tail while the rainfall data shown in Figure 2 illustrate greater dependence on the upper
tail than the lower tail. However, it is used here to demonstrate its potential impacts.
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3.5. Impacts of Copulas and Marginal Distributions

Different marginal distributions for one-day rainfall and multi-day rainfall cannot be rejected
based on the statistical tests in this study. To investigate the impact of different marginal distributions,
the joint return period was used to calculate the value of the different probabilities. Figure 7d–f show
the value using the. Figure 7d–e were calculated using the one-day and three-day series, and Figure 7f
was calculated using the one-day and seven-day series. For all marginal distribution combinations,
the Gumbel copula is used to simulate the dependence structure between one-day rainfall and
multi-day rainfall. For one-day, three-day and seven-day rainfall, the values of different pairs are
roughly the same. The difference between different combinations of marginal distributions of the
seven-day events is the greatest, while thosse of one-day events are small. This implies that the impacts
of the different marginal distributions are negligible compared to the other uncertainties, such as
copula parameter estimation, and the impact may decrease from seven-day rainfall to one-day rainfall.

Different copulas also reflect the value of one-day rainfall and multi-day rainfall. Here, marginal
distributions are shown as contrast. For one-day, three-day and seven-day events, GEV, GP and GP
are selected as marginal distributions. Gamma vs. GP pairs are used for the one-day and three-day
series to calculate the value of one-day rainfall and three-day rainfall, while for one-day and seven-day,
Log-log vs. GP are used to calculate the value of seven-day rainfall. The Gumbel copula is smaller than
the Clayton and Frank copulas, and the Clayton value is considerably higher than that of marginal
distributions. Similar to the results presented above, the Clayton copula was not appropriate to describe
the structure of one-day rainfall and multi-day rainfall, which overestimates the value of different
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probabilities. Clearly, the copulas have a more significant impact than the marginal distributions.
This implies the importance of considering the dependence structure of the one-day and multi-day
rainfall when evaluating the system performance of a city’s flood control systems via copula methods.

Water 2017, 9, 198  13 of 16 

 

the value of different probabilities. Clearly, the copulas have a more significant impact than the 
marginal distributions. This implies the importance of considering the dependence structure of the 
one-day and multi-day rainfall when evaluating the system performance of a city’s flood control 
systems via copula methods. 

(a) (b)

(c) (d)

(e) (f)

Figure 7. Design values for a single variable and two-dimensional copula joint distributions.  
(a) GEV (one-day) vs. copulas (one-day); (b) GP (three-day) vs. copulas (three-day);  
(c) GP (seven-day) vs. copulas (seven-day); (d) one-day rainfall of Gumbel using different marginal 
distributions; (e) three-day rainfall of Gumbel using different marginal distributions; (f) seven-day 
rainfall of Gumbel using different marginal distributions. 

  

0
50

100
150
200
250

one-day:GEV

Gumbel

Frank

Clayton

0
50
100
150
200
250
300
350
400

three-day:GP

Gumbel

Frank

Clayton

0
50
100
150
200
250
300
350
400
450

seven-day:GP

Gumbel

Frank

Clayton

0
50

100
150
200
250

GEV:GP

GEV:log-log

GEV:GEV

0
50

100
150
200
250
300
350

GEV:GP

GEV:log-log

GEV:GEV

0
50
100
150
200
250
300
350
400
450

GEV:GP

GEV:log-log

GEV:GEV

Figure 7. Design values for a single variable and two-dimensional copula joint distributions.
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using different marginal distributions.
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4. Conclusions

This paper highlights the importance of considering the dependence structure of one-day and
multi-day rainfall using copulas. The multi-day rainfall characteristics in the case study are represented
by two cases: three-day and seven-day rainfall. The marginal distributions of these variables are
simulated using GP, GEV, Log–log and Gamma, and the dependence structure is represented by
the following three one-parameter Archimedean copula families: Gumbel, Frank, and Clayton.
This methodology is promising in that it provides a simpler way to construct the joint distribution
for rainfall events by separating the dependence from its marginal distributions. The conclusions
determined from this study are as follows:

(1) It is necessary to consider different marginal distributions that cannot be rejected by statistical
tests for copula fitting rather than choosing the best ranked distributions. As revealed using
bivariate copulas, the pair of the best fitted marginal distributions for the one-day and multi-day
rainfall cannot produce the best overall performance during construction of the joint distribution
of one-day and multi-day events.

(2) Several different measures should be used to consider the best fit copula identification, including
statistics, graphical approaches, tail dependence analysis and comparison to empirical copulas.
Different measures can reflect different characteristics of copulas. A single measure may identify
inappropriate copulas, leading to an overestimate or underestimate of the probability of a flood.

(3) The copula method has flexibility and provides notable advantages in constructing complex,
bivariate probability distributions for one-day and multi-day rainfall for system performance
analysis. The results provide a more accurate probabilistic evaluation of precipitation for
flood control based on the characterisation of the dependence structure for one-day and
multi-day rainfall.

(4) The designed maximum one-day precipitation and maximum three-day precipitation are
important when we think about a city’s flood control system. However, it is meaningful to
take the probabilistic relationships between the first day rainfall and the overall rainfall using
multivariable joint distribution into account. This provides crucial information for more accurate
estimation of storm designs and the associated risks.
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