
water

Article

An Approach to Predict Debris Flow Average Velocity

Chen Cao 1, Shengyuan Song 1, Jianping Chen 1,*, Lianjing Zheng 2 and Yuanyuan Kong 1

1 College of Construction Engineering of Jilin University, Changchun 130026, Jilin, China;
caochen14@mails.jlu.edu.cn (C.C.); songshengyuan@jlu.edu.cn (S.S.); kongyy14@126.com (Y.K.)

2 Changchun Sci-Tech University, Changchun 130600, Jilin, China; zhengljcc@gmail.com
* Correspondence: chenjp@jlu.edu.cn; Tel.: +86-431-8850-2353

Academic Editor: Karl-Erich Lindenschmidt
Received: 3 November 2016; Accepted: 8 March 2017; Published: 10 March 2017

Abstract: Debris flow is one of the major threats for the sustainability of environmental and social
development. The velocity directly determines the impact on the vulnerability. This study focuses on
an approach using radial basis function (RBF) neural network and gravitational search algorithm
(GSA) for predicting debris flow velocity. A total of 50 debris flow events were investigated in the
Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF). Eighty
percent (40 groups) of the measured data were selected randomly as the training database. The other
20% (10 groups) of data were used as testing data. Finally, the approach was applied to predict six
debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were
similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle
analysis of debris flow (PPA) approach were used for comparison and validation. The results showed
that: (i) the GSA-RBF predicted debris flow velocity values are very close to the measured values,
which performs better than those using RBF neural network alone; (ii) the GSA-RBF results and
the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF
performs better; (iii) in the study area, the GSA-RBF results are validated reliable; and (iv) we could
consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of
measured data in other areas, which is more applicable. Because the GSA-RBF approach was more
accurate, both the numerical simulation and the empirical equation can be taken into consideration for
constructing debris flow mitigation works. They could be complementary and verified for each other.

Keywords: gravitational search algorithm; radial basis function; debris flow velocity; prediction
approach

1. Introduction

Debris flow is a common geological disaster in mountain regions [1]. It is a type of sudden,
ferocious and destructive natural disaster [2–6]. Prediction of debris flow is always an important task
in geological hazards prevention works. The debris flow usually brings a great number of casualties
and widespread damages [7]. The average velocity is an important parameter for designing mitigation
structures [8,9]. The discharge, the run-out distance, the energy, the impact force, and the inundated
area are all related to the average velocity. Thus, prediction of debris flow velocity is an important
guidance to the construction of dams for sediment storage.

As debris flow moves as a whole; from a macroscopic viewpoint, it is possible to describe the
motion by a single velocity, despite the variations within the flow body [6]. This single velocity can
be considered as a characteristic quantity, which depends on the measurement. Johnson et al. [10]
demonstrated that debris flow velocity was much higher at top surface than that in the bottom.
In practice, the average velocity characterizes the overall movement of the fluid body is sufficient to
assess a potential debris flow. Field monitoring is an effective approach for estimating debris-flow

Water 2017, 9, 205; doi:10.3390/w9030205 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water


Water 2017, 9, 205 2 of 17

velocities. Common instruments include acoustic sensors [11], ultrasonic sensors [12] and fixed video
cameras [13], and methods including spatial filtering [14] have been used to measure both surface
velocity and average velocity. In the Jiangjia gully in China, two methods are used to measure debris
flow velocity [6]. One method is timing the surge front position when passing through two fixed cross
sections to measure the average velocity. People also use ultrasonic sensors to monitor the temporal
fluctuation of velocity.

However, few gullies allow real-time monitoring of debris flow. Most debris flow gullies
have no monitoring sites or instruments. The measured velocity data can be utilized for building
approaches to calculate the average velocities. Nowadays, empirical formulations, back-calculation
equations, and equations based on debris flow models, are the three categories of debris flow velocity
equations [15]. Empirical formulation can be based on back-calculation (calibration of past events) or
on geomorphological characteristics, while another category could be based on physic based formula
taking into account the stress generated mechanisms acting during the debris flow propagation.
Because of the distinctive features of debris flow, it is difficult to analyze debris flow motion [16,17].
Selection of appropriate influencing variables becomes very important in the data mining process.
The debris flow velocity is mainly dominated by the following parameters: grain size, slope angle,
sediment concentration, etc. [18–24]. Armanini et al. [18] conducted the laboratory experiments
studying the rheological behavior of high-concentration granular–liquid mixtures. Hotta et al. [19]
developed an experimental system employing a differential gas pressure gauge to measure the basal
interstitial water pressure in shallow laboratory debris flows in an open channel. Iverson et al. [20]
collected data of 28 controlled experiments to reveal that sediment mud content causes systematic
differences in flow dynamics. Stancanelli [21] conducted a set of 19 experiments considering three
values of the confluence angle, two slopes of the tributary, and three different triggering conditions.
Stancanelli et al. [22] considered that within the investigated range of parameters, the slope angle was
the parameter that mainly influences the stony debris flow mobility. As for the wide and shallow debris
flow gully, the hydraulic radius can be replaced by flow depth. Yang [25] showed that average velocity
of the viscous debris flow has a significant correlation with flow depth and channel slope. Yang also
found that average velocity was influenced by the sediment properties represented by clay content and
grain size non-uniformity. Prochaska [26] and Cagnoli [27] found that the velocity generally decreased
with increasing grain size. Julien and Paris [28] employed the ratio of flow depth to median grain size,
h/D50. In China, the modified Dongchuan empirical equation [29] is specially used for calculating
the debris flow velocity in the Dongchuan area, where the Jiangjia gully is located, as well as Koch’s
empirical velocity equation [30], both of which are based on the Manning equation [31]. Based on the
pulled particle analysis (PPA), Huang [32] proposed an equation considering the research of the initial
condition of solid accretion of debris flow to calculate the debris flow velocity. The pulled particle
analysis approach is based on the theory of the solid–liquid two phase of debris flow, taking the solid
particles of the moving debris flow as the analyzed object, establishing a limit equilibrium equation
from the static to the motion state. Then, a new debris flow velocity approach is established. In such a
framework, debris flow average velocity is obtained based on field monitoring through instruments or
calculation equations. However, it can benefit from computer modeling. Debris flow is a complex and
open system; the average velocity prediction approach implies that the use of meaningful variables
gathered from past events is appropriate to predict the velocity. This study aims at building nonlinear
relationships between the influencing variables and debris flow average velocity using data mining
techniques. In the last few decades, artificial neural networks, typically radial basis function (RBF)
neural network, have become efficient approaches to provide non-linear relations, especially in the
multi component quantitative mixture from different types of data sets [33–35]. RBF neural network
learning rule is simple and easy to be used on computer. It also has a strong robustness, memory
and self-learning ability. Gravitational search algorithm (GSA) is one of common ways in optimizing
the architecture, the centers and the width of RBF neural network. By combining the GSA with RBF
neural network, a new hybrid algorithm (GSA-RBF) was proposed to predict debris flow average
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velocity. RBF neural network is sensitive to the initialization, and easy to fall into local optimum, but
the new algorithm can avoid these disadvantages effectively. This study proposed a new approach,
GSA-RBF neural network, to predict six gullies debris flow average velocity in the Wudongde Dam
reservoir area. Xu et al. [36] and Wang et al. [37] have done precious works in this area. In particular,
by training observation data of the Jiangjia gully, Xu et al. used BP neural network to establish an
approach to predict three debris flow velocities in the Wudongde Dam reservoir area. They selected
four variables to predict the velocity: flow depth, gradient of channel, debris flow density, and grain
size. They compared the results with results computed by the Dongchuan equation and the modified
Manning equation, finding that the BP approach is feasible and can predict the average velocity of
a debris flow accurately. However, Poggio and Girosi [38] proved that RBF neural network was the
best approximation for continuous functions, but BP was not. Yu [39] also proved that BP has poor
prediction ability for testing data. The RBF has its disadvantages, i.e., it easily falls into the local
optimal solution and leads the results to be not accurate. In this study, we selected the same variables
as Xu et al. and tried to use the RBF neural network to train and predict the debris flow velocity.
Meanwhile, GSA is used for optimizing the RBF neural network, which is necessary. In addition,
Wang et al. evaluated the susceptibility of debris flows in the Wudongde Dam area using principle
component analysis and self-organizing map methodologies. Twelve debris flow influencing factors
are selected to evaluate the susceptibility of debris flows. The work of Wang et al. is referential, which
will help to validate the results of our work.

2. Study Area

The study area lies along the lower reaches of the Jinsha River (Figure 1), and is the reservoir
area of the Wudongde Dam site, which is located in the mountains separating Sichuan and Yunnan
Provinces. It will be constructed as a massive hydropower station in the lower reaches of the Jinsha
River. The riverbanks are steep, with an average gradient exceeding 45◦. The study area is located in the
central mountains and alpine region with 3600 m above sea level as the highest altitude. The altitude
gradually increases from west to east of the study area. The section from the Wudongde Dam site to
14 km upstream is characterized by red bed soft rocks of the Triassic, Jurassic, and Cretaceous periods
(T–K), including sandstones, shale, and mudstones. These rocks are easy to be physically weathered.
The surface layers are completely weathered. The soil erosions and shallow landslides are widely
distributed throughout the area.

The study area covers a dry-hot valley and has a low-latitude plateau subtropical monsoon climate.
The climate is characterized by plentiful sunlight and large evaporation capacity, with concentrated
rainfall and succession of wet and dry seasons. The study area is characterized by a subtropical
monsoon climate. Different elevation exists, and various climatic zones exist due to the influence of
the western subtropical monsoon and the particular geomorphic characteristics of high mountains and
valleys. The maximum daily rainfall in the study area ranges between 834 and 1309 mm. The heaviest
rainfall occurs from May to October and peaks in July. The average annual temperature in the study
area is 9–18 ◦C. The vegetal cover is characterized by natural savanna and sparse broad-leaved woods.
The vegetation in the study area covers less than 30%.

The six debris flow gullies are located in the region of the Wudongde Dam site reservoir. The six
gullies are selected based on the analysis of satellite images. They are Xiabaitan, Shangbaitan,
Zhugongdi, Zhuzhahe, Zhiligou and Mengguogou. It is shown in Figure 1 that three gullies, Xiabaitan,
Shangbaitan and Zhugongdi, are located near the dam site. The Wudongde dam area is rugged. It is
difficult to transport construction facilities. Considering that there is limitation for construction place
along Jinsha River, the three gullies will be used as a temporary ancillary facilities construction site.
The debris flow channels in the area of the dam should be filled, and protection measures should
be adopted [40]. Figure 2a shows the alluvial fan of Mengguogou catchment. Figure 2b presents
the farmland of Zhuzhahe catchment. Meanwhile, Figure 3 shows that there are some villages and
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farmlands near the alluvial fan in the entrance of Zhuzhahe, Zhiligou and Mengguogou. Specially,
there are more than 300 villagers living near the alluvial fan of Zhuzhahe catchment.Water 2017, 9, 205  4 of 17 
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Figure 1. Location of the study area in the region of Wudongde Dam.

In the case that the discharge of a future debris flow event would block the river, it would cause a
huge mass of water to surge quickly, thereby hindering construction processes in nearby hydropower
stations and threatening the lives of people living downstream of these stations [41]. It can be seen in
Figure 3 that the debris flow alluvial has a great impact on the villages and farmlands. Meanwhile,
the alluvial fan also narrows the width of the Jinsha River [21,42–44]. If the river width becomes
narrow, the river flow velocity will become fast. Consequently, the power of the river will become
stronger, which makes the incision of the riverbed.
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Figure 3. Alluvial fans of the gullies: (a) Zhuzhahe; and (b) Zhiligou.

3. Data Acquisition

The Jiangjia gully (JJG) is located in Yunnan Province of China, which is located in the same area
as the Wudongde Dam site. They have similar geological and environmental conditions. Detailed
information can be found in Chen [45] and Cui [46]. Dozens of debris flow occur in the JJG every
year. Observation station was built there in 1961. Many measured data obtained there were used for
researches. This study selects 50 groups of measured velocity data in the JJG to present the GSA-RBF
approach. Then, this approach is applied to the six gullies in the study area. Because different variables
have different value ranges and dimensions, the variables should be normalized so that when the
function value is close to 0 or 1, its changing rate is very slow. In order to improve the training speed,
this paper normalizes the data to (0.1, 0.9) based on the following equation:

N = 0.8(X − Xmin)/(Xmax - Xmin) + 0.1 (1)

where N is the normalized data, X is the input variable index value, and Xmax and Xmin are the
maximum and minimum index values, respectively.

In the JJG, average debris flow velocity is measured by timing the surge front passing through
two fixed cross sections. In this study, a total of 50 groups measured data were investigated in the JJG.
Forty groups (80%) of the measured data were randomly used as training data. They were used for
building prediction approach. The other ten groups (20%) of data were used as testing data (Table 1).

Table 1. Values of debris flow velocity and impact variables in the Jiangjia gully.

y x1 x2 x3 x4 y x1 x2 x3 x4

8.8 150 6.3 2200 1.1 3.7 40 6.3 2020 0.1
7.8 140 6.3 1950 0.6 4.1 70 5.8 1800 0.2
3.8 40 6.3 1850 0.1 3.5 50 5.8 1760 0.2
6.9 202 5.5 2270 1.7 8.2 130 6.6 2200 0.7
7.5 168 5.5 2280 1.6 4.8 93 5.8 1920 0.3
8.9 175 6.3 2080 0.8 9.2 372 6.6 2210 1.2
7.4 200 6.3 2210 1.7 9.6 220 6.6 2290 1.5
7.3 90 6.3 2210 1 5.8 107 5.5 2290 1.2
6.6 70 6.3 2190 1.2 3.9 55 5.8 2070 0.8
9.4 210 6.6 2210 1.2 5.6 70 5.5 1920 0.3
4 40 6.3 2040 0.3 3.9 60 5.5 1830 0.1

7.4 145 5.5 2250 1.1 6.9 122 5.5 2210 1
5.8 103 5.5 2210 0.8 9.6 275 6.6 2210 1.6
4.7 60 5.5 1970 0.5 5 65 5.5 2240 1.1
7.7 161 5.5 2250 1 3.7 55 5.8 1800 0.1
7.7 177 5.5 2240 1.1 8.1 160 6.6 2220 1.2
7.9 200 6.3 2250 1.4 6.6 226 5.5 2130 1.1
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Table 1. Cont.

y x1 x2 x3 x4 y x1 x2 x3 x4

8.4 210 6.6 2200 0.8 7.4 55 6.3 2250 0.9
9.3 210 6.3 2290 1 7.5 170 6.6 2190 1.1
3.6 58 5.8 1690 0.2 6.4 109 5.5 2250 1.1
10 95 6.3 2160 0.6 9.3 210 6.3 2210 1.1
7.6 125 6.3 2100 0.6 6.9 250 5.5 2220 0.9
7.6 11 6.3 2070 0.7 6 120 5.5 2200 0.8
7.6 100 6.3 2190 0.9 4.9 60 5.5 1990 0.6
8.5 200 6.3 2300 1.5 3.6 52 5.8 1700 0.1

Notes: y is field observed average velocity of debris flows (m/s); x1 is flow depth (cm); x2 is the gradient of channel
(%); x3 is the density of debris flow (kg·m−3); and x4 is the average grain size (cm).

The six gullies’ data were mainly obtained through field investigation, remote sensing and grain
size analysis. The flow depth data were obtained in the field by measuring the ancient debris flow mud
depth. After debris flow outbreak, the viscous fluid will leave scratches or mud marks in the ditch
sidewall. The mud marks are regarded as flow depth of debris flow. There are several evidences that
help us to determine the flow depth, such as the deposition in the rock crevices, the scratches and mud
trace on the ditch sidewall, and drifts stranded in branches and rock and riverside. Figure 4 shows the
mud marks in the study area, which helps us to determine the ancient debris flow depth. Through
remote sensing and satellite images, we could obtain the DEMs of the six gullies. The gradient of
channel is defined as the ratio of elevation difference and the horizontal distance in debris flow gully.
It was obtained from the DEMs through the Geographic Information System (GIS) software.

Water 2017, 9, 205  6 of 17 

 

9.3 210 6.3 2290 1 7.5 170 6.6 2190 1.1 
3.6 58 5.8 1690 0.2 6.4 109 5.5 2250 1.1 
10 95 6.3 2160 0.6 9.3 210 6.3 2210 1.1 
7.6 125 6.3 2100 0.6 6.9 250 5.5 2220 0.9 
7.6 11 6.3 2070 0.7 6 120 5.5 2200 0.8 
7.6 100 6.3 2190 0.9 4.9 60 5.5 1990 0.6 
8.5 200 6.3 2300 1.5 3.6 52 5.8 1700 0.1 

Notes: y is field observed average velocity of debris flows (m/s); x1 is flow depth (cm); x2 is the 
gradient of channel (%); x3 is the density of debris flow (kg·m−3); and x4 is the average grain size (cm). 

The six gullies’ data were mainly obtained through field investigation, remote sensing and 
grain size analysis. The flow depth data were obtained in the field by measuring the ancient debris 
flow mud depth. After debris flow outbreak, the viscous fluid will leave scratches or mud marks in 
the ditch sidewall. The mud marks are regarded as flow depth of debris flow. There are several 
evidences that help us to determine the flow depth, such as the deposition in the rock crevices, the 
scratches and mud trace on the ditch sidewall, and drifts stranded in branches and rock and 
riverside. Figure 4 shows the mud marks in the study area, which helps us to determine the ancient 
debris flow depth. Through remote sensing and satellite images, we could obtain the DEMs of the 
six gullies. The gradient of channel is defined as the ratio of elevation difference and the horizontal 
distance in debris flow gully. It was obtained from the DEMs through the Geographic Information 
System (GIS) software.  

 
(a) (b)

 
(c) (d)

Figure 4. Field survey: (a) debris flow scouring in the downstream of flowing area in Zhugongdi; (b) 
debris flow mud marks in Zhugongdi; (c) rock crevices filled with mud in Xiabaitan; and (d) debris 
flow scouring in the downstream of flowing area in Zhiligou. 

The grain size analysis was operated by in situ sieving analysis and the laboratory method. We 
took two parallel samples on the thickest profile from alluvial fans. One is on the top of the profile, 
and the other is from the bottom. A set of sieves with sizes of 2, 5, 10, 20, 40, and 60 mm were used 
to sieve the samples in the field (Figure 5). However, the grains size smaller than 2 mm could not be 
tested in situ. Therefore, grains size smaller than 2 mm samples were analyzed using hydrometer 
method in laboratory. Grains size larger than 60 mm could not be conducted through sieving 
procedures, thus the image analysis described by Tiraniti et al. [47] was used for determining the 
distribution of large grains. We selected suitable scaled photos and estimated the proportions of the 

1.8m 
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(b) debris flow mud marks in Zhugongdi; (c) rock crevices filled with mud in Xiabaitan; and (d) debris
flow scouring in the downstream of flowing area in Zhiligou.

The grain size analysis was operated by in situ sieving analysis and the laboratory method.
We took two parallel samples on the thickest profile from alluvial fans. One is on the top of the
profile, and the other is from the bottom. A set of sieves with sizes of 2, 5, 10, 20, 40, and 60 mm
were used to sieve the samples in the field (Figure 5). However, the grains size smaller than 2 mm
could not be tested in situ. Therefore, grains size smaller than 2 mm samples were analyzed using
hydrometer method in laboratory. Grains size larger than 60 mm could not be conducted through
sieving procedures, thus the image analysis described by Tiraniti et al. [47] was used for determining
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the distribution of large grains. We selected suitable scaled photos and estimated the proportions of
the grains lager than 60 mm. Image analyzing might not be very accurate, but it provides a more
feasible method than sieving analysis. The debris flow density was obtained by sieving experiment.
After the sieving test, the sieved solid was put into a specified container in turn according to the grain
size, from largest to smallest. Then, we shook the container and pressed the samples to make the
grains fully mixed. Then, we obtained the dry density of the samples by weighs and volume of the
samples. The density depends mainly on the triggering discharge (rainfall), on the channel slope and
on the transport capacity (entrainment rate) that determines the sediment concentration. Therefore no
post debris flow density analysis based on sieving experiment is reliable, only in situ measurements
promptly after the propagation and deposition are meaningful. The debris flow is composed of water
and solid materials. The dry density cannot reflect the debris flow density, so we poured water into
the containers. When the volume of water is two-third of the solid materials, we could obtain the first
density. By continuing to add water into the container, we could get the second density when the
volume of water is the same as the solid materials. In vicious debris flow, the sediment concentrations
are often in excess of 40% in volume. As the field conditions are relatively simple, we used the second
density, whose sediment concentration is about 50% in volume, as the density of debris flow (x3) data
in this study. The influencing variables data are shown in Table 2. Figure 6 shows how the density is
obtained in the field.
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Shangbaitan 150 35.8 2110 3.08
Zhugongdi 180 41.8 2040 2.97
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Zhiligou 170 10.2 2320 3.23

Mengguogou 180 5.6 2100 3.06



Water 2017, 9, 205 8 of 17

4. Methodology

4.1. Radial Basis Function Neural Network

Many processing elements called neurons work together in this system to solve problems.
The artificial neurons can be produced by computer program. An artificial neural network (ANN)
is created through the interconnected artificial neurons. This artificial neural network is capable of
learning and can be trained via a proper learning algorithm. There are different types of artificial
neural networks. One type of ANN is the radial basis function (RBF) neural network which uses radial
basis functions as activation functions. Radial basis function (RBF) neural network is a feed-forward
network. Its structure is similar to multilayer forward network. The RBF neural network has three
layers: an input layer, a hidden layer with nonlinear RBF activation functions and a linear output
layer. The structure of the RBF neural network is shown in Figure 7. The input layer is composed of a
signal source node. The output layer in the higher dimension space can realize the linear weighted
combination. The most used basis function is Gauss function. For any input vector X ∈ Rn:

Ri(x) = e
(
−‖X−Ci‖

2

2α2
i

)
i = 1, 2, . . . , p (2)

where Ri(x) is output of the ith hidden neuron. X is the n-dimension input vector. Ci is the center
vector of the ith neuron. αi is the basis width vector that can usually be determined experimentally.

RBF neural network learning process comprises unsupervised learning and supervised learning.
The unsupervised learning stage employs K-means clustering method to cluster the training samples.
After finding the cluster center Ci and αi, it conducts the supervised learning. When the Ci and αi
are determined, RBF neural network becomes a linear function from input to output. The steps are
as follows.

Step 1. Initialize the weights randomly
Step 2. Calculate the output vector Y by the equation:

yi =
p

∑
i=1

WiRi (3)

where Wi is the weight of the ith hidden neuron to the output node.

Step 3. Calculate the error εi for each neuron in the output by the equation:

εi = yi − y′i i = 1, 2, . . . , p (4)

where y′i is the desired output of the ith neuron in the output layer.

Step 4. Based on the least squares method, determine the weights between the hidden neurons and the
output nodes:

W = e
(

p
c2
max
‖X−Ci‖2)

i = 1, 2, . . . , p (5)

where cmax is the maximum distance between the selected centers.

Step 5. Update the weights until the error meets the requirement:

W ′ij = Wij + µεiRj i = 1, 2, . . . , m, j = 1, 2, . . . , p (6)

where W′ij is the updated weight and µ is learning rate. When the network clustering center Ci and
weight Wi are determined, we can conduct the predictions with the training model.
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4.2. The Gravitational Search Algorithm

Gravitational search algorithm (GSA) was proposed by Esmat Rashedi [48], which is a new
intelligent algorithm. GSA is a heuristic clustering algorithm, similar to genetic algorithm, particle
swarm optimization algorithm, ant colony optimization algorithm and simulated annealing algorithm.
It makes use of the gravitational force between particles in each group to guide the global population
search. The GSA can effectively avoid falling into local optimum to a solution.

GSA is inspired by the physical laws. In GSA, each individual contains four attributes: position,
inertial mass, active gravitational mass and passive gravitational mass. The position of individual is
the solution of the problem. To describe the GSA, consider a system with N agents masses:

Xi =
(

x1
i , . . . , xd

i , . . . , xn
i

)
, i = 1, 2, . . . , n (7)

where xi
d means the position of ith in dth space. In the process of the ith iteration, the force of individual

j act on i is defined as

Fd
ij(t) = G(t)

Mpi(t)Maj(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (8)

Rij(t) = ‖Xi(t), Xj(t)‖2 (9)

where G(t) is gravitational constant under the time t, Maj(t) is active gravitational mass of individual
j, Mpi(t) is positive gravitational mass of individual i, ε is a very small constant, and Rij(t) means the
Euclidean distance between the individual i and individual j.

Individual i forced by others in the d-dimension can be expressed as:

Fd
i (t) =

N

∑
j=1,j 6=i

randjFd
ij(t) (10)

where randj is a random number within the range of [0, 1], which increases the randomness of
the algorithm.

The acceleration function of individual i in the d-dimension can be calculated by the
following equation:

ad
i (t) =

Fd
i (t)

Mii(t)
(11)

where Mii(t) means the inertial mass of the individual i. The position of individual i is updated by
Equations (12) and (13).

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (12)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (13)

where vi
d(t) is the speed of i in the d-dimension, xi

d(t) is the position of i in the d-dimension, and randi
is a real number within [0, 1], which can enhance the ability of random search algorithm.



Water 2017, 9, 205 10 of 17

G0 is the initial value of gravitational constant G, with the increase of iteration times, G will
gradually decrease to control the accuracy of the search. G is a function of G0 and t:

G(t) = G0e−α
t

maxiter (14)

where G0 and α are constant, max iter is the maximum number of iterations.
The gravitational mass and inertial mass can be calculated by the fitness function. Assuming that

the gravitational mass and inertial mass are equal:

Mai = Mpi = Mii = Mi, i = 1, 2, . . . , N (15)

mi(t) =
fit(t)−worst(t)

best(t)−worst(t)
(16)

Mi =
mi(t)

∑N
j=1 mj(t)

(17)

where fiti(t) means the fitness value of i at t, and best (t) and worst (t) are defined, respectively,
as Equations (18) and (19):

best(t) = min
j∈{1,2,...,N}

fitj(t) (18)

worst(t) = max
j∈{1,2,...,N}

fitj(t) (19)

4.3. The Proposed GSA-RBF Method

In this study, we proposed an approach of using the gravitational search algorithm to optimize
the parameters of RBF neural network. By the proposed approach, we can obtain the optimal solution.

Assuming that the scale of the particles swarm is n. The position of i individual is represented by
M-dimension vector Xi. The position of particles swarm is presented by matrix Xn ×M. f (x) is the
minimized objective function, the optimized objective function of ith individual is:

f (Xi(t)) =
1
L

L

∑
l=1

M

∑
m=1

(ylm(t)− y′lm(t))
2 (20)

where L is the number of training data, M is the number of output neurons, y′lm (t) is expected output
value, and ylm (t) is the actual output value.

The specific steps of building GAS-RBF approach using 50 groups of measured velocity data in
the JJGB is shown in Figure 8.

4.4. The Modified Dongchuan Empirical Equation

The widely used equation in China, the modified Dongchuan empirical equation [29] (MDEE),
was used for calculating the six debris flow velocities. It can be used to validate the proposed approach.
The modified Dongchuan empirical equation for calculating viscous debris flow velocity is as follows:

V = KH
2
3 J

1
5 (21)

where V is debris flow velocity, K is coefficient of viscous debris flow velocity, H is the flow depth,
and J is channel gradient of gully.
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5. Results and Discussion

In Table 3, the results of 10 randomly selected testing data using RBF, MDEE and the proposed
GSA-RBF methods are presented. The measure values of the 10 testing data are obtained by field
measurements. The average relative errors using RBF, MDEE and GSA-RBF are 14.6%, 5.4%, and
3.7%, respectively. The maximum relative errors using RBF, MDEE and GSA-RBF are 30.3%, 10.3%
and 7.8%, respectively. We fit the data with straight lines and compute their correlation degree:
(i) Figure 9a shows a x-y plots of the measured velocity versus the RBF velocity, whose R2 value is
0.836; (ii) Figure 9b shows the measured velocity versus the MDEE velocity, whose R2 value is 0.942;
and (iii) Figure 9c shows the measured velocity versus the GSA-RBF velocity, whose R2 value is 0.968.
RBF performs the worst among the three methods. The MDEE results and the GSA-RBF results are
almost the same, which are similar to the measured velocity. However, the GSA-RBF has the strongest
correlation with the measured velocity. Thus, the GSA-RBF algorithm produced the highest quality
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solution in terms of predicting debris flow average velocity on the testing data in the JJG. The GSA-RBF
is able to find a near optimal solution while RBF easily trap into local optima. The GSA improves
the quality of solutions found by the RBF neural network. In this study, we used 40 groups of data
as training data, while Xu et al. used 45 groups of data as training data. In addition, we selected
ten groups as testing data. Xu et al. selected five groups as testing data, which were very different
from what we selected. The average relative errors using the GSA-RBF method (3.7%) and Xu and
coworkers’ method (1.3%) were very close, and both were acceptable.

Table 3. The testing results of using RBF, MDEE and GSA-RBF.

Measured Value
(m/s)

RBF MDEE GSA-RBF

Value (m/s) Relative Error (%) Value (m/s) Relative Error (%) Value (m/s) Relative Error (%)

4.8 6.1 27.1 5.0 3.6 5.0 4.2
4.9 5.3 8.2 4.7 3.6 4.8 2.0
4.7 5.3 12.8 4.7 0.5 4.7 0.0
7.7 7.9 2.6 7.2 6.3 7.1 7.8
7.7 8.1 5.2 7.4 3.3 7.2 6.5
3.9 5.0 28.2 4.2 7.0 3.6 7.7
3.9 4.9 25.6 4.2 9.0 4.1 5.1
6.4 6.2 3.1 5.8 10.0 6.4 0.0
3.7 3.8 2.7 3.7 0.2 3.8 2.7
7.6 9.9 30.3 6.8 10.3 7.7 1.3

Average error - 14.6 - 5.4 - 3.7
Maximum error - 30.3 - 10.3 - 7.8
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Specifically, the geological and environmental conditions in Wudongde Dam site reservoir are
similar to those of the JJG, and this study applies the GSA-RBF approach to predict the velocities of
six debris flow gullies near the Wudongde Dam. The proposed GSA-RBF approach works well in
predicting the JJG debris flow velocities. The six debris flow gullies in the study area are defined as
viscous debris flow [32,49,50]. They are similar to the JJG debris flow. This contributes to the safety
of the study area, helping protecting the buildings, farmland, villager lives and the environment.
However, there is no measured velocity in the six gullies. In China, the MDEE [51] is especially used
for calculating the debris flow velocity in the Dongchuan area. The study area is located in a similar
area to the JJG in the Dongchuan area [32,50]. Thus, the MDEE is also suitable to calculate the debris
flow velocities in the Wudongde dam area. Considering the research of the initiative condition of solid
accretion of debris flow, the pulled particle analysis (PPA) was used as comparison. Huang has proven
the PPA method to be a reliable method for predicting velocity in the study area. However, there still
exists disadvantage in that case.

Figure 10 shows that the accuracy using PPA is not as good as GSA-RBF, especially for Zhuzhahe
and Zhiligou. The MDEE is used as validation. The target grain size PPA method selected was the
largest, which led the predicted velocity to be much higher. On the other hand, combining with
the field investigation, the probability of occurring large scale debris flow was very low in the two
gullies. Huang recommended using the MDEE to calculate Zhuzhahe and Zhiligou debris flow velocity.
Meanwhile, debris flow can move very fast in steep channel, while it moves slower in low-gradient
reaches. The channel gradient of Zhuzhahe and Zhiligou are 5.0% and 10.2%, respectively, which
are much smaller than those of Xiabaitan, Shangbaitan and Zhugongdi. The velocities of Zhuzhahe
and Zhiligou should not be high. However, the PPA results are nearly the same as the other three
mentioned predicted debris flow velocities.

In contrast, the results using GSA-RBF are very similar to those using MDEE. The results of
six gullies using GSA-RBF are 13.9, 11.5, 11.2, 4.5, 6.8 and 9.1 m/s, respectively. The MDEE results
are 13.3, 10.7, 12.4, 4.1, 6.3 and 8.7 m/s, respectively. The average relative error ranges between
4.5% and 9.8%. Such minor error can be ignored because the debris flow velocity is not always the
same during its propagation. It means that the proposed GSA-RBF approach can be well applied
to predicting the velocities in the study area. Wang et al. found that principle component analysis
and self-organizing map methodologies are good predictors of basin susceptibility to debris flows.
They found that the susceptibility class of Xiabaitan, Shangbaitan, Zhugongdi and Mengguogou
are moderate. The susceptibility class of Zhiligou is low, and the susceptibility class of Zhuzhahe
is very low. The velocity can reflect the dangerous degree of debris flow. The results of our study
match with the susceptibility class results of Wang et al.: moderate, Xiabaitan (13.9 m/s), Shangbaitan
(11.5 m/s), Zhugongdi (11.2 m/s) and Mengguogou (9.1 m/s); low, Zhiligou (6.8 m/s); and very
low, Zhuzhahe (4.5 m/s). In Xu and coworkers’ work, the velocities of Xiabaitan, Shangbaitan and
Zhugongdi predicted using BP neural network are 12.8, 11.3 and 13.0 m/s, respectively. The results
using Xu and coworkers’ method and the proposed GSA-RBF are very close. We cannot determine
which method is better, but both methods verify the accuracy of the other method. In other words, the
works of Xu et al. and Wang et al. have proven that the results using GSA-RBF are reliable.

The MDEE is a good method for predicting the debris flow average velocities of the JJG. However,
it is only applicable to debris flow in the Dongchuan area. It is very important to find a method that can
be applied to predicting debris flows in other areas. In a later study, we could consider more variables
in predicting the debris flow velocity using GSA-RBF on the basis of measured data in other areas.
Although the MDEE has already given excellent results, it is shown in Equation (21) that the debris
flow velocity is only influenced by two variables: flow depths and channel gradient of gully. The debris
flow velocity is mainly dominated grain size, slope angle, sediment concentration, etc. [18–24]. In this
study, we took four variables into consideration using the GSA-RBF. Variables influencing debris flow
velocity are various [25,26]. In Table 1, debris flow velocity shows a positive correlation with each of
the four independent variables (x1, x2, x3, and x4), but these correlations are weak (R2 values range
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between 0.54 and 0.27). According to the previous work [26], we would expect a negative correlation
between debris flow velocity and grain size. The positive correlation in this data set is almost certainly
because of that these speed values do not depend only on grain size but on several variables at the
same time (x1, x2, x3 and x4). Furthermore, a single value of grain size cannot be representative of
the large grain size distribution that occurs in a debris flow. The x1, x2, x3 and x4 values provide an
oversimplified depiction of real debris flows. Thus, considering more variables affecting debris flow
velocity, the GSA-RBF is more appropriate to predict debris flow average velocity.

Meanwhile, in order to get more accurate influencing variable data, fieldwork and experiments
should be improved. For example, the average grain size plays a great role in predicting the velocities,
so researchers need to select proper deposits for experiments. It is necessary to get more accurate
average grain size. The widely used Wolman pebble count method [52,53] is described by various
publications. This technique requires the observer to measure sizes of random particles using
a gravelometer. In later studies, we could try different sieving method to get the grain size variable.
In addition, the deposits may be ancient landslide deposits, which are not the source of debris flow.
Researchers should distinguish what the deposits are. Finally, the new proposed approach only uses
40 groups of data. Even though the data were reliably measured data, the data were insufficient and
the range of the velocities was not large enough. More measured data should be used to establish
a better approach for predicting debris flow velocity.
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6. Conclusions

This study selected four influencing variables including flow depth, gradient of the channel,
debris flow density and average grain size. The measured velocity data in the Jiangjia gully were
used for building the GSA-RBF approach. Satellite images were introduced to select dangerous debris
flow catchment.

The findings contribute to obtaining more accurate debris flow velocities of the six gullies in the
study area. The findings are as follows: (i) the GSA-RBF predicted debris flow velocities are very
close to the measured values, which performs better than those using RBF neural network alone;
(ii) the GSA-RBF results and MDEE results are similar in the JJG debris flow velocities prediction,
and GSA-RBF performs better; (iii) in the study area, the GSA-RBF results are validated as reliable;
and (iv) we could consider more variables in predicting the debris flow velocity using GSA-RBF on
the basis of measured data in other areas, which is more applicable. Because the accuracy of the
GSA-RBF approach was high, both the numerical simulation and the empirical equation can be taken
into consideration for constructing debris flow mitigation works. They could be complementary and
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verified for each other. The proposed approach is reliable to guide the development of the Wudongde
Dam site area. The findings contribute to showing a good ability of proposed approach for predicting
debris flow velocities. The results are helpful for decision makers to develop mitigation works to
keep the Wudongde Dam working normally, and will also contribute to the sustainable environment
development of the reservoir area.
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