Advancing Sequential Managed Aquifer Recharge Technology (SMART) Using Different Intermediate Oxidation Processes

Karin Hellauer, Dorothea Mergel, Aki S. Ruhl, Josefine Filter, Uwe Hübner, Martin Jekel and Jörg E. Drewes

---- Oxygen (mg/L) - → - DOC (mg/L) ····▲··· UV254 (1/m)

Figure S1. Profile data of the DO, DOC and UV₂₅₄ measurements of the systems SMART O₂ and SMART O₃ after aeration with pure oxygen or ozone, respectively ($n \ge 4$).

Figure S2. Profile data of the systems SMART air, SMART O₂ and SMART O₃ after aeration with air, pure oxygen or ozone, respectively, of all quantified TOrCs with effluent concentrations of the first filtration step > LOQ despite sulfamethoxazole. Values < LOQ are referred to LOQ/2.Results are shown as mean values with standard deviation as error bars ($n \ge 4$).

Compound	Molecular Formular	Influent Concentration (ng/L)	LOQ (ng/L)	ko3 (M ⁻¹ s ⁻¹)	к он (M ⁻¹ s ⁻¹)	Fragments Quantifier/Qualifier (m/z)	Internal Standard
Acesulfame	C4H5NO4S	556 ± 276	250	88 [1]	$4.6 \times 10^9 [1]$	82.1/78.0	acesulfame-d4_86.1 / acesulfame-d4_78.0
Benzotriazole	C6H5N3	2603 ± 472	100	2.4×10^{2} [2]	7.6 × 10 ⁹ [3]	65.0/92.0	benzotriazole-d4_69.1/benzotriazole-d4_96.1
Candesartan	C24H20N6O3	5448 ± 1099	500	-	-	263/423	benzotriazole-d4_143.0/benzotriazole-d4_320.0
Carbamazepine	C15H12N2O	667 ± 191	50	~ 3 × 10 ⁵ [4] ^a	$8.8 \pm 1.2 \times 10^{9}$ [4] ^b	194.1/179.1	carbamazepine-d8_202.1/carbamazepine-d8_185.1
Diatrizoic acid *	C11H9I3N2O4	1667 ± 911	100	0.05 ± 0.01 [5]	$5.4 \pm 0.3 \times 10^8$ [5]	361.0/233.0	iopromide-d3_575.8/iopromide-d3_299.6
Diclofenac	$C_{14}H_{11}Cl_2NO_2$	1291 ± 444	100	$\sim 1 \times 10^{6} [4]^{a}$	$7.5 \pm 1.5 \times 10^{9}$ [4] ^b	214.0/179.0	diclofenac-d4_218.0/diclofenac-d4_183.0
Gabapentin	C9H17NO2	517 ± 125	50	2.2×10^{2} [2]	9.1 × 10 ⁹ [2]	137.1/154.1	gabapentin-d4_139.1/gabapentin-d4_158.1
Iomeprol	C17H22I3N3O8	1179 ± 414	100	similar to iopromide **	$2.0 \pm 0.1 \times 10^9$ [6]	531.9/404.9	iomeprol-d3_534.9/iomeprol-d3_407.9
Iopromide	C18H24I3N3O8	970 ± 489	10	< 0.8 [4] ^a	$3.3 \pm 0.6 \times 10^{9}$ [4] ^b	572.8/299.6	iopromide-d3_575.8/iopromide-d3_299.6
Methylbenzotriazole	C7H7N3	955 ± 250	50	$4.0-4.9 \times 10^2$ [7]	-	77.0/79.1	5-methylbenzotriazole-d6_81.0/ 5-methylbenzotriazole-d6 85.0
Metoprolol	C15H25NO3	450 ± 280	10	$2.0 \pm 0.6 \times 10^3$ [8]	$7.3 \pm 0.2 \times 10^9$ [8]	116.1/159.0	sulfamethoxazole-d4_160.0/ sulfamethoxazole-d4_112.0
Olmesartan	C24H26N6O3	3010 ± 641	500	-	-	207/429	5-methylbenzotriazole-d6_81.0/ 5-methylbenzotriazole-d6_85.0
Sulfamethoxazole	C10H11N3O3S	137 ± 54	50	~2.5 × 10 ⁶ [4] ^a	$5.5 \pm 0.7 \times 10^{9}$ [4] ^b	156.0/108.0	sulfamethoxazole-d4_160.0/ sulfamethoxazole-d4_112.0
Valsartan	C24H29N5O3	422 ± 534	100	38 [2]	~1010 [2]	291.0/235.0	bezafibrate-d4_143.0/bezafibrate-d4_320.0
\$7.1 1		2102 . 502	10			206/178	5-methylbenzotriazole-d6_81.0/
Valsartan acid	C14H10IN4O2	3103 ± 582	10	-	-		5-methylbenzotriazole-d6_85.0
Venlafaxine	C17H27NO2	234 ± 69	50	8.5 × 10 ³ [2]	~1010 [2]	58.0/260.0	carbamazepine-d8_202.1/carbamazepine-d8_185.1
4-Formylaminoantipyrine	C12H13N3O2	1656 ± 924	100	6.5×10^4 [9]	-	77.0/56.1	sulfamethoxazole-d4_160.0/ sulfamethoxazole-d4_112.0

Table S1. List of quantified TOrCs.

[1] pH = 7, T = 20 °C; [2] pH = 7, T = 22 ± 2 °C; [3] pH = 5.8; [4] a pH = 7, T = 20 °C; [4] b pH = 7, T = 25 °C; [5] T = 20 °C; [6] pH = 7.0 ± 0.1, T = 22 ± 1 °C; [7] pH = 7; [8] pH = 7, 20–22 °C; [9] pH = 7, 20 °C; * k₀₃ and k₀H refer to diatrizoate; ** both compounds have similar structures.

References

- 1. Kaiser, H.-P.; Köster, O.; Gresch, M.; Périsset, P.M.; Jäggi, P.; Salhi, E.; von Gunten, U. Process Control For Ozonation Systems: A Novel Real-Time Approach. *Ozone Sci. Eng.* **2013**, *35*, 168–185.
- 2. Lee, Y.; Kovalova, L.; McArdell, C.S.; von Gunten, U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. *Water Res.* **2014**, *64*, 134–148.
- 3. Naik, D.B.; Moorthy, P.N. Studies on the transient species formed in the pulse radiolysis of benzotriazole. *Radiat. Phys. Chem.* **1995**, *46*, 353–357.
- 4. Huber, M.M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. *Environ. Sci. Technol.* **2003**, *37*, 1016–1024.
- 5. Real, F.J.; Benitez, F.J.; Acero, J.L.; Sagasti, J.J.P.; Casas, F. Kinetics of the Chemical Oxidation of the Pharmaceuticals Primidone, Ketoprofen, and Diatrizoate in Ultrapure and Natural Waters. *Ind. Eng. Chem. Res.* **2009**, *48*, 3380–3388.
- 6. Jeong, J.; Jung, J.; Cooper, W.J.; Song, W. Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes. *Water Res.* **2010**, *44*, 4391–4398.
- 7. Holger Lutze. Ozonung von Benzotriazolen. Bachelor's Thesis, 2005. (In German)
- 8. Benner, J.; Salhi, E.; Ternes, T.; von Gunten, U. Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. *Water Res.* **2008**, *42*, 3003–3012.
- 9. Favier, M.; Dewil, R.; van Eyck, K.; van Schepdael, A.; Cabooter, D. High-resolution MS and MS(n) investigation of ozone oxidation products from phenazone-type pharmaceuticals and metabolites. *Chemosphere* **2015**, *136*, 32–41.

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).