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Abstract: Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating
greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to
the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone are
not available. We quantified the abundance of thermokarst lakes in the continuous, discontinuous,
and sporadic permafrost zones of the western Siberian Lowland (WSL) using Landsat-8 scenes
collected over the summers of 2013 and 2014. In a territory of 105 million ha, the total number of
lakes >0.5 ha is 727,700, with a total surface area of 5.97 million ha, yielding an average lake coverage
of 5.69% of the territory. Small lakes (0.5–1.0 ha) constitute about one third of the total number of
lakes in the permafrost-bearing zone of WSL, yet their surface area does not exceed 2.9% of the total
area of lakes in WSL. The latitudinal pattern of lake number and surface coverage follows the local
topography and dominant landscape zones. The role of thermokarst lakes in dissolved organic carbon
(DOC) and most trace element storage in the territory of WSL is non-negligible compared to that of
rivers. The annual lake storage across the WSL of DOC, Cd, Pb, Cr, and Al constitutes 16%, 34%,
37%, 57%, and 73%, respectively, of their annual delivery by WSL rivers to the Arctic Ocean from
the same territory. However, given that the concentrations of DOC and metals in the smallest lakes
(<0.5 ha) are much higher than those in the medium and large lakes, the contribution of small lakes to
the overall carbon and metal budget may be comparable to, or greater than, their contribution to the
water storage. As such, observations at high spatial resolution (<0.5 ha) are needed to constrain the
reservoirs and the mobility of carbon and metals in aquatic systems. To upscale the DOC and metal
storage in lakes of the whole subarctic, the remote sensing should be coupled with hydrochemical
measurements in aquatic systems of boreal plains.
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1. Introduction

The quantification of the abundance, size distribution, and water storage of lakes and reservoirs
has critical importance for the evaluation of carbon and nutrient storage, and the potential of
greenhouse gas (GHG) exchange between the Earth’s surface and the atmosphere. For these reasons,
several detailed studies have documented the lake number and size distribution on the scale of our
planet [1–3]. Thus, the use of medium resolution Landsat-7 images has allowed the creation of a global
database of lakes and water reservoirs, including all lakes larger than 0.2 ha or 45 m × 45 m [3,4].
The total number of lakes was estimated as being 117 million, with an overall surface area of
5 × 106 km2 (500 × 106 ha), which corresponds to 3.7% of the non-glaciated land area. The number of
small lakes (0.2–1 ha) is around 90 million, whereas their overall area is equal to 25 × 106 ha, which is
only 5% of the overall lake surface coverage. The small lakes exhibited a deviation from the general
power dependence between the lake size and the lake number [4,5]; as a result, the extrapolation of
power law to smaller lakes may overestimate the lake number [3]. At the same time, the small lakes
subjected to full freezing in winter or evaporation in summer, with a short residence time of water, play
a crucial role in the integration of the carbon and other elements transported from the watershed [6–8],
which is particularly important in high latitude regions, which are the most vulnerable to climate
change [9,10].

The Arctic and subarctic permafrost-bearing regions exhibit the maximal changes in the terrestrial
freshwater budget, although the hydrological responses to environmental changes strongly differ
across the boreal and subarctic regions of the subarctic [11]. In particular, in the tundra, continuous
permafrost development strongly influences water fluxes and storage, whereas in boreal plains, slow
surface and subsurface water movement produces extensive wetlands [11]. Once the permafrost
becomes discontinuous to sporadic in the south, this allows significant groundwater feeding of
rivers [12] and, presumably, lakes [13].

In this regard, the boreal and tundra plains are extremely important for a lake inventory study
because of the high coverage of the watershed area by these lakes (up to 70% in some western Siberian
river watersheds [14,15]), and fast temporal dynamics of thermokarst lake landscapes, reflecting
on-going climate change in their watersheds [16–20]. The latter brings about a shorter residence
time of lakes, whose size changes, especially at southern latitudes, due to the disappearance of
sporadic and isolated permafrost. It is also worth noting the primary role of lakes in controlling
greenhouse gas exchange with the atmosphere, both in permafrost-free [21,22] and permafrost-bearing
regions [9,23–26].

Over the past decades, the formation of thermokarst lakes and thaw ponds due to permafrost
degradation was documented in Alaska, Canada, Europe, and Siberia [27–31]. The majority of available
studies had a rather limited geographic coverage (<10,000 km2, [16,32,33]), or described relatively
small regions within larger territories [29]. The high resolution studies, down to 0.1 ha lake size,
dealt with even smaller territories (700 km2 in ref. [34]; 4 km2 in ref. [35]; 1.4 km2 in ref. [36]), whereas
the large geographic coverages, on the scale of one hundred thousand to million km2, were limited to
large lakes (>5 ha in North American Arctic, ref. [37,38] and 10–40 ha in western Siberia, ref. [39,40]).

Several studies of thermokarst lakes in Alaska, Yukon, Scandinavia, and Siberia, were focused
on monitoring the change in the lake area over the past 30–40 years, within relatively small
regions [18,29,41–45]. Remote sensing studies of the permafrost zone of western Siberia demonstrated
that the number of newly formed small thermokarst lakes (0.5–5 ha) over the past three decades exceeds,
by a factor of 20, the number of large lakes which tend to disappear during the same period [46].
Recently, the dynamics of the number and surface area of thermokarst lakes in the discontinuous
permafrost zone of western Siberia, over the period of 1973 to 2009, has been studied within the
watersheds of the Nadym and Pur rivers [47]. According to these authors, the temporal evolution
of large size (>10 ha) lakes, whose number constituted 78%–85% of all lakes, exhibited a variation
within 10%. The size distribution of thermokarst lakes followed the power law, both in eastern [30]
and western [47,48] Siberia. In particular, Polishchuk et al. [48] presented the results of the number of
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appearing and disappearing lakes in western Siberia between the 1970s and the present time, and the
laws of statistical distribution of very small lakes (<0.5 ha) on several test sites of the western Siberian
Lowland (WSL). In contrast, the present study encompasses a much larger territory of western Siberia
and provides, for the first time, a full inventory of large to small lakes (>0.5 ha).

The main goal of the present study was to establish the law of the lake number and area
distribution for the whole WSL territory and to bring together the hydrology and hydrochemistry using
available data on lake depth and carbon and metal concentration in the lake water. Towards this goal,
we classified and analyzed medium resolution Landsat-8 scenes, which provided complete coverage
of the WSL (105 × 106 ha or 1.05 million km2). The first specific objective of this study was to increase
the resolution of the lake size to 0.5 ha for the whole territory of permafrost-affected WSL, in order
to compare the results with the global database [3]. Indeed, in view of the disproportionally high
importance of small thermokarst water bodies relative to medium and large lakes in GHG emission and
C storage [49–51], a rigorous quantification of the number and area of thermokarst lakes is very timely.
The second objective of this work was to assess the water, carbon, and metal storage in thermokarst
lakes. Recent progress in the quantification of depth, and area and lake size-averaged concentrations
of major and trace elements in western Siberian thermokarst lakes [49,50,52–54], allows a first-order
evaluation of the water and element stocks in lakes and a characterization of the role of lakes in element
storage, relative to rivers draining the same territory.

2. Materials and Methods

2.1. Study Area

The studied region is located within a tundra and forest-tundra zone of the northern part of the
western Siberia lowland (1.05 × 106 km2). In the northern part of the WSL, the sporadic, discontinuous,
and continuous permafrost zones share 31.7%, 29.1%, and 39.2% of the overall territory, respectively
(Figure 1). The mean annual temperature (MAT) ranges from −0.5 ◦C in the permafrost-free region
(Tomskaya region) to −9.5 ◦C in the north (Yamburg), and the annual precipitation ranges from 400
to 460 mm. For the period of the end of July–August in the central part of the studied zone (Novuy
Urengoy), the average low daily temperature was 17.4 ◦C and 10.9 ◦C in 2013 and 2014, respectively.
The average high temperature was 23.4 and 14.9, respectively. A detailed physico-geographical
description, hydrology, lithology, and list of the soils can be found in earlier works [55,56] and
in our recent limnological and pedological studies [50,53,54,57]. The WSL has rather homogenous
landscape conditions (palsa peat bogs, forest-tundra, and polygonal tundra), lithology (Pliocene sands
and silts), soil cover (1–1.5 m thick peat, half of soil profile is frozen), and runoff (200–250 mm·year−1),
across a large gradient of permafrost coverage [58–60].

The bioclimatic sub-zones of permafrost-affected WSL regions gradually change northward, from
the northern taiga zone (38 × 106 ha) to forest tundra (13 × 106 ha), southern tundra (30 × 106 ha),
and northern tundra (24 × 106 ha). A detailed GIS survey of the WSL allowed the quantification of
the regional distribution of major wetland types and complexes [56]. According to those authors,
the sporadic permafrost zone, north of the Ob River (61◦–63◦ N), is dominated by sphagnum bogs
with pools and an open stand of trees with abundant forested (treed) shrubs- and moss-dominated
mires. The discontinuous permafrost zone (63◦ to 67◦ N) of the forested tundra and southern tundra
essentially comprises high palsa and flat palsa mires, mixed with palsa-hollow and pool-hollow
patterned mires. Flat-palsa and hollow-pool flat-palsa bogs are also abundant in this region. Finally,
further to the north, within the continuous permafrost zone of the southern and northern tundra
(67◦–73◦ N), the landscape is dominated by patterned (hollow and hollow-pool) flat-palsa bogs,
polygonal mires combined with grass and moss-dominated mires [56]. Thermokarst lakes are highly
specific water bodies of the permafrost zone of the WSL: they have a shallow depth and are rarely
connected to the hydrological network [61]. Most lakes of the northern part of the WSL freeze solid in
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winter and have frozen sediments at their bottom throughout the year [54]. The region is dominated
by the presence of thermokarst lakes having a <100 ha surface area [42,62,63].Water 2017, 9, 228  4 of 18 
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Figure 1. Location of three permafrost zones in the study territory of western Siberia. The position of the
permafrost provenances in the western Siberian Lowland (WSL) is based on extensive geocryological
work in this region [59].

The lakes are located within peat flat-mound bogs (ridge-hollow complex, palsas, and polygonal
tundra); the bottom sediments of the lakes are dominated by peat detritus. An active thermokarst
occurs due to the thawing of syngenetic and epigenetic segregation ice, ice wedges, and ice layers
in the deep (>2 m) horizons, and is primarily due to the ice thawing of the active layer (<2 m).
The thermokarst activity produces depressions, subsidences, and ponds, which are usually separated
by flat mound peat bogs up to 2 m in height [64]. The largest thermokarst lakes that are located
within the peat bog are km-size, with a depth of 0.5–1.5 m [64,65]. The overwhelming majority of
lakes in all three permafrost-bearing zones of the WSL (sporadic, discontinuous, and continuous) have
a thermokarst origin, i.e., thawing of frozen peat and clay surface horizons [42,53,61,66]. As a result,
most thermokarst lakes of the WSL exhibit quite a shallow depth, ≤1 m, in contrast to the deeper
lakes of other Arctic regions, originating from surface disturbance, the melting of ground ice, and ice
wedges (e.g., ref. [67]).

2.2. Remote Sensing Analysis

Satellite imagery from a Landsat-8 Operational Land Imager (OLI, with 30 m resolution),
available at USGS Global Visualization Viewer [68], were used to map the lake distribution. We used
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medium-resolution Landsat-8 images collected at the end of July–August 2013–2014. This period
corresponds to the minimal coverage of the territory by lakes and minimal seasonal variation of the
lake water level. Besides, this is the period of total disappearance of ice coverage throughout all of
the studied area. The sampling of the lake water and lake depth measurements was also performed
during this period of the year. Note that, from the view point of optical remote sensing, there is no
difference between thermokarst and non-thermokarst lakes, because their reflection yield for Landsat-8
OLI is similar. However, according to published expert estimations of several zones of the WSL [42],
the majority of lakes on the WSL are of thermokarst origin.

For the total territory of 1.05 million km2, we superposed 134 images (Figure 1). We used not only
the images with <10% of cloud, but all of the images that were useful to fill the gaps in the coverage.
Nevertheless, for the mosaic, only the cloudless parts of the images were used. In the case where
several images were available for the same territory, the one which had the lowest cloud coverage in
the middle of the summer was used. The mosaic consisted of images taken in 2013 and 2014, which
were combined because the single year data could not provide full coverage of the territory.

The river waters were excluded from the analyses via the creation of the river mask. The data
of the river location were taken from national river water cadasters and open street maps. The open
ocean and marine coastal zones were also excluded from the analyses. The treatment of satellite
images was performed using standard tools of ArcGIS 10.3 software [69], which included classification,
vectorization, and surface area quantification. The automatic identification of lakes employed the
Fmask algorithm developed for Landsat images, which allows resolving the lakes under some cloud
coverage [70]. First, for the mosaic of Landsat 8 imagery, the cloud masks were defined for individual
images. Then, the cloud masks were removed from the images and replaced by cloud-free fragments
taken from other adjacent images. The minimal lake size was chosen as 0.5 ha, based on following.
The space resolution of Landsat-8 images is 30 m. Because the pixel size of the image is equal to
30 m × 30 m (900 m2), in the area of 0.5 ha, one can distinguish 5.55 pixels in size. This number
of pixels is sufficient for the reliable identification of lakes from the background digital noise of
the image. According to the works of our group and Bryksina [18,31,41,46,48], the uncertainty of
the lake area measurement using remote sensing is a few percent. Note that the thermokarst lakes
and thaw ponds of western Siberia are different from the glacial lakes of other boreal and subarctic
regions. The latter are often developed on the moraine till and crystalline rocks, and present highly
irregular shapes (skinny or elongated along the glacier direction). In contrast, due to the homogeneity
of the soil substrate in western Siberia (1–3 m thick frozen peat), the thermokarst processes in the
peat bog of this region always produce the isomeric (round, and much less common, oval) isolated
water bodies [14,31,50,61]. According to our field and topographical map-based measurements across
a sizeable latitudinal gradient of western Siberia, the share of lakes having an irregular shape is less
than 10% [49,53,54].

To assess the latitudinal dependence of thermokarst lake properties, the studied territory was
divided into latitudinal zones of 0.5◦ wide. Such a division of the territory was consistent with the
latitudinal gradient of the permafrost and landscape features of the WSL [56,71]. Using ArcGIS 10.3
software [69], we first measured the area and number of lakes on each 0.5◦-zone of mosaic of the
Landsat 8 imagery. First, we conducted the vectorization and then we determined the area of lakes
using the standard procedure of all GIS software. This allowed the quantification of the number,
surface area, and volume of lakes, the density of lakes, and the degree of land surface coverage
by lakes, as described below. The total lake area (Stot) in each 0.5-degree zone was computed from
Equation (1):

Stot =
n

∑
i

Si (1)

where Si is the surface of the i-th lake and n is the number of lakes. The lake fraction is calculated as
the ratio of Stot/So, where So is the area of each 0.5-degree zone. The lake density was computed as
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the number of lakes (n) per unit of area, n/So. In order to estimate the stock of carbon and related
elements in lakes, the lake volume (V) was computed following Equation (2):

V =
n

∑
i

hi × Si (2)

where hi is the averaged depth of the i-th lake, which primarily depends on the lake size (see Section 2.3).
We used a power dependence between the number and the surface area of lakes in the WSL

(correlation coefficient r = 0.99, p < 0.001), in accordance with global distribution law [2]:

k = A × sB (3)

where k is the relative number of lakes in the histogram intervals, s is the lake surface area, and A and
B are the empirical constants that depend on permafrost and landscape context, respectively.

2.3. Lake Depth and Hydrochemistry

The depth of thermokarst lakes in the WSL depends on their size. The detailed depth mapping of
~50 lakes larger than 2 ha having a solid bottom (frozen sand or silt) was performed via a Humminbird
GPS-echosounder from a PVC boat, along several transects of the lake. The minimal depth of probing
was 20 cm. The depth of the PVC boat submersion was between 5 and 10 cm, and necessary corrections
for the sensor position were made. In lakes shallower than 50 cm, a manual depth measurement with
a calibrated stick was performed. The small lakes (0.5–2 ha), having essentially frozen peat at the
bottom with a high amount of porous organic detritus, were monitored via the manual probing of the
water depth, across the lake transect or in the middle of the lake. Based on available field measurements
of the depth and surface areas of ~150 thermokarst lakes from the sporadic to continuous permafrost
zone [14,31,49,50,52–54,61,72–77], the depth was approximated to be equal to 0.54 ± 0.25 m (2 s.d.)
for lakes smaller than 2 ha, and 0.85 ± 0.25 m (2 s.d.) for lakes ≥2 ha. The average uncertainty of
these values of hi is 20% for n = 150. One has to note that the two discrete numbers of lake depth
used in this study for a survey of 727,700 lakes is a first-order approximation. However, all ~150
thermokarst lakes studied by our group over the last nine years in the WSL, across three permafrost
zones, were extremely similar and exhibited an average depth of 1.0 ± 0.5 m. This is a particular
feature of the WSL thermokarst lakes located within the polygonal tundra, the peat palsa bog, and the
ridge-lake-bog complexes.

The total stock of dissolved organic carbon, and major and trace elements in the lakes of the
permafrost zone of the WSL, was evaluated based on the available dependencies between the lake
surface area and the dissolved components of the lake water, obtained during extensive sampling
campaigns in July 2010, 2012, and July–August 2013–2014 [50,52–54,75,76]. For this, water samples
were collected from the lake surface (0.3 to 0.5 m) in pre-cleaned polypropylene containers and
filtered on-site or within 4 h after sampling through disposable acetate cellulose filter units (0.45 µm
poresize, 33 mm diameter), using sterile plastic syringes and vinyl gloves. An ultraclean sampling
procedure was used [78]. The filtered samples were stored at 4–5 ◦C in the dark, before analysis.
The concentrations of dissolved organic and inorganic carbon (DOC and DIC, respectively), cations,
and trace elements (TEs), were measured using routine methods for analyzing boreal water samples
in the GET laboratory (Toulouse) [79,80]. The DOC and DIC were measured using a Shimadzu Total
Organic Carbon Analyzer TOC 6000 with an uncertainty of 5%. The trace metals were measured
using inductively coupled plasma-mass spectrometry (ICP-MS, Agilent 7500 CE and Element XR),
with indium and rhenium as the internal standards and a precision better than ±5%.

For an estimation of the stock of DOC and metals in lakes, the area-averaged values of element
concentration in the lake water of discontinuous to continuous permafrost zones [53], complemented
with data from discontinuous [49,54,74] and discontinuous to sporadic permafrost regions [50,52], were
used. The available databases included a sufficient number of lakes of different sizes, so that the lake
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size-element concentration dependencies could be obtained for each latitudinal range. Specifically, we
sampled ~100 lakes in the discontinuous permafrost zone, ~50 lakes in the continuous permafrost
zone, and 30 lakes in the sporadic permafrost zone. For most elements, the concentrations were weakly
sensitive (p > 0.05) to the lake size for lakes >0.5 ha. The exception was dissolved organic carbon (DOC),
whose concentration was approximated by the power dependence [DOC, mg/L] = 190 × S(m2)−0.26

for lakes of 0.5 to 50 ha and is assumed equal to 10 mg/L for lakes >50 ha. Some elements exhibited
a clear latitudinal trend in the thermokarst lakes of the WSL, from south to north (e.g., Ca, ref. [53]).
This trend has been taken into account via an equation of polynomial dependence between the element
concentration (Ci) and the latitude (◦ N), applied to each latitudinal range in which the stock of water
was evaluated:

Ci = a + b × N + c × N2 (4)

where a, b, and c are the empirical coefficients, specific for each element.

3. Results

The number and surface area of lakes as a function of latitude are shown in Figure 2A,B, and
the lake density and relative coverage of the surface area are illustrated in Figure 3A,B respectively.
Presented in these plots are the average values of the territory of each 0.5◦-wide latitudinal zones.
In the region of 61◦–65◦ N (sporadic to discontinuous permafrost), there are large (a factor of two
to three) non-systematic variations of all physical parameters of the lakes. In the zone of 65◦ to
69◦ N (discontinuous to continuous permafrost), the lake number and the relative coverage decrease
with the latitude, whereas north of 69◦–70◦ N, the lake number and surface area decrease with the
latitude increase.

Note that the irregular oscillations of lake density and area coverage, visible in the 0.5◦-wide
latitudinal zones, are linked to the spatial non-homogeneity of the thermokarst lake distribution.
They disappear after a smoothing procedure in wider (2◦) latitudinal zones (red dashed line in
Figure 3). The results of measured lake parameters within the full WSL permafrost-affected territory
(1.05 million km2) are listed in Table 1 and the map of the WSL coverage by lakes is given in Figure 4.
There are 0.73 million lakes larger than 0.5 ha, with a total lake surface area of 5.97 million ha. It can be
seen from Table 1 that the lake density and lake relative coverage increase by 19.3% and 13.8% from
sporadic to continuous permafrost, respectively. The increase in the total lake number and their overall
surface area from sporadic to continuous permafrost is equal to 42% and 48%, respectively.
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Table 1. Thermokarst field parameters in different permafrost zones.

Permafrost Total Number of
Lakes, Thousand

Total Area of
Lakes, Million ha

Lake Coverage of
the Area, %

Lake Density, Number
of Lake per km2

All territory 727.7 5.97 5.69 0.69
Continuous 305.0 2.59 6.28 0.74

Discontinuous 207.7 1.65 5.41 0.68
Sporadic 215.0 1.75 5.26 0.65

The partitioning of the lake number and surface area among different size ranges is listed in
Table 2. The main contribution to the overall area and volume (about 85% and 87%, respectively)
is provided by medium and large lakes (>5 ha), with the largest share of the total area and volume
(15.5% and 16%, respectively) being kept by lakes whose size is between 20 and 50 ha. The number
of lakes increases with a decrease in the size, but the overall surface area and water stock decrease
for lakes <20 ha. Thus, the small lakes (0.5–1.0 ha) provide only 3% of the overall area, with less than
2% of the total water volume. It is therefore expected that the overall area of numerous lakes smaller
than 0.5 ha will be lower than 3%, although high-resolution images are necessary to confirm this trend.
Empirical dependencies of lake number as a function of lake size for the three permafrost zones of
western Siberia are illustrated in Figure 5. The empirical coefficients of Equation (3) (A and B) for each
permafrost zone of the WSL territory are listed in Table 3.

Taking into account the volume of the lake water in each lake size range and across the WSL
territory (Table 3), the total amount of each dissolved (<0.45 µm fraction) element in all of the
thermokarst lakes (>0.5 ha) of the WSL were estimated (Table 4). The typical uncertainty of these
values ranges from ±20% to ±30%, with the exception of some elements (Zn, Cr, Ni, and Ba) exhibiting
±50% of the average value, due to a significant latitudinal trend and lake size dependence of element
concentration in the lake water.

Table 2. Lake number, lake area, and volume for different size ranges.

Size Range,
ha

Number of Lakes Their Surface Area Water Stock

Lakes % ha % km3 %

0.5–1 240,582 33.056 173,768 2.9 0.938 1.9
1–2 171,309 23.540 247,303 4.1 1.335 2.7
2–5 152,240 20.920 481,651 8.1 4.094 8.3
5–10 72,091 9.910 507,488 8.6 4.314 8.7

10–20 43,443 5.970 609,713 10.2 5.183 10.5
20–50 30,081 4.130 926,364 15.5 7.874 15.9
50–100 10,354 1.420 717,571 12.0 6.099 12.3

100–200 4636 0.640 638,175 10.7 5.425 11.0
200–500 2227 0.310 666,245 11.2 5.663 11.5

500–1000 511 0.070 352,499 5.9 2.996 6.1
1000–2000 169 0.020 233,803 3.9 1.987 4.0
2000–5000 57 0.010 162,680 2.7 1.384 2.8

5000–10,000 19 0.003 125,671 2.1 1.068 2.2
10,000–20,000 9 0.001 123,066 2.1 1.046 2.1

Total: 727,728 100.000 5965,997 100.0 49.40 100.0

Table 3. Parameters of Equation (3) for three permafrost zones of the WSL.

Zone A B

continuous 15.96 × 109 −2.224
discontinuous 6.82 × 109 −2.154

sporadic 1.68 × 109 −2.065
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Table 4. Dissolved organic and inorganic carbon (DOC and DIC, respectively), and major and trace
element stocks in the thermokarst lakes of the Western Siberia Lowland (105 million ha). The major
and trace elements are listed in the order of increasing atomic number (periodic table).

Element C, µg/L Stock, Ton Element C, µg/L Stock, Ton

DOC 20,000 ± 10,000 500,000 ± 150,000 Zn 10 ± 5 500 ± 250
DIC 430 ± 100 22,200 ± 5000 As 0.63 ± 13 31 ± 6

B 3 ± 1 150 ± 50 Rb 0.3 ± 0.1 15 ± 5
Mg 190 ± 40 9400 ± 2000 Sr 6 ± 2 300 ± 100
Al 120 ± 20 6000 ± 1000 Zr 0.10 ± 0.03 4.9 ± 0.5
Si 300 ± 100 15,000 ± 5000 Mo 0.05 ± 0.02 2.5 ± 0.5
K 235 ± 60 12,000 ± 3000 Ba 3.0 ± 1.5 150 ± 75
Ca 700 ± 500 30,000 ± 20,000 Cd 0.02 ± 0.005 0.99 ± 0.25
V 0.6 ± 0.2 30 ± 10 La 0.20 ± 0.06 9.9 ± 3.0
Cr 1.0 ± 0.5 50 ± 25 Ce 0.10 ± 0.03 4.9 ± 0.5

Mn 20 ± 3 900 ± 150 Nd 0.10 ± 0.03 4.9 ± 0.5
Fe 200 ± 50 10,000 ± 4000 Pb 0.26 ± 0.05 12.8 ± 2.5
Co 0.10 ± 0.025 4.9 ± 1.2 Th 0.015 ± 0.005 0.74 ± 0.24
Ni 0.4 ± 0.2 20 ± 10
Cu 0.55 ± 0.15 27 ± 7

Water 2017, 9, 228  9 of 18 

 

The partitioning of the lake number and surface area among different size ranges is listed in 
Table 2. The main contribution to the overall area and volume (about 85% and 87%, respectively) is 
provided by medium and large lakes (>5 ha), with the largest share of the total area and volume 
(15.5% and 16%, respectively) being kept by lakes whose size is between 20 and 50 ha. The number 
of lakes increases with a decrease in the size, but the overall surface area and water stock decrease 
for lakes <20 ha. Thus, the small lakes (0.5–1.0 ha) provide only 3% of the overall area, with less than 
2% of the total water volume. It is therefore expected that the overall area of numerous lakes smaller 
than 0.5 ha will be lower than 3%, although high-resolution images are necessary to confirm this 
trend. Empirical dependencies of lake number as a function of lake size for the three permafrost 
zones of western Siberia are illustrated in Figure 5. The empirical coefficients of Equation (3) (A and 
B) for each permafrost zone of the WSL territory are listed in Table 3. 

 
Figure 5. Relationship between the cumulative frequency (the number of lakes versus lake area) of 
lakes and the lake surface area for the whole territory of WSL (this study, red line), in comparison 
with lake distribution in the world (Global, dark blue line, [81]) and in Sweden (light blue line, [81]). 

Table 2. Lake number, lake area, and volume for different size ranges. 

Size Range, ha 
Number of Lakes Their Surface Area Water Stock 

Lakes % ha % km3 %
0.5–1 240,582 33.056 173,768 2.9 0.938 1.9 
1–2 171,309 23.540 247,303 4.1 1.335 2.7 
2–5 152,240 20.920 481,651 8.1 4.094 8.3 

5–10 72,091 9.910 507,488 8.6 4.314 8.7 
10–20 43,443 5.970 609,713 10.2 5.183 10.5 
20–50 30,081 4.130 926,364 15.5 7.874 15.9 
50–100 10,354 1.420 717,571 12.0 6.099 12.3 

100–200 4636 0.640 638,175 10.7 5.425 11.0 
200–500 2227 0.310 666,245 11.2 5.663 11.5 

500–1000 511 0.070 352,499 5.9 2.996 6.1 
1000–2000 169 0.020 233,803 3.9 1.987 4.0 
2000–5000 57 0.010 162,680 2.7 1.384 2.8 

5000–10,000 19 0.003 125,671 2.1 1.068 2.2 
10,000–20,000 9 0.001 123,066 2.1 1.046 2.1 

Total: 727,728 100.000 5965,997 100.0 49.40 100.0

Taking into account the volume of the lake water in each lake size range and across the WSL 
territory (Table 3), the total amount of each dissolved (<0.45 µm fraction) element in all of the 

Figure 5. Relationship between the cumulative frequency (the number of lakes versus lake area) of
lakes and the lake surface area for the whole territory of WSL (this study, red line), in comparison with
lake distribution in the world (Global, dark blue line, [81]) and in Sweden (light blue line, [81]).

4. Discussion

4.1. Thermokarst Lake Area and Land Surface Coverage

Overall, the inventory of medium and large thermokarst lakes of the WSL demonstrates
an agreement of size distribution and surface coverage of the lakes in this region, compared to
the rest of the world. The latitudinal pattern of the number of lakes and their surface area is tightly
linked to the topography and landscape conditions of the northern part of the WSL, located within the
sporadic to continuous permafrost zone. Between 61◦ and 64◦ N, the northern taiga is represented
by sphagnum-dominated bogs, with pools and an open stand of trees [56]. The maximal latitudinal
variability of lake coverage is observed within the watershed divide Sibirskie Uvaly (around 63◦ N),
where the number and proportion of lakes are strongly controlled by minor variations of local
topography, such as the alternation of ridge-mire-lake complexes and taiga zones. Further to the
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north, the lake coverage remains fairly constant between 64.5◦ and 71◦ N, corresponding to the
development of the peat palsa plateau with palsa-hollow patterned mires. The landscape here is highly
homogeneous with a dominance of watershed divides of small and medium rivers, offering large flat
surfaces suitable for the development of a thermokarst. Finally, a strong decrease in the lake number
and area northward of 71◦ N may be linked to the dominance of polygonal-roller and polygonal-fissure
mires, combined with grass and moss-dominated mires [56]. Presumably, the thermokarst processes in
the polygonal mires of continuous permafrost zone are less developed than those in the peat palsas
plateau, dominating the discontinuous permafrost zone.

Unlike the database that comprises all lakes of the Earth’s surface [3], the present study
addresses the distribution of thermokarst lakes (>0.5 ha) of the full WSL permafrost-affected territory.
A consideration of very small thaw ponds (0.005 to 0.02 ha) in thermokarst-affected regions of the WSL
increases the relative surface coverage by lakes to 10%–40%, with an average value of 20%, as shown
using Canopus-V data on 18 test sites from 400 to 4000 ha each [82]. However, the decreasing of the
minimum lake size to less than 0.1 ha over the whole area of the WSL goes beyond the goals of the
present study. It is important to note that the distribution of these very small thaw ponds may deviate
from the power dependence (Equation (3)), as reported in global databases [3,5]. The similarity of
the B value (Equation (3)) among all three permafrost zones suggests a relatively weak variation of
thermokarst lake size distribution patterns across the permafrost gradient in the WSL.

Noteworthy is the dramatic difference between the lake coverage of the WSL permafrost-affected
territory estimated in this study (5% to 6% of the area) and the proportion of wet zones in the WSL
river watersheds, assessed by ENVISAT radar altimetry (40% to 60% of the watershed area during
open water period of the year [15]). These authors defined wet zones as various objects that are either
constant in time (rivers, lakes, wetlands) or have seasonal variability (floodplains). It follows that the
actual coverage of the WSL river watersheds by shallow (<0.1–0.5 m depth) surface water may be
significantly higher than the “net” lake area. However, the estimations of the effect of flooding on land
coverage by water and the lake abundance (i.e., see ref. [83] for review), or the water level fluctuation
in lakes induced by evapotranspiration variation [84], were beyond the scope of this study.

4.2. Stock of DOC and Metals in Thermokarst Lakes of the WSL

The specificity of thermokarst lakes of the WSL is their low depth (≤1 m), which allowed, for the
first time, a reasonable inventory of the water volume and thus an evaluation of the stocks of dissolved
components (Table 4). The typical range of water residence time in the thermokarst lakes of western
Siberia is between 0.5 and 1.5 years [54]. The overwhelming majority of these lakes are not connected
to the rivers, being isolated water bodies, protected by an impermeable permafrost layer both from
the bottom (frozen sand and silt), and from the border (frozen peat). Probably for these reasons, the
on-going dynamics of thermokarst lake abundances and surface areas are not yet reflected in the
hydrological balance of large rivers in Western Siberia [40,47]. The stock of dissolved components in
lakes on the permafrost-affected WSL territory can be compared to that delivered by all rivers of the
WSL from the same territory to the Arctic Ocean. For this, watershed size-averaged, year-round fluxes
of carbon, and major and trace elements assessed in previous works [79,80], can be used. A diagram
of element stock in thermokarst lakes, relative to that in rivers of the WSL, is presented in Figure 6.
Three groups of elements can be distinguished: (i) major and trace elements, whose storage in lakes
is less than 10% of that in rivers (DIC, Mg, Ca, Sr, Ba, K, Si, B, Fe, Co, Ni, Mn, and Ce); (ii) elements
presenting non-negligible storage in lakes (20% ± 10% of that in rivers): DOC, Rb, Zn, Cu, V, Mo,
Zr, As, Nd, and Th; and finally (iii) elements having significant, 30 to 70% storage in lakes, relative
to rivers: Cd, Pb, La, Cr, and Al. It can be seen from this classification that major cations, DIC, B, Si,
and metals subjected to significant redox transformations (Mn, Fe, and Ce), are essentially present
in the rivers because they are delivered by groundwater feeding or shallow subsurface flux [79,80].
The groundwater and subsoil feeding are very low in lakes which have frozen peat on the border and
frozen sediments at the bottom, throughout the year [54]. The elements exhibiting strong affinity to
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organic matter (Al, Cr, and rare earth elements (REEs)) and metal toxicants (Cd and Pb) enriched in
moss, exhibit sizeable storage in lakes of the WSL territory. This is consistent with the surface and
suprapermafrost flow that deliver the solutes to the lakes.Water 2017, 9, 228  12 of 18 
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The thermokarst lakes are typically 1–2 pH units more acidic than the surrounding rivers [50,80],
and this may enhance the solubility and mobility of many low-soluble trivalent hydrolysates (Al, Fe3+,
rare earth elements), from the lake sediment to the water column. Another important source of solutes
to the lakes is surface flow from surrounding peat bogs covered by mosses and lichens, consistent
with the essentially allochthonous source of DOM in thermokarst lakes [10,50]. A high concentration
of DOC, combined with an enrichment in Pb and Cd of the surrounding moss cover [57], may be
responsible for the sizeable proportion of metal toxicants in lakes compared to rivers. Given that
the DOC, Fe, and Al concentrations in the smallest (<100–1000 m2) thermokarst depressions and
permafrost subsidences are 3–10 times higher than that in lakes >0.5 ha inventoried in this work [50],
and that most trace elements including metal micronutrients are present in the form of organic and
organo-mineral colloids [61], the role of small thermokarst water bodies in element stock in surface
waters and potential delivery to the hydrological network, may be particularly important and are
currently strongly underestimated. For this, coupled land/water observations at a very high spatial
resolution [85] may help to constrain the reservoirs and the mobility of carbon, metals, and greenhouse
gases in adjacent aquatic and terrestrial biomes.

The role of small (<1000 m2) thermokarst lakes is especially important for the regulation of DOC
and greenhouse gas exchanges with surrounding reservoirs (hydrological network and atmosphere).
According to available observations of the discontinuous to sporadic permafrost zone of western
Siberia, the smallest thaw ponds (10 m × 10 m to 33 m × 33 m) and depressions (1–100 m2) exhibit
an order of magnitude higher concentration of CO2, up to two orders of magnitude higher methane
concentration, and a factor of three to ten higher concentrations of DOC and related metals [49,50,52].
As such, even with their contribution to the total lake surface area of 1%, these small bodies of water
may display carbon storage and GHG flux to the atmosphere, which will be comparable to those
of large and medium lakes. This hypothesis is verified in the non-permafrost European wetlands:
the peatland open water pools are known to act as a net source of CO2 to the atmosphere [86,87].
The importance of small (100–200 m2) water bodies for CO2 emission has recently been reported in the
polygonal tundra of the Lena Delta observatory [51].

The upscaling of our estimation of the DOC and metal storage in lakes, relative to the river input,
requires detailed knowledge of other lakes of the subarctic, since the riverine fluxes DOC, DIC, and
most major elements of the circumpolar region, are fairly well defined [88–90]. The extrapolation of
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results from well-studied lakes of the Mackenzie Delta region of Canada [9,91–94], the Yakutia alasses
and yedoma lakes [20,95,96], to much larger territories of boreal plains such as the WSL peatlands,
and North-Siberia and Yana-Indigirka lowlands, remains unwarranted. The lakes of these lowlands
may stand apart from other studied lakes of the subarctic, in view of their high peat context, low pH,
shallow depth, and very low salt content. At present, a large-scale comparison of carbon and metal
storage in thermokarst lakes and riverine fluxes of elements in the subarctic can only be provided for
the western Siberia lowland.

5. Conclusions

A remote sensing analysis of thermokarst lakes (>0.5 ha) in the sporadic, discontinuous, and
continuous permafrost zone of the western Siberia lowland demonstrated that the number of lakes
smaller than 1 ha exceeds 33% of the total lake number, whereas their total surface area is only 2.9%
of the total surface of WSL lakes. Within the full range of studied lake sizes and areas, a power
dependence between the number of lakes and their surface area, consistent with the world-wide
trend, is observed. The dependence of the lake number and surface coverage on the latitude exhibits:
(i) a highly variable pattern (strong oscillations) between 61◦ and 63◦ N, within the watershed divide
Sibirskie Uvaly, due to the variable topography of ridge-lake-bog complexes within the sporadic
permafrost zone; (ii) stable values of lake fraction between 64◦ and 71◦ N of the peat palsa plateau and
the discontinuous permafrost context; and finally (iii) abruptly decreasing the lake fraction northward,
north of 71◦ N, within the continuous permafrost zone of the polygonal tundra. The obtained laws
of lake number and surface area distribution allow the calculation of the total surface area and
volume of water. This yielded the dissolved metal and carbon stocks in surface aquatic systems of the
permafrost-affected zone of the WSL.

The stock of C and most metals in thermokarst lakes of the WSL does not exceed 10%–20% of
the riverine flux of the territory. However, the role of lakes in the storage of Al, Cr, Cd, and Pb is
comparable to, or even higher than, the transport of these elements by rivers. A low pH and high
DOC in WSL thermokarst lakes compared to other regions of the subarctic may be responsible for such
an important role of the WSL lakes in toxic metal storage. A high-resolution (0.01–0.1 ha) inventory
of small thermokarst lakes, most susceptible to permafrost thaw in key representative zones of the
WSL, will aid in accounting for short-term changes in water, carbon, and metal stocks, under climate
warming scenarios. The extrapolation of obtained results to the whole circumpolar region is hampered
by the lack of information on other thermokarst lakes from large (million km2-scale) territories, notably
the boreal plains.
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