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Abstract: The Budyko equation has achieved iconic status in hydrology for its concise and accurate
representation of the relationship between annual evapotranspiration and long-term-average water
and energy balance at catchment scales. Accelerating anthropogenic land-use and climate change
have sparked a renewed interest in predictive applications of the Budyko equation to analyze future
scenarios important to water resource management. These applications, in turn, have inspired a
number of attempts to derive mathematical models of the Budyko equation from a variety of specific
assumptions about the original Budyko hypothesis. Here, we show that the Budyko equation and all
extant models of it can be derived rigorously from a single mathematical assumption concerning the
Budyko hypothesis. The implications of this fact for parametric models of the Budyko equation also
are explored.
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1. Introduction

1.1. Introducing Green Water

Green water is water in the vadose zone that is available for uptake by plant roots and vadose-zone
biota [1] (p. 279). The principal flow of green water is by evapotranspiration, through which it is
transferred from the upper portion of the vadose zone through the land surface or a vegetation canopy
into the atmosphere. The hydrologic importance of evapotranspiration as a mode of water transfer
becomes apparent from comparing the average annual volumes of global terrestrial evapotranspiration
and runoff, which shows that currently, annual terrestrial evapotranspiration is about 54% larger than
annual runoff out of the continents [2].

Both spatially and temporally, terrestrial evapotranspiration is a highly variable hydrologic
process which remains challenging to quantify directly, even at a single location. Indirect measurement
using combinations of ground-based, satellite-based, and model-based methods is therefore the usual
approach for determining evapotranspiration at catchment to global scales [2].

The transpiration (T) component of terrestrial evapotranspiration (ET), also termed “productive
green water flow” [3] because it is the ET mode directly supporting carbon assimilation and primary
productivity, is an important and abiding topic in ecohydrology research which remains challenging
because of the aforementioned difficulty of measuring ET directly. Schlesinger and Jasechko [4] have
recently compiled best-estimate values of the ratio T/ET for nine terrestrial biomes. The average global
T/ET, calculated as the sum of the biome T/ET values weighted according to either the volume of
precipitation into or the volume of ET out of a given biome, is 61% ± 15%. Using this estimate and the
comparison of ET with runoff, given above, one calculates that the total volume of green water flow by
transpiration is approximately equal to the total volume of runoff. Remarkably, the global annual flow
of green water through plant roots into the atmosphere matches the annual flow of all the rivers in the
world into the oceans.
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At the catchment scale, ET is also recognized as a key hydrologic process, first because
of its evident connection to the primary productivity of ecosystems, both wildland and
agricultural [1] (pp. 95–100), and second because the water transported by ET has not run off into
streams and rivers or percolated below the vadose zone to replenish groundwater, either of which
would have made it still accessible for human consumption. Thus, catchment ET is a key diagnostic
process contributing to water resource management, which has become particularly important in light
of stresses caused by accelerating anthropogenic land-use and climate change [5–8].

1.2. The Budyko Hypothesis

Because it involves a phase transformation, that of green water into water vapor, ET reflects the
partitioning not only of water but also radiant energy at the vadose zone–atmosphere interface [9].
This perspective informs the approach to the physics of catchment ET developed by M. I. Budyko
during the previous century and summarized in his iconic book, Climate and Life [10]. Budyko’s
approach is “Darwinian,” as opposed to “Newtonian” [11,12], because it foregoes reductionist
explanations based on constitutive equations [13] in favor of establishing universal relationships
based solely on the mass and energy balance laws to which any physical system must conform.

Budyko’s ideas can be outlined as follows. The long-term-average annual flow of green water
through the upper boundary of the vadose zone into the atmosphere is subject to the same water-
and energy-balance assumptions as apply to the global flow of green water, i.e., negligible changes in
subsurface water storage and negligible net heat transfer between the land surface and the vadose
zone [2,12,14]. Under these two assumptions, the long-term-average annual water and energy balance
at the catchment scale can be expressed [10] (pp. 16–23) and [14]:

P = ET + Q, (1)

Rn = L·ET + H, (2)

where P(L/T) is precipitation, ET(L/T) is evapotranspiration, Q(L/T) is runoff, Rn(M/T3) is the
average annual net radiative heat flux from the atmosphere to the land surface, L(M/L·T2) is the
latent heat of evaporation, the product L·ET(M/T3) then being the latent heat flux, and H(M/T3) is the
average annual heat flow from the land surface into the atmosphere, the sensible heat flux.

Equation (1) states that, over the time and spatial scales being considered, precipitation falling
onto a catchment is not stored in or below the vadose zone and so must leave it, either as a flow of green
water or as runoff. Equation (2) states that solar radiation impinging on a catchment also is not stored
in the vadose zone, leaving it either as heat carried off by the flow of green water (L·ET) or as thermal
radiation from the upper boundary of the vadose zone back into the atmosphere (H). Furthermore,
because evapotranspiration and latent heat flux are equivalent processes, division of Equation (2) by L
leads to an energy-balance constraint on ET analogous to the water-balance constraint expressed by
Equation (1):

Rn

L
= ET +

H
L

(3)

According to Equation (3), the maximum possible ET occurs when all incoming radiation energy
is consumed by the evaporation of green water from the land surface, the green water available
for transfer as ET is not limiting, and there is negligible sensible heat flux [10,14]. Evidently, this
maximum possible ET is numerically equal to Rn/L, which is therefore designated as potential
evapotranspiration [10] (p. 23) and given the symbol, ET0.

Budyko [10] (p.323) hypothesized that Equations (1) and (3) imply that a functional relationship
exists between ET and the two climate variables, P and ET0, a relationship which should apply to all
catchments as an average over long-enough time scales:

ET = f(P, ET0). (4)
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He further stated, on the basis of his synthesis of available data, that this functional relationship
is subject to the limiting conditions:

ET→ ET0 as P ↑ ∞ (5)

ET→ P as ET0 ↑ ∞ (6)

Equation (5) describes a “wet condition” of relatively high green water availability and relatively
low sensible heat flux, whereas Equation (6) describes a “dry condition” of relatively low green water
availability and relatively high sensible heat flux. Thus, under the wet condition, ET is energy-limited
by ET0, whereas under the dry condition, ET is water-limited by P [12].

Equation (4) and the limits imposed on it in Equations (5) and (6) may be termed the Budkyo
hypothesis concerning the long-term-average annual ET from a catchment. Using his deep physical
insight into catchment hydrology and meteorology, Budyko [10] (p. 323) went a step further and
proposed a mathematical representation of Equation (4) which may be termed the Budyko equation.
In addition to empirical validation studies involving statistical curve-fitting [12], the Budyko equation
has been the subject of a number of recent attempts to validate it with a firm mathematical foundation.
These studies rely on ad hoc assumptions about the Budyko hypothesis in order to derive the
Budyko equation along with parametric models to represent it. The typical approach [15,16] invokes
dimensional analysis to justify a change of the dependent and independent variables in the Budyko
hypothesis to ET/P and ET0/P, respectively, then goes on to develop lengthy mathematical arguments
based on the assumption that the differential form of Equation (4) is exact. The model parameter
then emerges as an arbitrary constant related to separation of variables. It is the purpose of this
paper to show, however, that such an approach is not necessary, that instead making a single, very
general assumption concerning Equation (4) suffices to derive the Budyko equation rigorously from
the Budyko hypothesis, as well as provide a unified mathematical framework for all extant models of
the Budyko equation, both parametric and non-parametric.

2. Deriving the Budyko Equation

The Budyko hypothesis, as represented in Equation (4), can be developed further by postulating
that f(ET0, P) is a homogeneous function of its arguments, which means that, if the independent
variables ET0, P are each multiplied by an arbitrary factor, λ, the value of f(ET0, P) is multiplied by the
same factor, λ [17]:

f(λET0, λP) = λ ET (7)

Hankey and Stanley [17] have proved that the property of homogeneity, as expressed in
Equation (7), is mathematically equivalent to the representation:

ET = P F
(

ET0

P

)
(8)

which they also show to be a valid alternative to Equation (7) for defining a homogeneous function of
P and ET0. Equivalency can be demonstrated by replacing ET, P, and ET0 everywhere in Equation (8)
with λET, λP, and λET0, respectively, then noting that, after cancellation of λ in the argument of
F(·), Equation (8) satisfies the definition of homogeneity. That Equation (8) is a valid alternative to
Equation (7) is shown by setting λ = 1/P in Equation (7) to reproduce Equation (8).

After division of both sides by P, Equation (8) becomes the form of Equation (4) originally
proposed by Budyko [10] (p. 323), who, as noted above, derived it using physical reasoning based on
trends he deduced from catchment water- and energy-balance data. Following [14], the ratio ET0/P
is termed the aridity index and given the symbol φ. Values of φ < 1 thus indicate a humid climate,
whereas φ > 1 indicates an arid climate [14]. Within this convention, the limiting conditions on the
Budyko equation,

ET/P = F(φ), (9)
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that stem from Equations (5) and (6) are:

ET/P ↓ φ as φ ↓ 0, (ET is energy-limited) (10)

ET/P ↑ 1 as φ ↑ ∞. (ET is water-limited) (11)

It follows that a graph of the Budyko equation must begin as a curve tangent to the 1:1 line,
ET/P = ET0/P, then turn concave to the φ-axis and asymptotically approach the horizontal line
defined by ET/P = 1 [5,10,12,14–16].

Budyko [10] (pp. 325–327) tested Equation (9) successfully using hydrologic and climatological
data for more than 1000 catchments encompassing a variety of biomes, showing also that the limiting
conditions in Equations (10) and (11) were met. Since then, a large number of successful tests of
the Budyko equation has been reported based on experimental measurements [5,18,19] and model
simulations [14,20]. Ye et al. [19] performed a particularly comprehensive test of Equation (7b) based
on data collected daily for 50 years (1951–2000) in more than 250 catchments in the United States
which span a range of climatic zones and physiographic regions. As noted by Arora [14], although
scatter in plots of ET/P vs. φ based on experimental data always occurs, these successful tests
demonstrate “the primary control of precipitation and available energy in determining the ratio of
annual evapotranspiration to precipitation” [14] (p. 167).

Because the physical assumptions underlying the derivation of Equations (1) and (2) are reflected
in Equations (10) and (11), data conforming to the Budyko equation should never lie above either
the 1:1 line defined by ET/P = ET0/P or the horizontal line defined by ET/P = 1. Individual data
points, however, sometimes are found to violate one of these constraints (see, e.g., Figure 5 in [5]),
which implies either measurement errors or violations of the assumptions made concerning subsurface
storage that underlie the long-term-average, large-spatial-scale conditions requisite to the Budyko
hypothesis [21,22].

Besides Equation (8), two other important properties of Equation (4) follow from the homogeneity
postulate given by Equation (7). The first of these properties is based on the fact that all homogeneous
functions must satisfy the Euler relation [23] (pp. 59–60), which is expressed in the present case by:

ET =

(
∂ET
∂P

)
ET0

P +

(
∂ET
∂ET0

)
P

ET0, (12)

Equation (12) is derived from Equation (7) by differentiating both sides of the latter with respect to λ,
then setting λ = 1 [23] (p. 59}. On physical grounds, both of the partial derivatives in Equation (12) are
positive-valued and subject to boundary conditions stemming from Equations (5), (6), (10), and (11) [16]:(

∂ET
∂P

)
ET0

↓ 0 as ϕ ↓ 0, (13)

(
∂ET
∂P

)
ET0

↑ 1 as ϕ ↑ ∞, (14)

(
∂ET
∂ET0

)
P
↑ 1 as ϕ ↓ 0, (15)(

∂ET
∂ET0

)
P
↓ 0 as ϕ ↑ ∞. (16)

Thus, both partial derivatives take on values in the closed range [0, 1]. Graphs illustrating these
boundary conditions are given in Figure 6 of [16] based on a parametric model of Equation (9). (See also
Figure 6 in [20] and Figure 3 in [14] for illustrative plots of (∂ET/∂P) vs. φ.) Equations (13) and (15)
reflect the wet condition described by Equation (10), whereas Equations (14) and (16) reflect the dry
condition described by Equation (11). Put another way, Equations (13) and (14) express the evident
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fact that precipitation is mainly transformed into runoff under the wet condition, but is transformed
into evapotranspiration under the dry condition. Similarly, Equations (15) and (16) reflect the high
sensitivity of ET to changes in potential evapotranspiration under the wet (energy-limited) condition
and its low sensitivity to changes in ET0 under the dry (water-limited) condition.

The second important property of Equation (4) that derives from the homogeneity postulate is the
Gibbs−Duhem relation, expressed in the present case by:

P d
(

∂ET
∂P

)
ET0

+ ET0 d
(

∂ET
∂ET0

)
P
= 0. (17)

This equation gets its name from a well-known relation among the differentials of intensive variables
that arises in equilibrium thermodynamics [23] (pp. 60–62). Equation (17) is derived by calculating the
total differential of ET using the Euler relation, then comparing the result to the total differential of ET
based on Equation (4).

The Euler relation implies that knowledge of the φ-dependence of the two partial derivatives
suffices to determine the function F(φ) in the Budyko equation. The Gibbs−Duhem relation shows
further that variations of these two partial derivatives in response to changes in φ are not independent.
As will become evident in the following section, these two properties, true of all homogeneous
functions, play key roles in the development of explicit mathematical models of F(φ).

3. Modeling the Budyko Equation

Budyko [10] (p. 325) himself proposed and tested a mathematical model of Equation (9) which
was a non-parametric interpolation formula connecting the two limiting conditions expressed in
Equations (10) and (11). His model has seen widespread successful application, but parametric
models of Equation (9) also have been proposed, a number of which are described and compared in
a recent comprehensive review by Wang et al. [12]. The two principal models in current use, the Fu
model [15] and the Mezentsev−Choudhury−Yang (MCY) model [16,24], are one-parameter models
based on specific assumptions about the φ-dependence of the two partial derivatives appearing in
Equation (17). Zhou et al. [24] have shown that these two models are the only ones extant that
satisfy the uniqueness requirement, that any point in the two-dimensional field spanned by (F, φ)
belongs to a single curve as defined by a chosen value of the model parameter. Zhou et al. [24] also
show that both models can be derived from specific assumptions about the φ-dependence of the
ratio, (∂ET/∂P)/φ(∂ET/∂ET0), which they accordingly term a “generating function” for models of the
Budyko equation. In the following discussion, it will be shown that all of the modeling approaches
in the literature fall within a rigorous mathematical framework based solely on the homogeneity
postulate in Equation (7). In this more general approach, for example, the constraint on (∂ET/∂P)
and (∂ET/∂ET0) employed by Zhou et al. [24] to deduce mathematical properties of their generating
function is revealed to be just a rearranged form of the Euler equation.

3.1. The Legendre Transformation of F(φ)

The Legendre transformation is a well-known mathematical technique applied in equilibrium
thermodynamics [23] (pp. 137–142) to convert a function, such as F(φ), into another function, ψ(F’),
that is equivalent mathematically to F(φ), where F’ = dF/dφ. Explicitly, the Legendre transformation
of F(φ) is defined by the equation [23] (pp. 137–142) and [25] (pp. 63–65):

ψ(F’) = F − φ F’. (18)

The basis for the definition in Equation (18) can be understood as follows. Given a graph of F(φ),
i.e, a curve in the F-φ field, one can construct a line tangent to some point on the curve, the slope of
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which is equal to the value of F’at that point. Let the F-intercept of the line be ψ, i.e., let the tangent line
intersect the F-axis at the point (ψ, 0). The equation describing this tangent line in the F-φ field is then:

F = ψ + F’φ, (19)

which can be rearranged to yield Equation (18). Thus, the Legendre transformation of F(φ), ψ(F’),
prescribes the F-intercept of a line tangent to a curve in the F-φ field as a function of the slope of the
tangent line.

Mathematical equivalence between F(φ) and ψ(F’) is established by the fact that every point
along a curve of F(φ) is associated with a unique tangent line described by ψ(F’). To quote Callen [23]
(p. 140) “knowledge of the intercepts ψ of the tangent lines as a function of the slopes F’ enables
us to construct the family of tangent lines and thence the curve of which they are the envelope.”
Therefore, the family of tangent lines defines a curve of F(φ) just as uniquely as does the locus of points
constituting the curve. In this sense, every curve has an “F-representation” as a locus of points and
a “ψ-representation” as an envelope of tangent lines. Which representation one uses is a matter of
convenience in applications, as is well known in equilibrium thermodynamics, where the Legendre
transformation of the internal energy corresponds to a thermodynamic potential, such as the enthalpy,
which offers a rigorous alternative to using the internal energy to describe the equilibrium states of a
physical system [23] (p. 147) and [25] (p. 78).

The differential form of Equation (18),

dψ = dF − F’dφ − φdF’ (20)

yields an expression for the first derivative of ψ:

dψ
dF’

= −φ, (21)

as can be seen after introducing the definition of F’ into the second term on the right side of
Equation (20). Therefore, given ψ(F’), one can calculate F(φ) by establishing the relationship between
φ and F’ with Equation (21), then using this relationship to eliminate ψ and F’ from Equation (19), i.e.,
ψ = ψ(F’) and dψ

dF’ = −φ used together yield F(φ) from F = ψ + F’φ,
As an example of this inversion procedure, consider the Schreiber model, an interpolation formula

cited by Budyko [10] (p. 323) as the earliest published attempt to model Equation (9) mathematically.
In its ψ-representation, the Schreiber model has the form:

ψ = 1 + (ln F’ − 1) F’. (22)

Calculating the first derivative of ψ(F’) using Equation (22) and invoking Equation (21), one finds:

dψ
dF’

= ln F’ = −φ, (23)

Therefore, F’ = exp(−φ), which now may be used along with Equation (22) to eliminate F’ and ψ
from Equation (19):

F(φ) = ψ + F’φ = [1 + (−φ − 1) exp(−φ)] + [exp(−φ)φ] = 1 − exp(−φ), (24)

which is the Schreiber model in its F-representation [10] (p. 323). Equations (22) and (24) thus offer
equivalent mathematical representations of this model.
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3.2. Physical Meaning of the Legendre Transformation

The physical significance of the Legendre transformation in the context of the Budyko equation
follows from calculating the partial derivatives that appear in Equation (17) using Equation (8):(

∂ET
∂P

)
ET0

= F(φ) + P
(

∂F
∂P

)
ET0

= F(φ) + P
(

∂φ

∂P

)
ET0

F’ = F(φ) − φF’ = ψ, (25)

(
∂ET
∂ET0

)
P

= P
(

∂F
∂ET0

)
P

= P
(

∂φ

∂ET0

)
P

F’ = F’, (26)

where the chain rule for derivatives has been used to get the second step in each equation. Comparison
of Equation (25) with Equation (18) shows that (∂ET/∂P) is in fact the Legendre transform of F(φ),
while reference to Equation (26) shows that (∂ET/∂ET0) is the slope variable F’ on which the Legendre
transform depends, i.e., ψ(F’) is in fact (∂ET/∂P) expressed as a function of (∂ET/∂ET0), this latter
function being completely equivalent mathematically to F(φ).

This relationship is implicit in the Euler relation because it may be rearranged, with the help
of Equations (25) and (26), to become Equation (18), which defines the Legendre transform of
F(φ). Moreover, Equation (17) may be rearranged to become Equation (21). Thus, the Legendre
transformation of F(φ) is intimately related to the property of homogeneity underlying the derivation
of the Budyko equation. Equations (25) and (26) were presented by Zhou et al. [24] as the initial step
in their procedure for defining the generating function they used to derive models of the Budyko
equation, but they apparently were unaware of the close connection between the two partial derivatives
and the Legendre transformation of F(φ).

Given Equations (25) and (26), the boundary conditions in Equations (13)–(16) can be combined
to determine corresponding boundary conditions on ψ(F’):

ψ(F’)↓0 as F’↑1, (27)

ψ(F’)↑1 as F’↓0. (28)

Moreover, these boundary conditions and Equation (21) show that the first derivative of ψ(F’) is
non-positive and that it satisfies the boundary conditions:

dψ
dF’
↑ 0 as F’ ↑ 1, (29)

dψ
dF’
↓ −∞ as F’ ↓ 0. (30)

Therefore, a graph of ψ(F’) will be a curve in the ψ-F’ field that is convex to the F’-axis, dropping
initially from ψ = 1 parallel to the ψ-axis, where F’ = 0, to end at F’ = 1 running parallel to the F’-axis,
where ψ = 0. Examples of this behavior can be seen in Figure 7 of [16], which is based on the MCY
model. The graph in this figure shows representative curves corresponding to different values of the
MCY model parameter. However, as just demonstrated, the overall characteristics of these curves are
not model-dependent, but instead result from the general boundary conditions in Equations (27)–(30).
We note in passing that the concavity of F(φ) curves with respect to the φ-axis and the convexity of
ψ(F’) curves with respect to the F’-axis are well-known general properties of the relationship between
the F- and ψ-representations [23] (p. 149).

3.3. Understanding the MCY Model

The history of the MCY model is described by Wang et al. [12], who note its transition from
an empirical data-fitting equation to an analytically-derived expression based on physical and
mathematical considerations. The model has been applied often, with reasonable success, to estimate
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values of (∂ET/∂P) and (∂ET/∂ET0), as well as those of the partial derivative of ET with respect to the
model parameter, in efforts to predict the effects on runoff from changing climate (“climate elasticity”),
as represented by variations of P and ET0, as well as changing catchment properties, assumed to be
represented by variation of the model parameter [9,16,26–29].

As noted in the Introduction, Yang et al. [16] derived the MCY model analytically through an
argument based on requiring the total differential of ET in Equation (4) be exact, then applying
dimensional analysis to infer that (∂ET/∂P) and (∂ET/∂ET0) are functions of ET/P and ET/ET0 that
satisfy the boundary conditions in Equations (13)–(16). In the notation of the present paper, their final
expressions for the two partial derivatives are:(

∂ET
∂P

)
ET0

= F(ϕ, n)[1− (
F(ϕ, n)
ϕ

)
n
], (31)

(
∂ET
∂ET0

)
P

=
F(ϕ, n)
ϕ

[1− F(ϕ, n)n], (32)

where n, the MCY model parameter, is a positive number. Yang et al. [16] integrated this set of partial
differential equations to derive the MCY model, but the same result can be obtained more simply by
introducing Equations (31) and (32) directly into the Euler relation, then solving it for F(φ, n):

F(ϕ, n) = ϕ (1 + ϕn)−1/n (n > 0), (33)

which is the MCY model in its F-representation [12]. This model of F(φ) satisfies the limiting conditions
in Equations (10) and (11) while interpolating smoothly between them for any value of the model
parameter n. Increasing the value of n, which functions as a curve-shape parameter, leads to a more
rapid approach of F(φ, n) to the energy-limiting condition in a humid climate (φ < 1) and to the
water-limiting condition in an arid climate (φ > 1). This behavior suggested to Yang and Yang [27]
that n increases with green water availability in a catchment, a large value of n thus indicating that
there is sufficient green water available for ET to achieve close to its maximum value under any
climatic condition.

Equation (33) may be used to rewrite Equations (31) and (32) in a simpler form:(
∂ET
∂P

)
ET0

= F(ϕ, n)(n+1) = ψn, (34)

(
∂ET
∂ET0

)
P

=

(
F(ϕ, n)
ϕ

)(n+1)
= Fn’, (35)

from which it follows, using Equation (33) once more to eliminate φ, that the MCY model in its
ψ-representation is:

ψn
n/(n+1) + Fn’n/(n+1) = 1 (n > 0). (36)

This power-law expression is easily seen to satisfy the boundary conditions in Equations (27)
and (28). In the context of the ψ-representation, the derivation of the MCY model by Yang et al. [16]
amounts to substituting the model forms in Equations (34) and (35) [or Equations (31) and (32)] into
Equation (36) and solving for F(φ, n). Alternatively, a formal inversion of Equation (36) to derive
the corresponding φ-representation can be accomplished following the procedure used to derive the
F-representation of the Schreiber model from its ψ-representation.

3.4. Understanding the Fu Model

The history of the Fu model is discussed by Zhang et al. [15], who credit its origin to the Chinese
hydrologist, B. P. Fu. Their derivation of F(φ) is based on his 1981 study of the Budyko equation,
published only in Chinese, and uses the same physical assumptions and mathematical reasoning.
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Similar to the MCY model, the Fu model has been applied successfully to estimate (∂ET/∂P) and
(∂ET/∂ET0), as well as calculate the partial derivative of ET with respect to the model parameter, to
predict climate elasticity as a function of the aridity index and the effects of catchment properties on
ET, particularly vegetation cover and subsurface storage, which are assumed to be represented by
variations of the model parameter [8,30–35].

As indicated above, Zhang et al. [15] derived the Fu model from physical assumptions about the
dependence of (∂ET/∂P) and (∂ET/∂ET0) on ET, P, and ET0, then followed the mathematical procedure
based on dimensional analysis and exact differentials already described for the MCY model to solve
the resulting set of partial differential equations. In the notation of the present paper, the Fu model for
the two partial derivatives can be expressed:(

∂ET
∂P

)
ET0

= 1 − (1 + ϕ − F(ϕ, w))1−w, (37)

(
∂ET
∂ET0

)
P

= 1 −
(

1 +
1 − F(ϕ, w)

ϕ

)1−w
, (38)

where w is the Fu model parameter, a positive number with values in the range (1, ∞).
The physical assumption leading to Equation (37) is that, for a given value of ET0, (∂ET/∂P)

increases with the “residual evapotranspiration,” ET0 − ET, a measure of the energy that could have
been transported to the atmosphere by evapotranspiration if precipitation were not limiting [15].
In addition, (∂ET/∂P) decreases with increasing P, at fixed ET0, in accordance with Equation (10). The
φ-dependent quantity in parentheses on the right side of Equation (37), which is equal to the ratio of the
residual evapotranspiration to precipitation, reflects these two assumptions. [Note that (1 − w) < 0.]

The physical assumption leading to Equation (38) is that, for a given value P, (∂ET/∂ET0) will
increase with the “residual precipitation,” P − ET (i.e., runoff), the volume of water that could have
been transported to the atmosphere by evapotranspiration if potential evapotranspiration were not
limiting [15]. On the other hand, (∂ET/∂ET0) will decrease with increasing ET0, at fixed P, in accordance
with Equation (16). The φ-dependent quantity in parentheses on the right side of Equation (38), which
is equal to the ratio of catchment runoff to potential evapotranspiration, reflects this assumption.

Zhang et al. [15] integrated the set of partial differential equations in Equations (37) and (38) to
derive the Fu model, but, as in the case of the MCY model, the same result can be obtained more
simply by introducing these two equations directly into the Euler relation and solving it for F(φ, w)
to obtain:

F(ϕ, w) = 1 + ϕ − (1 + ϕw)1/w(w > 1), (39)

the Fu model in its F-representation [15]. Like the MCY model, this model of F(φ) satisfies the limiting
conditions in Equations (10) and (11) while interpolating smoothly between them for any value of the
parameter w. Similarly to the parameter n in the MCY model, w functions as a curve-shape parameter
in the Fu model, with increasing w leading to a more rapid approach of F(φ, w) to the energy-limiting
condition in a humid climate (φ < 1) and to the water-limiting condition in an arid climate (φ > 1).
[See, e.g., Figure 1 in [15]).] Zhou et al. [8] associate this effect of increasing w with an increasing ability
of a catchment to retain green water for evapotranspiration, similar to the interpretation of increasing
n in the MCY model (Yang and Yang, 2011). Zhou et al. [8] conclude that 1 < w < 2, corresponding
to low green water storage, corresponds to a lesser effect of climate on runoff relative to catchment
effects. Zhang et al. [15] show further that ET/P in the Fu model is the most sensitive to the value of
w at the crossover, φ = 1, between humid and arid climates, attributing this behavior to a positive
synergism between precipitation and potential evapotranspiration, each of which otherwise would
tend to control ET/P separately. This peak sensitivity at φ = 1 increases dramatically as w decreases
below 2, in keeping with the conclusion of Zhou et al. [8].
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Equation (39) may be used to rewrite Equations (37) and (38) in the form:(
∂ET
∂P

)
ET0

= 1 − (1 + ϕw)(1−w)/w = ψw, (40)

(
∂ET
∂ET0

)
P

= 1 −
(

ϕ

(1 + ϕw)1/w

)w−1

= Fw’, (41)

It follows from Equations (40) and (41) that the Fu model in its ψ-representation is:

(1 − ψw)w/(w-1) + (1 − Fw’)w/(w-1) = 1 (w > 1). (42)

Similar to the MCY model, the Fu model is a power-law expression in its ψ-representation which
satisfies the boundary conditions in Equations (27) and (28). The derivation of the Fu model given by
Zhang et al. [15] amounts to substituting the model forms in Equations (37) and (38) [or Equations (40)
and (41)] into Equation (42) and solving for F(φ, w). Of course, a formal inversion of Equation (42) to
derive the φ-representation can always be done following the procedure used to derive the Schreiber
model from its ψ-representation.

4. Discussion

It has been shown that a single assumption concerning the Budyko hypothesis, namely that
f(P, ET0) in Equation (4) is a homogeneous function of its arguments, suffices to derive the Budyko
equation [Equation (9)] and to provide a unified framework for developing mathematical models
of this equation, such as the MCY and FZ models. The key elements of this simple approach to the
Budyko hypothesis can be summarized as follows.

1. The assumption that ET is a homogenous function of P and ET0 is both necessary and sufficient
to derive the Budyko equation, ET/P = F(ET0/P) [17].

2. Homogeneity also leads to the Euler relation, ET =
(

∂ET
∂P

)
ET0

P +
(

∂ET
∂ET0

)
P

ET0, which is a

well-known property of homogeneous functions. This relation can be rearranged to become an
equation for the Legendre transform of ET/P. The Legendre transform of any function gives a
mathematically-equivalent representation of the function in terms of the y-intercepts and slopes
of tangent lines to the curve representing the function as a locus of points [23] (pp. 137–142)
and [25] (pp. 63–65). For the Budyko equation, the Legendre transform of ET/P is in fact (∂ET/∂P)
expressed as a function of (∂ET/∂ET0). Thus, specifying (∂ET/∂P) as a function of (∂ET/∂ET0) is
equivalent mathematically to specifying ET/P as a function of ET0/P.

3. The assumption of homogeneity also leads to the Gibbs−Duhem relation, P d
(

∂ET
∂P

)
ET0

+

ET0 d
(

∂ET
∂ET0

)
P
= 0. This differential expression can be integrated to find ET/P as a function of

ET0/P if (∂ET/∂P) is given as a function of (∂ET/∂ET0). Specific mathematical models of the
Budyko equation can be developed, therefore, by specifying the dependence of (∂ET/∂P) on
(∂ET/∂ET0). Physically, these two partial derivatives represent the climate elasticity of catchment
evapotranspiration. A model of the climate elasticity of ET is thus sufficient to determine a model
of ET as a function of P and ET0 through the Gibbs−Duhem relation.

4. The two leading parametric models of the Budyko equation were developed by modeling climate
elasticity: (∂ET/∂P) and (∂ET/∂ET0) were postulated as functions of ET/P and ET0/P, then
the resulting set of partial differential equations was integrated to calculate an explicit form of
F(ET0/P). This approach is an alternative implicit way of specifying (∂ET/∂P) as a function of
(∂ET/∂ET0). Its rigorous mathematical justification is that it amounts to specifying the Legendre
transform of ET/P, then integrating the Gibbs−Duhem relation.
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5. However, given (∂ET/∂P) and (∂ET/∂ET0) as functions of ET/P and ET0/P, the need to solve
partial differential equations can be eliminated by simply introducing the postulated relationships
into the Euler relation, then rearranging it to deduce a model form of ET/P = F(ET0/P). In the
parlance of equilibrium thermodynamics, (∂ET/∂P) and (∂ET/∂ET0) specified as functions of
ET/P and ET0/P are “equations of state” related to catchment ET [25] (p. 69). In equilibrium
thermodynamics, the partial derivative of the internal energy with respect to the volume defines
the pressure, and the pressure specified as a function of the variables on which the internal energy
depends is termed an equation of state related to the internal energy (Münster, 1970). The fact that
knowledge of (∂ET/∂P) and (∂ET/∂ET0) as functions of ET/P and ET0/P is sufficient to determine
ET/P as a function of these two latter variables is analogous to the dictum that knowledge of all
of its equations of state is equivalent to knowledge of the internal energy [25] (p. 73).

As noted in Sections 3.3 and 3.4, a frequent application of parametric models of the Budyko
equation has been to estimate the climate elasticity so as to predict the effects of changes in P and
ET0 on catchment evapotranspiration and, therefore, runoff. This is accomplished, for example,
by calculating (∂ET/∂P) and (∂ET/∂ET0) using either Equations (33)–(35) or Equations (40) and (41),
along with chosen values of the aridity index and the model parameter, for a selected datum state of a
catchment to predict changes in ET and Q resulting from prescribed changes in P and ET0. Roderick
and Farquhar [26] have illustrated this approach for the Murray-Darling Basin in southeast Australia
using the MCY model. They first calibrated the model using hydrologic and climatic data for the
period, 1895–2006, then used it to calculate average values of the two partial derivatives using the
average values of ET, P, and ET0 for the period. With these estimates and the known change in P
and ET0 over the period, 1997–2006, they successfully predicted the changes in ET and Q over this
latter period. Evidently the same approach could be used with coupled atmosphere−ocean general
circulation models (e.g., CMIP5) generating future scenarios for P and ET0 in order to predict the
effects of climate change on catchment ET and Q [26].

Predictions of climate elasticity, such as the one undertaken by Roderick and Farquhar [26],
are carried out with the model parameter held constant; but, as noted in Section 3.3 and 3.4, the
effect of variations of the model parameter on ET also has been studied under the assumption that
the parameter represents catchment properties other than P and ET0, properties such as green water
storage or vegetation cover. Wang et al. [12] have reviewed these efforts, focusing on the MCY and Fu
models. For example, they note that variations in the Fu model parameter among catchments have
been correlated with vegetation cover (forest vs. grassland, land surface coverage) and topographic
properties of catchments. Because these efforts to interpret the adjustable parameters in the MCY and
Fu models are strictly empirical—the parameters n and w, which appear solely as arbitrary constants
in derivations of the two models [15,16], are correlated statistically with catchment properties—it is
worthwhile to provide additional context for understanding these parameters by considering further
the physical implications of the homogeneity assumption underlying the Budyko equation.

Borrowing again from the terminology of equilibrium thermodynamics [36] (p. 135), one can
say that different catchments having the same value of ET0/P are in “corresponding states,” and the
Budyko equation, implying that different catchments having the same aridity index have the same
value of ET/P, can accordingly be considered an example of a “principle of corresponding states.”
However, this correspondence principle cannot be upheld if a model of the Budyko equation is applied
which contains an adjustable parameter, such as n or w, which takes on different values for different
catchments. This is because the Budyko equation implies that, in respect to ET, P, and ET0, any two
catchments at different geographic locations, or the same catchment considered at two different time
periods, are merely scaled versions of one another, with their respective values of ET, P, and ET0 being
related by the scaling operation in Equation (6). This scaling relationship is undermined if a parametric
model of the Budyko equation allows different values of the model parameter for different catchments.

Thus, because of these broad implications of homogeneity, a fundamental contradiction exists
between the Budyko equation and the MCY and Fu models if their adjustable parameters are allowed
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to vary from one catchment to another, or from one time-period to another for a given catchment.
Although the justification for allowing such variability has been that it represents the effects of
differing catchment properties other than P and ET0 [12], the only evidence for this assumption
is statistical, since it has not emerged from any derivation of a parametric model for the Budyko
equation. An interpretation of an adjustable model parameter as representing non-climatic catchment
properties must evolve naturally from the physical reasoning underlying the development of the
model, including, in the case of the MCY and Fu models, an explanation of why the non-climatic
parameter should appear specifically as an exponent in a power-law expression.

It must be concluded, therefore, that the current physical interpretation of the MCY and Fu
model parameters may be spurious. Gentine et al. [21], noting past successes of the non-parametric
interpolation formula proposed by Budyko [10] (p. 325), showed that it provides an excellent model
(< 10% deviation of experimental data from model estimates) of long-term-average annual ET for more
than 300 catchments encompassing a broad range of ecological, soil, and climatic properties. Taking a
view opposed to parametric modeling, they proposed that the Budyko interpolation formula could be
used to understand the variability of catchment soil and vegetation parameters by constraining models
of catchment water balance in which these parameters appear with the Budyko formula to infer how
they vary with the aridity index and thereby reveal the ecohydrological controls on catchment water
balance. The error in this line of reasoning must be demonstrated in order to substantiate claims that
parametric models of the Budyko equation inherently take into account the dependence of ET on
non-climatic catchment properties.
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