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Abstract: The study presents a method which can be used to define real-time operation rules for
gated spillways (named the K-Method). The K-Method is defined to improve the performance of
the Volumetric Evaluation Method (VEM), by adapting it to the particular conditions of the basin,
the reservoir, or the spillway. The VEM was proposed by the Spanish engineer Fernando Girón
in 1988 and is largely used for the specification of dam management rules during floods in Spain.
This method states that outflows are lower than or equal to antecedent inflows, outflows increase
when inflows increase, and the higher the reservoir level, the higher the percentage of outflow
increase. The K-Method was developed by modifying the VEM and by including a K parameter
which affects the released flows. A Monte Carlo environment was developed to evaluate the method
under a wide range of inflow conditions (100,000 hydrographs) and with return periods ranging from
one to 10,000 years. The methodology was applied to the Talave reservoir, located in the South-East
of Spain. The results show that K-values higher than one always reduce the maximum reservoir
levels reached in the dam. For K-values ranging from one to ten, and for inflow hydrographs with
return periods higher than 100 years, we found a decrease in the maximum levels and outflows,
when compared to the VEM. Finally, by carrying out a dam risk analysis, a K-value of 5.25 reduced
the expected annual damage by 8.4% compared to the VEM, which represents a lowering of 17.3%
of the maximum possible reduction, determined by the application of an optimizer based on mixed
integer linear programming (MILP method).

Keywords: flood control; dam safety; gated spillway; Volumetric Evaluation Method; reservoir
operation rule; mixed integer linear programming; Monte Carlo framework

1. Introduction

Flood management aims to guarantee dam safety, minimize downstream floods, and maintain the
full operational capacity of reservoirs once a flood is over [1–5]. Dams with gated spillways represent
around 30% of large dams around the world [6], and provide more possibilities for water conservation
and flood abatement than those with fixed-crested spillways [7]. Gate management during a flood
event represents a challenge for the dam operator, who makes decisions under pressure and during
uncertain conditions. In addition, the time frame for decision making is usually extremely short,
the information available is generally sparse, and the predictability of the meteorological situation
is limited [8,9]. Real-time flood control operations at dams have been historically approached via
predefined rules obtained by simulation techniques [10], or by using simulation methods such as the
Volumetric Evaluation Method (VEM) [11], commonly used in Spain. Flood control policies generally
establish the discharge at each time step by considering the available information at a previous time,
e.g., inflow, reservoir stage, stored volume, and outflow discharge downstream, among others [12].
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Dam Master Plans include this information, which helps operators to be efficient [1]. These operation
rules are represented and assessed by simulation models, which are usually more flexible and easier
to interpret for the dam operators than other schemes, such as optimization [13–18] or data-based
learning models [19–24].

Several simulation frameworks have been developed to tackle this issue. The software
HEC-ResSim [25] permits one to obtain the discharged outflow for each time step, accounting for the
operation rules and simulating the behaviour of the reservoir. Flood Control-Reservoir Operator’s
System software [26] supports decision making by providing important data and possible operation
alternatives (as a result of the control algorithms implemented in the program). Other models integrate
real-time reservoir operation with flood forecasting. They account for the uncertainty associated
with the hydrologic loads, by analysing different forecasting techniques for reservoir inflows and
by including deterministic and probabilistic approaches [27]. A further example is the integrated
management system for flood control at reservoirs developed by Cheng & Chau [28], which gathers
real-time information. This is processed in a central database management system in order to evaluate
the alternatives of flood operation.

The improvements in the field of optimization and data-based learning allow an approach to
the problem which accounts for the uncertainty of the hydrologic loads in real-time forecasting [29]
and permits the development of operation policies incorporating different objectives [30–33]. Most of
the optimization methods are based on an objective function, which minimizes the outflows and
the maximum reached reservoir levels [18]. A wide variety of optimization models have been
applied to flood reservoir operations: linear programming, non-linear programming, successive
linear programming, stochastic dynamic programming, genetic algorithm, genetic programming,
particle swarm optimization, Honey-Bee mating, Artificial Bee Colony, and a combination of the
aforementioned [30]. However, there is still a gap between the theoretical development and practical
implementation of these models [3,34]. Optimization models are usually limited as they depend on
specific parameters (penalty functions and coefficients of the objective function, among others) which
need the operator’s expertise on mathematical programming [18]. In addition, due to the uncertainty
associated with hydrologic loads and the limitations of the flood forecasting, dam managers usually
prefer simulation methods [35].

Accounting for the variability associated with natural processes [36] and considering the stochastic
nature of inflow hydrographs, the definition and comparison of flood control operation rules is a
complex task [37]. Probabilistic and risk-based approaches may be useful to manage the uncertainty
and to obtain reasonable solutions [38–41]. The use of stochastic modelling event-based methods
permits one to numerically derive the cumulative distribution of the peak flows [42], and, as a result of
applying flood control rules in the dam, the cumulative distribution of the maximum released outflows
and maximum reservoir levels.

This study proposes a real-time flood control method for gate-controlled spillways under a Monte
Carlo approach. First, we introduce the proposed model and the methodology for model evaluation.
Afterwards, we apply it to the Talave dam and discuss the results. Finally, we highlight the main
findings and conclusions.

2. Materials and Methods

A probabilistic approach was implemented, combining a Monte Carlo framework and
deterministic flood control operation rules for dams with gated spillways. We propose a method
named the K-Method as an improvement of the widely used VEM [11]. A Monte Carlo environment
was produced to generate a set of storms and its corresponding hydrographs were used as the input
to the reservoir. The proposed method was compared with VEM, in order to assess the performance
improvement. Two other methods were used for references as extreme cases: the Inflow-Outflow Method
(I-O) and the Mixed Integer Linear Programming method (MILP) proposed by Bianucci et al. [18].
The I-O is a very simple scheme that tries to maintain the reservoir level by equating reservoir
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releases to reservoir inflows while the gates are partially opened, so no flood attenuation effect is
achieved during the controlled phase of dam operation. On the other end, the MILP method is a full
optimization method that achieves the best possible management of an inflow hydrograph, according
to a given objective function. It represents perfect management under the unrealistic assumption of full
knowledge of the inflow hydrograph, and thus, is taken as the reference for maximum improvement.
Figure 1 shows a general scheme of the probabilistic approach.
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Figure 1. Scheme of the proposed probabilistic approach.

The main components of the process are: (a) rainfall generation and a hydrometeorological model;
(b) flood routing in the reservoir and dam operation by applying VEM, the K-Method, I-O, and MILP;
and (c) analysis of the results.

2.1. VEM

VEM is a method proposed by Girón [11] that calculates, in real-time, the outflow during a flood
event in reservoirs with gated spillways. It is based on four principles:

1. Outflows are lower than or equal to the maximum antecedent inflows.
2. Outflows increase when inflows increase.
3. The higher the reservoir level, the higher the percentage of outflow increase.
4. If the reservoir is at maximum capacity, outflows are equal to inflows while gates are partially opened.

Figure 2 shows the general scheme of the method implementation. The top of control pool (TCP,
the corresponding volume is STCP) is the maximum reservoir level allowed under ordinary operation
conditions in the absence of floods and the flood control level (FCL, the corresponding volume is SFCL)
corresponds to the maximum water level allowed in the reservoir under ordinary operation conditions
considering the flood operation [43]. The available flood control capacity at time i

(
SF

i

)
is defined by

Equation (1):
SF

i = SFCL − Si, (1)

where Si is the volume in the reservoir at time i.
The VEM progressively manages the available SF

i , increasing the outflows as the SF
i decreases.

Given the reservoir inflow at time i (Ii), and by assuming a constant inflow in the future, the number
of intervals left (n) until the reservoir runs out of SF

i are given by Equation (2):

n =
SF

i
(Ii − Oi−1)·∆t

, (2)

where Oi−1 is the outflow at time i − 1 and ∆t represents the operation time step. In this study,
we adopted a time step of one hour. Considering that outflows must be equal to inflows when SF

i = 0
and that outflows increase linearly until equaling the inflows at time ∆t·n, and by assuming a constant
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inflow in the future, the increment of outflows (∆Oi = Oi − Oi−1) at each time step is (Ii−Oi−1)
n , and

can be expressed by Equation (3) (replacing n by Equation (2)):

∆Oi =
(Ii − Oi−1)

n
=

(Ii − Oi−1)
2·∆t

SF
i

=
∆Si

2

SF
i ·∆t

, (3)
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Equation (3) is valid when the time intervals (n) until the reservoir runs out of flood control
capacity are higher than one (SF

i > ∆Si). When n ≤ 1, the method aims to balance the outflows and the
inflows. When SF

i = 0, the gates are in operation, maintaining the reservoir level at FCL until they are
fully open. Although both antecedent assumptions are not real, by selecting a short time operation
step and by recalculating the decision process at each time step, possible deviations are minimized.
∆Oi can be expressed as:

∆Oi = Ii − Oi−1. (4)

The proposed outflow (Qp) is determined, taking into account Si and whether the reservoir
volume is increasing (∆Si = Si − Si−1 ≥ 0) or decreasing (∆Si < 0) (Figure 2). The different outflows are
proposed as follows:

• If Si ≤ STCP, the method aims to increase the reservoir level to reach the maximum normal
operative level (TCP):

Qp = 0. (5)

• When Si > STCP, the outflow proposed depends on ∆Si:

If ∆Si ≥ 0, the method releases outflows according to the ∆O previously defined by VEM,
as follows:

# If SF
i ≤ ∆Si, the time intervals (n) until the reservoir runs out of flood control capacity are

equal to or lower than one, and the method aims to balance the outflows and inflows:

Qp = Oi−1 +
∆Si

∆t
. (6)
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# On the other hand, if SF
i > ∆Si, the VEM progressively manages the available SF

i , increasing
the outflows as the SF

i decreases:

Qp = Oi−1 +
∆Si

2

SF
i ·∆t

. (7)

If ∆Si < 0 (and Si > STCP), the VEM aims to continue decreasing the reservoir level until reaching
the TCP:

Qp = Oi−1 + 0.5·(Ii − Ii−1). (8)

Once Qp is obtained, it is compared to the maximum discharge capacity at the current reservoir
level (Omax.disch.(Si)) and the maximum of the antecedent inflows (I1, I2, . . . , Ii), and the minimum of
the three values is the flow selected to be released through the gates (Oi).

2.2. The Proposed K-Method

The main advantage of the VEM is its simplicity. It has been widely used in Spain to specify dam
management rules for flood control, with successful results. However, it is a fixed method, in the sense
that it cannot be adapted to the specific conditions of the basin, the reservoir, or the spillway, other
than the flood control volume. The K-Method, based on the VEM [11], proposes the application of a
corrective parameter K to the expressions that govern the dam operation rules while the reservoir level
is rising. By varying parameter K, we change the proportion in which the outflows are increased, until
the FCL is reached. In addition, several improvements to the VEM are included, considering: (1) more
reservoir zones to avoid abrupt changes of outflows; (2) an alert outflow (OALT) as the maximum
admissible flow for avoiding downstream damage; and (3) a maximum gate opening/closing gradient
(Omax.Gr). Figure 3 shows the general scheme of the K-Method implementation.
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The method defines three characteristic levels and reservoir volumes, the aforementioned TCP
and FCL, and incorporates the activation level into the scheme (AL, the corresponding volume is
SAL). The activation level is the reservoir level in which the rules of operation change, increasing the
outflows. The aforementioned characteristic levels determine four zones: 1, 2, 3, and 4 (Figure 3).
The proposed outflow (Qp) is determined as a function of Si, the corresponding zone (1, 2, 3, or 4), and
whether the reservoir storage is increasing (∆Si = Si − Si−1 ≥ 0) or decreasing (∆Si < 0).

2.2.1. Proposed Outflow in Zone 1

If the reservoir level is within Zone 1, the method aims to increase the reservoir level to reach the
maximum normal operative level (TCP):

Qp = 0. (9)

2.2.2. Proposed Outflow in Zone 2

If the reservoir level reaches Zone 2 and it is rising (∆Si ≥ 0), the method gradually starts to
release flow, avoiding abrupt changes of outflows that could be dangerous downstream of the dam.
The proposed outflow is as follows:

• If SF
i > ∆Si, releases increase linearly from 0 m3/s (when the reservoir level is equal to TCP) to

the proposed outflow in Zone 3 at AL:

Qp =

(
Oi−1 + K· ∆Si

2

SF
i ·∆t

)
· Si − STCP

SAL − STCP
. (10)

• If SF
i ≤ ∆Si, the method aims to balance the outflows and inflows:

Qp = Oi−1 +
∆Si

∆t
. (11)

If the reservoir level is within Zone 2 and falling (∆Si < 0), the method aims to continue
gradually decreasing the reservoir level, avoiding abrupt changes of outflows and minimizing
downstream floods:

• If Ii < OALT, the method releases the maximum precedent outflow limited by the alert outflow:

Qp = min(OALT , max(O1, O2, . . . , Oi−1)). (12)

• Otherwise, the method maintains the reservoir level, avoiding an increment of downstream floods:

Qp = Ii. (13)

2.2.3. Proposed Outflow in Zone 3

If the reservoir level is within Zone 3 and rising (∆Si ≥ 0):

• If SF
i > ∆Si, the method progressively manages the available SF

i , increasing the outflows as the
SF

i decreases:

Qp = Oi−1 + K· ∆Si
2

SF
i ·∆t

. (14)

• Otherwise, if SF
i ≤ ∆Si, the method aims to balance the outflows and inflows:

Qp = Oi−1 +
∆Si

∆t
. (15)
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If the reservoir level is within Zone 3 and falling (∆Si < 0), the K-Method decreases the reservoir
level at a linear rate, from the maximum antecedent outflow to the outflow proposed at AL (limit of
Zones 2 and 3):

• If Ii < OALT, the method releases more than the maximum precedent outflow limited by the
alert outflow:

Qp = QEq.(12) +
(

max(O1, O2, . . . , Oi−1)− QEq.(12)

)
· (Si − SAL)

(max(S1, S2, . . . , Si−1))− SAL)
, (16)

QEq.(12) is the proposed outflow in Equation (12).

• Otherwise, the method decreases the reservoir level, minimizing downstream floods:

Qp = Ii + (max(O1, O2, . . . , Oi−1)− Ii)·
(Si − SAL)

(max(S1, S2, . . . , Si−1))− SAL)
. (17)

2.2.4. Proposed Outflow in Zone 4

If the reservoir level is within Zone 4 and rising (∆Si ≥ 0), the gates are operated, maintaining the
reservoir level at FCL until they are fully open:

Qp = Oi−1 +
∆Si

∆t
. (18)

Conversely, if the reservoir level is within Zone 4 and falling (∆Si < 0), the K-Method aims to
decrease the reservoir level as soon as possible. The proposed outflow is the one defined during the
last interval:

Qp = Oi−1. (19)

2.2.5. Determination of the Released Outflow at Each Time Step

Once Qp is obtained, it is compared to the maximum discharge capacity at the current reservoir
level (Omax.disch.(Si)), the maximum of the previous inflows (I1, I2, . . . , Ii), and the maximum gate
opening/closing gradient (Omax.Gr.(Si)), and the minimum of the four values is selected as the flow to
be released through the gates (Oi).

2.3. I-O and MILP

Finally, we implemented the I-O and MILP methods as extreme performance cases. The I-O
exchanges inflows to the reservoir by discharges, so no attenuation effect of the reservoir is considered
while the gates are partially opened. I-O corresponds to the extreme case of VEM, where no control
flood volume is considered (TCP = AL = FCL). In this case, only Zones 1 and 4 are operative.

We applied the MILP to obtain optimal operation rules in terms of the maximum outflow and
maximum level reached in the reservoir for each flood event. MILP was proposed by Bianucci et al. [18],
based on the mixed integer linear programming theory, minimizing an objective cost (penalty) function
considering the hydraulic and operational restrictions. This objective function (P) is based on the
weighted sum of two penalty functions, the Ps associated with the reservoir volumes (and affecting the
dam safety) and the Po associated with the outflows (and affecting the downstream safety), as shown
in Equation (20):

P = wo·Po + ws·Ps, (20)

where wo and ws represent the weight associated with Po and Ps respectively. The reader may
refer to Bianucci et al. [18] for a detailed description of the MILP model. It should be stressed that,
unlike the three other methods, the MILP method requires knowledge in advance of the entire inflow
hydrographs, and therefore, it corresponds to an unrealistic situation.
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2.4. Rainfall Generation, Hydrometeorological Model and Comparison of Methods

To compare the behaviour of the different reservoir operation rules during a large range of floods,
we considered return periods (Trs) ranging from one to 10,000 years. We generated and analysed
100,000 maximum annual reservoir inflow hydrographs [44–47], in order to obtain representative and
robust results. A semi-distributed event-based hydrometeorological model was applied, based on
the Monte Carlo simulation framework proposed by Sordo-Ward et al. [47]. The model stochastically
generated a set of probability of exceedance values and their corresponding return periods. By applying
an extremal distribution SQRT-Et max [48,49] function, intensity-duration-frequency curves (IDF) [50],
and a stochastic rainfall temporal distribution [47], a set of hyetographs was generated. Afterwards, the
set of storm events were transformed into hydrographs by applying the Curve Number method [51],
the Soil Conservation Service dimensionless unit hydrograph procedure [51], and the Muskingum
method [52]. The reader may refer to Sordo-Ward et al. [47] for a more detailed description of the
processes involved.

Once the different gate controlled operation rules were applied, we selected the maximum level
reached in the reservoir (ZMAX) and the maximum outflow downstream (OMAX) as representative
variables for a comparison of the methods’ performance. We implemented a comparative analysis by
means of two different approaches (Figure 4). On the one hand, we applied a comparative scheme
organized in quadrants, which showed the increasing (or decreasing) of the maximum reservoir level
and maximum outflow compared to the VEM (Figure 4a). The points located in the upper right
quadrant (QI) represent events where the maximum level reached in the reservoir and the maximum
outflow were higher than by applying the VEM. The points located in the upper left quadrant (QII)
show an intermediate situation, with lower maximum levels but higher outflows. The lower left
quadrant (QIII) represents cases for which both the maximum level and maximum outflow were
lower than by applying the VEM (i.e., the best situation). The lower right quadrant (QIV) represents
intermediate situations with higher maximum levels and lower maximum outflows. On the other
hand, we implemented the global risk index (IR) analysis (Figure 4b) proposed by Bianucci et al. [18].
This method accounts for a single indicator of the global risk associated for the ZMAX and OMAX, by
applying the concept of expected annual damage [53]. First, the damage cost curves (DZ and DO)
and the cumulative distribution functions (CDF) related to ZMAX and OMAX were obtained, based
on the information included in the Dam Master Plan and the Dam Emergency Plan. The global risk
index is obtained by multiplying the probability of the reference variable (ZMAX or OMAX) in the given
interval by the damages associated with that variable’s value. In the case of OMAX, the damages
are calculated through floodplain analysis. In the case of ZMAX, the damages are estimated as the
product of the probability of reaching during the flood, provided that the reservoir has already reached
ZMAX, multiplied by the damages linked to dam failure. It is important to point out that there was no
expected damage below FCL and OALT (Figure 4b). Afterwards, we obtained the partial risk indexes
IZ (Equation (21)) and IO (Equation (22)) associated with ZMAX and OMAX, respectively:

IZ = δ·
n−1

∑
j=1

(
Dz
(

Zmaxj + Zmaxj+1

2

))
, (21)

IO = δ·
n−1

∑
j=1

(
Do
(

Omaxj + Omaxj+1

2

))
, (22)

where DZ and DO are the damage functions for ZMAX and OMAX, respectively, and δ represents the
incremental non-exceedance probability between two consecutive elements in the sample (either OMAX

or ZMAX (Figure 4b)), being constant and equal to the inverse of the size of the generated sample
(100,000 in the current study). The index j represents the position of the sorted series (ascending order)
of maximum outflows and maximum reservoir levels. Once IO and IZ were obtained, we used the
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weighted sum aggregation to obtain the global risk index (IR). Due to the lack of information, we
designated equal levels of priority to both partial indexes (Equation (23)):

IR = IZ + IO, (23)

for which all of the mentioned indexes are expressed in euros.
When comparing the aforementioned methods, it should be highlighted that the VEM, K-Method,

and I-O operate in real-time, using only the precedent information. Meanwhile, MILP utilizes, as the
input, the entire set of inflow hydrographs. In this study, MILP was applied to obtain the maximum
possible improvement in terms of OMAX and ZMAX.Water 2017, 9, 237 9 of 19 
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Figure 4. Comparative analysis of operation rules. (a) Comparative scheme of quadrants. The tested
method is called “T”, while the reference method is called “R”. The horizontal axis shows the variations
of the maximum reservoir level of T with respect to R (∆Z) in m. The vertical axis shows the variations of
the maximum outflows of T with respect to R (∆O ) in m3/s. (b) Global risk index analysis. The storage
(IZ) and peak released flow (IO) risk indexes were calculated and combined to obtain the global risk
index (IR) for the K-Method, VEM, I-O, and MILP method.

2.5. Case Study

The proposed methodology was applied to the Talave reservoir. It is located in the province of
Albacete, in the southeast of Spain, and belongs to the Mundo river basin. The Talave basin has an
area of 766.5 km2. The climate of the region is Mediterranean (mean annual precipitation of 557 mm).
The main purposes of the reservoir are flood regulation, hydropower generation, and water supply for
the Region of Murcia.

The characteristics of the basin and dam-reservoir system configuration are shown in Figure 5 and
Table 1. Two vertical wagon gates, each one being six meters wide by four meters high, compose the
main spillway. The other operative discharge structures are one bottom outlet and two water intakes
in the dam body.

Table 1. Characteristic reservoir levels and outflows of the dam configuration.

Reservoir Levels (m.a.s.l) Maximum Outflow Capacity at
Design Flood Level (DFL) (m3/s) Characteristic Outflows (m3/s)

Top of control pool (TCP) 508.9 Gated-spillway 2 × 142.5 Alert outflow (OALT) 100Activation level (AL) 509.3

Flood control level (FCL) 509.9 Bottom outlet 1 × 99.5 Warning outflow (OWARN) 150

Design flood level (DFL) 511.3 Dam body
water intakes

2 × 9.0 Emergency outflow (OEMER) 300Crest of dam (COD) 512.4
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Figure 5. Case study scheme. (a) Location of the Talave dam. (b) Scheme of the discharge structures and
the elevation of their axis (left). Details of gated spillways (right). Abbreviations are defined in Table 1.

3. Results and Discussion

Results comparing a representative range of K-values, I-O, and MILP with the VEM, are reported
in Figures 6–8. For K-values lower than one, no improvement with respect to the VEM was achieved
for the Talave dam. The K-Method is equal to the VEM when the K-value is equal to one. For K-values
higher than one, all analysed cases were located in QII and QIII. Following this, we focused the analysis
of the K-Method on K-values higher or equal to one. When analysing the variations of the maximum
reservoir level compared to VEM (∆Z), a higher K-value resulted in a lower ZMAX, regardless of the
range of inflow Trs studied, reaching up to −0.15 m for K = 2 and −0.64 m for K = 50 (Figure 6).
However, when analysing the variations of the maximum outflows compared to VEM (∆O), different
behaviours were found, depending on the Trs analysed. Figure 7 shows, for different ranges of Trs, the
percentage of cases located in QIII (the best situation), Figure 8(a1–a6) shows the median and quartiles
associated with the maximum reservoir levels (ZMAX), and Figure 8(b1–b6) shows the variations of the
median and quartiles associated with the maximum outflows (OMAX).
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Figure 6. Comparison of the K-Method (for different K-values), I-O and MILP with respect to the VEM.
The horizontal axis shows the increments of the maximum reservoir level in m (∆Z). The vertical axis
shows the increments of the maximum outflow in m3/s (∆O). The red points correspond to events
with Tr ranging from one to 10 years, blue points ranging from 10 to 25, green points from 25 to 50,
black points from 50 to 100, cyan points from 100 to 500, and magenta points from 500 to 10,000 years.
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Figure 8. Comparison of the K-Method (for different K-values) with respect to the VEM (K = 1).
The continuous line shows the median and the shaded areas show the range between the 25th and
75th percentile of the maximum reservoir levels (ZMAX) (a) and the maximum outflows (OMAX) (b),
from K = 1 (VEM) to K = 50. The horizontal axis shows the different values of K. The red colour
corresponds to events with Tr ranging from one to 10 years (a1,b1), blue from 10 to 25 (a2,b2), green
from 25 to 50 (a3,b3), black from 50 to 100 (a4,b4), cyan from 100 to 500 (a5,b5), and magenta from 500
to 10,000 years (a6,b6). For specific K-values (K = 1, 2, 4, 6, 8, 10, 20, 50), box plots are presented with
their corresponding outliers (when existing) represented by red dots.

For Tr values lower than 25 years, all events were located in QII, regardless of the analysed
K-value (Figure 7(a1,a2)), decreasing the maximum levels but increasing the maximum outflows when
compared with VEM (Figures 6 and 8(a1,a2,b1,b2). Even though the maximum outflows increased,
the OMAX values did not jeopardize the downstream safety for K-values lower than ten, because OALT

was not exceeded (OMAX = 97.2 m3/s for K = 10).
For Tr values ranging from 25 to 50 years, lower K-values included more cases in QIII, decreasing

from 73% for K = 1.25, to 4% for K = 10. For K-values higher than 20, all events were located in QII

(Figure 7(a3)). Higher K-values achieved lower ZMAX values, but the opposite occurred for OMAX.
For example, the ZMAX median decreased from 509.8 to 509.5 m and the OMAX median increased
from 111 to 118 m3/s for K = 1 (VEM) and K = 10, respectively (Figure 8(a3–b3)). For K-values higher
than ten, the median of ZMAX decreased to 509.3 m for K = 50, while the OMAX median increased to
124 m3/s for K = 50.
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For Tr values ranging from 50 to 100 years, more than 99% of the analysed cases were included
in QIII for K-values from 1.25 to 6.5, more than 92% for K-values lower than ten, and this decreased
down to 17% for K = 50 (Figure 7(a4)). The median of ZMAX decreased from 509.9 m for K = 1 (VEM),
to 509.5 m for K = 10 and 509.3 m for K = 50. (Figure 8(a4)). The median of OMAX decreased from
177 m3/s to 170 m3/s with K ranging from one (VEM) to three, but increased for K-values higher than
three, up to 180 m3/s for K = 50 (Figure 8(b4)).

For Tr values within the range of 100 to 500 years, all events were located in QIII for K-values
ranging from one to ten (Figures 6 and 7(a5)) and more than 93% for K-values higher than ten
(Figure 7(a5) and Figure 8(a5,b5)). The ZMAX and OMAX median values decreased from 510.0 m and
270 m3/s for K = 1 (VEM), to 509.6 m and 252 m3/s for K = 10, respectively. For K-values higher than
ten, the ZMAX and OMAX median values remained almost constant.

For Tr values higher than 500 years, regardless of the K-value (except for those lower than one),
all events were located in QIII (Figures 6 and 7(a6)). The ZMAX and OMAX median values ranged from
511.0 m and 375 m3/s for K = 1 (VEM), to 510.8 m and 360 m3/s for K = 10, respectively (Figure 8(a6,b6)).
For K-values higher than ten, the ZMAX and OMAX median values remained almost constant. We also
compared I-O and MILP with VEM. As expected, the I-O behaviour was similar to the K-Method for
higher K-values (Figure 6). By comparing MILP and VEM, the results showed that all events with a
Tr higher than 25 years were located in QIII, and those with a Tr lower than 25 years located in QII

presented outflows that did not jeopardize the downstream safety (Figure 6).
Finally, we analysed the frequency curves of ZMAX and OMAX for the different methods (Figure 9).

For the K-values analysed (and for K-values greater than one), they showed an intermediate behaviour
between VEM and I-O. For the ZMAX frequency curves, the higher the K-value, the lower ZMAX

obtained for the same return period (Figure 9a). However, when analysing the OMAX frequency curves,
they intersected the VEM maximum outflow frequency curve (Figure 9b). For Tr values higher than
one, and until the intersection of the OMAX frequency curves, the greater the K-value, the greater the
OMAX was for the same Tr. Moreover, the intersection with VEM occurred at higher Trs, corresponding
to a Tr of 31, 50, 86, and 102 years for K = 2, 10, 50, and I-O, respectively. Once the OMAX frequency
curves intersected, the behaviour was the opposite.

Water 2017, 9, 237 12 of 19 

 

We also compared I-O and MILP with VEM. As expected, the I-O behaviour was similar to the 
K-Method for higher K-values (Figure 6). By comparing MILP and VEM, the results showed that all 
events with a Tr higher than 25 years were located in QIII, and those with a Tr lower than 25 years 
located in QII presented outflows that did not jeopardize the downstream safety (Figure 6).  

Finally, we analysed the frequency curves of ZMAX and OMAX for the different methods (Figure 9). 
For the K-values analysed (and for K-values greater than one), they showed an intermediate 
behaviour between VEM and I-O. For the ZMAX frequency curves, the higher the K-value, the lower 
ZMAX obtained for the same return period (Figure 9a). However, when analysing the OMAX frequency 
curves, they intersected the VEM maximum outflow frequency curve (Figure 9b). For Tr values 
higher than one, and until the intersection of the OMAX frequency curves, the greater the K-value, the 
greater the OMAX was for the same Tr. Moreover, the intersection with VEM occurred at higher Trs, 
corresponding to a Tr of 31, 50, 86, and 102 years for K = 2, 10, 50, and I-O, respectively. Once the 
OMAX frequency curves intersected, the behaviour was the opposite. 

 
Figure 9. Frequency curves. (a) Maximum reservoir level frequency curves for VEM (blue continuous 
line), different values of K (black lines of different types, see legend), I-O (dashed-dotted blue line), 
and MILP (dashed red line). (b) Maximum outflows frequency curves for VEM (blue continuous 
line), different values of K (black lines of different types, see legend), I-O (dashed-dotted blue line), 
and MILP (dashed red line).  

Therefore, the choice of the best operation rule was not univocal for the entire range of analysed 
Tr and depended on the priorities selected by the dam damager (MILP was not accounted for as it 
needs to know the whole inflow hydrograph in advance). If an ordinary reservoir operation and the 
management of floods with a Tr between one and 25 years were prioritized, the best rule operation 
was the K-Method for the highest K-value that minimized ZMAX and avoided damages associated 
with the released outflows. As mentioned, for this case study, it was K = 10.  

If the management of floods with a Tr ranging from 25 to 500 years was prioritized, the best 
operation rule depended on whether the number of events included in QIII or the entity of the 
decrease of ZMAX and OMAX was prioritized. In the case study, K = 1.25 maximized the number of 
events improved for 25 < Tr < 50 years and K = 10 for 50 < Tr < 500 years. The reservoir levels reached 
Zones 3 (in all events with Tr values higher than 50 years) and 4. The influence of the K-value on 
Equation (10) implied an increase of the released outflows at the beginning of the operation (Zone 2), 
increasing the available flood control capacity with respect to VEM for the next time steps. 
Therefore, Zones 3 and 4 were reached later, for which the OMAX was reduced (Figure 3). 

If the dam safety and management of extreme floods (Tr > 500 years) were prioritized, I-O 
simultaneously minimized the maximum levels and maximum outflows. However, as the Tr of the 
inflows increased, ΔO and ΔZ tended to be zero. In these cases, Qp was higher than the maximum 
discharge capacity when the gates were fully opened and the outflow responded to an un-controlled 
fixed-crested spillway (Figure 3). This explains why ZMAX and OMAX tended to be constant when 
analysing K-values higher than ten for Tr values higher than 500 years (Figures 8(b6) and 9). This 

Figure 9. Frequency curves. (a) Maximum reservoir level frequency curves for VEM (blue continuous
line), different values of K (black lines of different types, see legend), I-O (dashed-dotted blue line),
and MILP (dashed red line). (b) Maximum outflows frequency curves for VEM (blue continuous line),
different values of K (black lines of different types, see legend), I-O (dashed-dotted blue line), and
MILP (dashed red line).
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Therefore, the choice of the best operation rule was not univocal for the entire range of analysed
Tr and depended on the priorities selected by the dam damager (MILP was not accounted for as it
needs to know the whole inflow hydrograph in advance). If an ordinary reservoir operation and the
management of floods with a Tr between one and 25 years were prioritized, the best rule operation
was the K-Method for the highest K-value that minimized ZMAX and avoided damages associated
with the released outflows. As mentioned, for this case study, it was K = 10.

If the management of floods with a Tr ranging from 25 to 500 years was prioritized, the best
operation rule depended on whether the number of events included in QIII or the entity of the decrease
of ZMAX and OMAX was prioritized. In the case study, K = 1.25 maximized the number of events
improved for 25 < Tr < 50 years and K = 10 for 50 < Tr < 500 years. The reservoir levels reached Zones
3 (in all events with Tr values higher than 50 years) and 4. The influence of the K-value on Equation
(10) implied an increase of the released outflows at the beginning of the operation (Zone 2), increasing
the available flood control capacity with respect to VEM for the next time steps. Therefore, Zones 3
and 4 were reached later, for which the OMAX was reduced (Figure 3).

If the dam safety and management of extreme floods (Tr > 500 years) were prioritized, I-O
simultaneously minimized the maximum levels and maximum outflows. However, as the Tr of the
inflows increased, ∆O and ∆Z tended to be zero. In these cases, Qp was higher than the maximum
discharge capacity when the gates were fully opened and the outflow responded to an un-controlled
fixed-crested spillway (Figure 3). This explains why ZMAX and OMAX tended to be constant when
analysing K-values higher than ten for Tr values higher than 500 years (Figure 8(b6) and Figure 9).
This also explains the shape of the half loop of the comparative scheme between the K-Method and
VEM (Figure 6).

In a practical case, even if the skill required to forecast the inflow hydrograph is limited, there
may be ways to identify the entity of the flood that is being managed in the reservoir. According to
the general meteorological situation, the dam manager may be able to estimate the return period of
the event that is occurring, and therefore, the conclusions of the above discussion could be applied to
decide on the best K-value to adopt.

Finally, Figure 9 shows changes in the slope for both the ZMAX and OMAX frequency curves, and
regardless of the analyzed operation rule. For small and medium floods, the outflows are governed
by the operation of the partially opened gates. Once the FCL is exceeded and gates become fully
open, the spillways work as un-controlled fixed-crested spillways, justifying the behavior of the
frequency curves.

Figure 10 shows the evolution of the ratio between the maximum outflow and the maximum
inflow as a function of the return period of each event for different dam operation methods. Although
MILP showed the most peak attenuation, as previously stated, it represents perfect management under
the unrealistic assumption of full knowledge of the inflow hydrograph; thus, it was taken only as
the reference for maximum improvement. Regarding the behaviors of the real-time methods, we
distinguished three main phases. For a lower Tr, when all methods were active (gates partially opened),
the VEM was the real-time method which showed the highest peak attenuation, because the other
real-time methods specify greater outflows than those of VEM. In addition, the other methods reached
the fully opened gate situation earlier than VEM, because they released greater outflows and the
spillways started to work earlier as un-controlled fixed-crested spillways. For medium and high Tr
values, the mentioned change in the release mechanism justifies an increase of peak attenuation and
the differences among the methods decrease. Finally, for the biggest floods where the crest of the dam
is overtopped and the entire length of the dam works as an un-controlled fixed-crested spillway, peak
attenuation decreased, regardless of the method.
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Figure 11 shows two examples of application of the different proposed dam operation methods. 
Although MILP showed the most attenuation of peak flows for both cases and good behaviour 
regarding the maximum reservoir level, it represents perfect management under the unrealistic 
assumption of full knowledge of the inflow hydrograph. Therefore, it was only taken as the 
reference for maximum improvement. For a moderate flood, Figure 11a shows considerable 

Figure 10. Peak flow attenuation for different return periods and methods of operation of dams. Y axes
represent the ratio between the maximum outflow and the maximum inflow for each event with their
corresponding Tr (X axes). Blue dots represent the events routed by the dam by applying the VEM,
dark grey dots by applying the K-Method with a K-value = 2, grey dots with a K-value = 10, light grey
dots with a K-value = 50, cyan dots by applying the I-O method, and red dots by applying the MILP.

Figure 11 shows two examples of application of the different proposed dam operation methods.
Although MILP showed the most attenuation of peak flows for both cases and good behaviour
regarding the maximum reservoir level, it represents perfect management under the unrealistic
assumption of full knowledge of the inflow hydrograph. Therefore, it was only taken as the reference
for maximum improvement. For a moderate flood, Figure 11a shows considerable differences of
maximum peak flows and maximum reservoir levels, and the VEM was the real-time method which
presented the highest peak attenuation, but the highest maximum reservoir level. In the analysis of a
large flood (Tr = 1000 years, Figure 11b), it can be seen that the gates became fully open (around 20 h)
for all methods. From this time on, the spillways start to work as un-controlled fixed-crested spillways.
The peak attenuation effect is mainly due to the un-controlled fixed-crested spillway mechanism and
the differences among the methods decrease.
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Figure 11. Comparison of outflow hydrographs (top) and reservoir levels (bottom) resulting from
the aplication of different dam operation methods. (a) Hydrograph corresponding to Tr = 20 years
and (b) corresponding to Tr = 1000 years. Colored lines represent the application of the different
methods: VEM (blue continuous line), different values of K (red lines of different types, see legend),
I-O (dashed-dotted blue line), and MILP (magenta continuous line). Coloured shading (bottom)
represents the different Zones of application of the K-Method (Zone 1 in green, Zone 2 in yellow, Zone 3
in orange, and Zone 4 in red).
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In order to better quantify the influence of the K-value, we applied a risk-based analysis. Once we
obtained the damage curves (Figure 12a,b), we calculated the storage risk index (IZ), the peak released
flow index (IO), and the global risk index (IR) for the Talave dam (Figure 12c).

Figure 12 shows that K-values larger than one reduce the IR value for the Talave dam with respect
to the VEM. There is also a range of K-values for which the IR is even lower than for the I-O, which is a
very conservative flood management strategy. This global reduction is due to the effect of management
strategies on the IO. If IO is analysed, I-O is found to be the worst strategy, since it implies no peak
attenuation during the controlled phase of the flood. The K-Method outperforms the VEM for K-values
smaller than 20. For the case of the IZ, the minimum values are obtained for the I-O strategy, which
emphasizes controlling the reservoir level. This strategy is even better than MILP optimization. In the
case of the K-Method, it always outperforms VEM, and IZ tends to be the value obtained for I-O for
large values of K. MILP represented the minimum expected value for IR. For this case study, the
K-value that optimized IR is 5.25, reducing the annual expected damage by 8.4%, when compared to
VEM. The reduction represented 17.3% of the maximum possible reduction determined by MILP. Even
though this may seem like a small reduction, it should be taken into account that the application of
the K-Method has no associated construction costs and the improvement would be applied annually,
during the whole dam life (according to the Dam Master Plan, Talave Dam’s expected life is 167 years).Water 2017, 9, 237 15 of 19 
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different values of K. The optimum K for IR is 5.25.

4. Conclusions

The proposed K-Method is a decision-making tool for dam managers that allows analyzing the
effects of applying different reservoir operation rules for both dam safety and downstream safety.
In contrast with other fixed methods, the K-Method allows, for each analyzed dam, the identification of
the K-value (conducting a calibration process) that best adapts the management strategy to the specific
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conditions of the basin, the reservoir, the spillway, and to the objectives of flood management. It should
be noted that the proposed method has been applied to only one basin and dam configuration, which
limits the generalization of the results and conclusions obtained. Although the results are promising,
further research should be developed to ensure that the K-method improves the rules of operation of
flood control through a wide range of gated-spillway dams.

For the case study under analysis, the K-Method improved the results obtained with VEM, by
reducing the maximum reservoir levels reached in the dam (the higher the K-value. the lower the
maximum reservoir level), while the corresponding increase of outflows did not endanger downstream
safety. In addition, by carrying out a dam risk analysis, a K-value of 5.25 lowered the global risk index,
IR, by 8.4% compared to VEM, and represented 17.3% of the maximum possible reduction determined
by MILP.

We identified different behaviors, depending on the Trs analyzed. For events with a Tr ranging
from one to 25 years, K-value = 10 resulted in an important decrease in the maximum reservoir levels,
while the corresponding increase of outflows did not endanger downstream safety.

For events with a Tr ranging from 25 to 100 years, higher K-values reduced the number of events
that simultaneously achieved lower maximum levels and outflows. For events with a Tr higher than
500 years, I-O simultaneously achieved the lowest maximum levels and outflows. In a practical
case, even if the skill required to forecast the inflow hydrograph is limited, according to the general
meteorological situation, the dam manager may be able to estimate the return period of the event that
is occurring and therefore the conclusions obtained could be applied to decide on the best K-value
to adopt.
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Abbreviations

The following abbreviations are used in this manuscript (sorted alphabetically).

δ
Incremental of non-exceedance probability between two consecutive elements in
the sample

∆O Variation of maximum outflows of the tested method respect to the reference model
∆Oi Variation of outflows at a time i
∆Si Variation of the storage in the reservoir at a time i
∆t Time step

∆Z
Variation of maximum reservoir levels of the tested method respect to the
reference model

AL Activation level
CDF Cumulative distribution functions
COD Crest of dam
DFL Design flood level
DO Function of damage costs associated to the maximum outflows
DZ Function of damage costs associated to the maximum reservoir levels
FCL Flood control level
I-O Inflow-Outflow rule of operation method
IDF Intensity-Duration-Frequency curves
Ii Inflow at a time i
IO Peak released flow index
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IR Global risk index
IZ Storage risk index
K It is also mentioned as K-value, represent a parameter used in the K-Method
MILP Mixed Integer Linear Programming rule of operation method
n number of time intervals until the reservoir runs out of flood control capacity
OALT Alert outflow
Omax.disch.(Si) Maximum outflow that can be discharged at the current reservoir level
OEMER Emergency outflow
Oi Outflow at a time i
Omax.Gr Maximum gate opening/closing gradient
OMAX Maximum released outflows
OWARN Warning outflow
P Objective penalty function applied in MILP
Po Penalty function of released outflows
Ps Penalty function of storage volume
QI, QII, QIII, QIV Quadrants of the comparative scheme: first, second, third and fourth respectively
Qp Outflow proposed by VEM.
R Reference model
SAL Volume at the activation level
SFCL Volume at the flood control level
Si Reservoir storage at a time i
Si-1 Reservoir storage at time i−1
Si

F Available flood control capacity at a time i
STCP Volume at the top of conservation pool
T Tested model
TCP Top of control pool
Tr Return period
VEM Volumetric Evaluation Method
wo weight associated to the penalty function of released outflows
ws weight associated to the penalty function of storage volume
ZMAX Maximum reservoir levels
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