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Abstract: Studies using Drought Hazard Indices (DHIs) have been performed at various scales, but
few studies associated DHIs of different drought types with climate change scenarios. To highlight the
regional differences in droughts at meteorological, hydrological, and agricultural levels, we utilized
historic and future DHIs derived from the Standardized Precipitation Index (SPI), Standardized
Runoff Index (SRI), and Standardized Soil Water Index (SSWI), respectively. To calculate SPI, SRI, and
SSWI, we used a calibrated Soil and Water Assessment Tool (SWAT) for the Karkheh River Basin (KRB)
in Iran. Five bias-corrected Global Circulation Models (GCMs) under two Intergovernmental Panel
on Climate Change (IPCC) scenarios projected future climate. For each drought type, we aggregated
drought severity and occurrence probability rate of each index into a unique DHI. Five historic
droughts were identified with different characteristics in each type. Future projections indicated a
higher probability of severe and extreme drought intensities for all three types. The duration and
frequency of droughts were predicted to decrease in precipitation-based SPI. However, due to the
impact of rising temperature, the duration and frequency of SRI and SSWI were predicted to intensify.
The DHI maps of KRB illustrated the highest agricultural drought exposures. Our analyses provide a
comprehensive way to monitor multilevel droughts complementing the existing approaches.

Keywords: SWAT; drought hazard index; future drought projection

1. Introduction

Drought is a natural hazard with adverse impacts on water resources, agriculture, and the
environment [1–3]. In the literature, it is defined as a recurring prolonged dry period, which affects
different components of the hydrological process [4]. Drought is a complex phenomenon that is
difficult to quantify. This is because its characterization relies on different components of the water
cycle; drought impacts evolve over time, so it is time-dependent. Climate change is likely to shift the
patterns of drought and exacerbate the frequency and intensity of drought events in the foreseeable
future. Therefore, a more comprehensive insight to drought should simultaneously take into account:
(1) different components of the hydrological cycle and their interactions; (2) drought features in
spatial and temporal domains using aggregation methods; and (3) future changes of components
under projected climate change scenarios. Existing literatures mostly look at only one or two of
the abovementioned aspects. Despite its significance for effective regional drought management,
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considering all perspectives together using a standardized procedure has not been well documented
so far.

Depending on the scope, drought has been classified into meteorological, agricultural,
hydrological, and socioeconomic categories [5,6]. The first three types of droughts reflect the physical
characteristics of a drought phenomenon (namely physical drought). Socioeconomic drought is
concerned with the water shortfall whose impact ripples through socioeconomic systems [7]. Although
all types of droughts originate from a deficiency of precipitation [5], hydrological drought is usually
out of phase with or lags behind the occurrence of a meteorological drought [8]. This is mainly because
it takes some time before precipitation shortfall emerges in different subsurface components of the
hydrological system, such as soil moisture, groundwater, and streams [8].

In order to alleviate the expected impacts of droughts, decision makers need to monitor drought
using timely and reliable indices on both spatial and temporal scales. A common measurement
tool used for this purpose is drought indices, which are believed to be more functional than raw
precipitation or runoff variables for evaluating spatial and temporal characteristics of drought [9].
The Standardized Precipitation Index (SPI) [10] is broadly applied to monitor meteorological
droughts [11–13]. Meteorological drought indices have been evaluated together with hydrological and
agricultural indices to gain a broader understanding of drought propagation through the hydrological
cycle (here called multilevel drought assessment). Hisdal et al. [14] assessed meteorological
and hydrological droughts in Denmark on a regional scale and found that hydrological drought
is less frequent, more persistent, and less homogeneous compared to meteorological droughts.
Liu et al. [15] characterized drought propagation in groundwater systems using a standardized
groundwater level index and SPI, showing that groundwater drought lasts longer with higher
intensity. Tallaksen et al. [16] explored drought propagation in hydrology by looking at precipitation,
groundwater recharge, hydraulic head, and river discharge in a groundwater-fed catchment in UK.
Tadesse et al. [17], Vidal et al. [1], Tokarczyk et al. [18], and Duan et al. [19] found that drought impacts
can be seen differently in each type, and more importantly, in the different affected regions. As such,
their findings explain the reason for developing a comprehensive drought monitoring model for
different types of droughts to give decision-makers detailed information on drought characteristics.

Drought has been inevitably interwoven with climate change impacts. Central to this concern
is whether drought will become more frequent, severe, and widespread in the coming decades or
not [20–22]. Water resource management to mitigate drought risks relies on understanding future
characteristics such as the degree of severity, probability of occurrence, frequency, and duration of
expected droughts [23–25]. Many researchers have projected occurrences of droughts under future
climate scenarios by using Global Circulation Models (GCMs) [2]. Lee et al. [26] analyzed climate
change impacts on different characteristics of drought in the Seoul region using four GCMs and
reported a decrease in mild drought frequency, but an increase in the frequency of severe and extreme
droughts._ENREF_18 Leng et al. [27] assessed the climate change impact on biophysical droughts using
daily climate projections under five GCMs with the RCP8.5 (Representative Concentration Pathways)
scenario in China. Their findings confirmed that meteorological, agricultural, and hydrological
droughts will variably occur on different temporal and spatial scales. Liu et al. [28] used SPI,
Standardized Runoff Index (SRI), and Palmer Drought Severity Index (PDSI) to construct historical
and future projection of drought patterns for the Blue River Basin in Oklahoma. Their results predicted
more drought events in the future (2010–2099). They also recommended PDSI and SRI as the most
functional indices for drought risk assessment.

Drought hazard is usually defined as an aggregation of the frequency, intensity, duration, and
spatial extent of occurrences [29]. Despite the extensive research on multilevel drought identification
using drought indices under historic and future conditions, fewer studies have focused on associating
climate change scenarios with composite drought hazard indices of different drought types. This level
of analysis has received even less attention in Iran’s river basins with semi-arid climate. To fulfill this
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research demand, we examine the historic and future drought hazard using an ensemble of climate
scenarios in the Karkheh River Basin (KRB) of Iran.

KRB is one of the nine watersheds studied in the CGIAR (Consultative Group on International
Agricultural Research) Challenge Program on Water and Food (CPWF) [30]. The basin is one of the
most agriculturally important areas in Iran, which produces about 10% of the country’s wheat [31].
It is also an example of a dryland system with a wide spectrum of bio-physical and socio-economic
conditions as well as complex agricultural problems. While the properties of drylands around the
world can widely vary [32,33], lessons learned from the drought assessment of such a complex system
can be useful in other catchments in terms of methodology and providing detailed insights on key
elements required for assessing different aspects of drought. The standardized and holistic drought
hazard assessment implemented in this study can be conducted in other basins to identify regions
exposed to drought.

Most of the research studies conducted in KRB have concentrated on water resource
allocation [31,34], variability assessment in one or two components of water cycle [35–37], historic
meteorological and agricultural droughts [38], or future projection in one drought type [39]. None of
these research studies have looked at drought hazard indices of three different types. There is also an
apparent lack of implementation of hazard analyses considering historic and future perspectives. Such
detailed analyses are an essential step toward evaluating drought vulnerability of agricultural and
water resources sectors and help policymakers recognize threats to different sectors.

The current study was carried out in order to analyze characteristics and relationships among
meteorological, agricultural, and hydrological droughts using Drought Hazard Index (DHI) derived
from a Soil and Water Assessment Tool (SWAT) hydrologic model. In the sections that follow,
we analyze drought characteristics such as severity, frequency, and duration using SPI, SRI, and
Standardized Soil Water Index (SSWI) for historical (1980–2012) and near future (2020–2052) periods to
identify drought hotspots in the region.

2. Materials and Methods

2.1. Study Area

KRB covers an area of 51,000 km2. It is the third largest basin in Iran and the food basket of the
country [40]. The basin is divided into three catchments: Northern Karkheh (NKRB), Central Karkheh
(CKRB), and Southern Karkheh (SKRB) (Figure 1). The climate of KRB is mainly semi-arid with annual
precipitation ranging from 150 mm in SKRB to 750 mm in NKRB [40]. A number of dams were built or
have been proposed for construction for irrigation and hydropower purposes [41]. The Karkheh dam
located in the most downstream part of the basin, was constructed in 2002 to provide irrigation to the
dry and lowland plains and is the largest reservoir in the basin (Figure 1) [41]. The Seymareh dam, the
second most notably multipurpose dam, is under construction and is expected to be completed by
2025 [41].

KRB uses a rainfed production system in areas upstream of the Karkheh dam. The upper basin
is dominated by pasture and scattered and sparse forest, which has been converted into rainfed
and partially irrigated agriculture [41]. In recent years, groundwater has been excessively used for
irrigation purposes. In contrast, SKRB is mostly under an irrigated production system (71% irrigated
and 29% rainfed), but the amount of precipitation does not fulfill crop water requirements [30,41].
Wheat is the dominant crop, especially in rainfed condition. Other cultivated crops are chickpea, barley,
and maize [30].
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Figure 1. The Karkheh River Basin (KRB) and the three major catchments (Northern Karkheh 
(NKRB), Central Karkheh (CKRB), and Southern Karkheh (SKRB)). The figure shows the main river, 
Karkheh dam, 31 climate stations, and 9 observed discharge outlets used for calibration. 

2.2. Agro-Hydrological Simulation and Model Calibration 

SWAT [42] is a process-based, semi-distributed, continuous-time model, used to estimate water 
budget components in many studies. Hydrologic modeling in SWAT is based on a soil water balance 
equation. The primary components estimated in the model include surface water flow, 
evapotranspiration, soil infiltration, and percolation to shallow and deep aquifers. The model 
estimates surface water flow using the modified SCS-CN (Soil Conservation Service-Curve Number) 
method, which estimates the amount of infiltration and runoff from rainfall excess based on land 
use, hydrologic soil group, and antecedent moisture condition. According to the SCS-CN method, 
the total rainfall is divided into initial abstraction, continuous abstraction, and excess rainfall [43]. 
Daily precipitation, land use characteristics, and soil profile features are used as input for 
calculations. A detailed description of all hydrological processes in the model is provided by Neitsch 
et al. [44]. 

The Sequential Uncertainty Fitting Procedure (SUFI-2) is used for model calibration [45]. SUFI-2 
quantifies prediction uncertainty using a 95% prediction uncertainty (95PPU) band calculated by 
expressing a range for parameters to map all sources of uncertainties. Two indices are used to 
measure the goodness-of-fit of the calibrated model: p-factor and r-factor [46]. The p-factor is the 
percentage of measured data bracketed by the 95PPU band. It varies between 0 and 1, where 1 

Figure 1. The Karkheh River Basin (KRB) and the three major catchments (Northern Karkheh (NKRB),
Central Karkheh (CKRB), and Southern Karkheh (SKRB)). The figure shows the main river, Karkheh
dam, 31 climate stations, and 9 observed discharge outlets used for calibration.

2.2. Agro-Hydrological Simulation and Model Calibration

SWAT [42] is a process-based, semi-distributed, continuous-time model, used to estimate water
budget components in many studies. Hydrologic modeling in SWAT is based on a soil water
balance equation. The primary components estimated in the model include surface water flow,
evapotranspiration, soil infiltration, and percolation to shallow and deep aquifers. The model
estimates surface water flow using the modified SCS-CN (Soil Conservation Service-Curve Number)
method, which estimates the amount of infiltration and runoff from rainfall excess based on land
use, hydrologic soil group, and antecedent moisture condition. According to the SCS-CN method,
the total rainfall is divided into initial abstraction, continuous abstraction, and excess rainfall [43].
Daily precipitation, land use characteristics, and soil profile features are used as input for calculations.
A detailed description of all hydrological processes in the model is provided by Neitsch et al. [44].

The Sequential Uncertainty Fitting Procedure (SUFI-2) is used for model calibration [45]. SUFI-2
quantifies prediction uncertainty using a 95% prediction uncertainty (95PPU) band calculated by
expressing a range for parameters to map all sources of uncertainties. Two indices are used to measure
the goodness-of-fit of the calibrated model: p-factor and r-factor [46]. The p-factor is the percentage of
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measured data bracketed by the 95PPU band. It varies between 0 and 1, where 1 indicates an ideal case,
meaning that 100% of the measured data are inside the 95PPU band. The r-factor is the relative width
of the uncertainty band divided by the standard deviation of the observed variable. More details are
given by Abbaspour et al. [47]. The bR2 criterion (the weighted version of coefficient of determination
R2) [46] and the Nash Sutcliffe (NS) [48] were used as objective functions to measure the degree of
match between simulated and observed discharge values.

2.3. Model Set-Up and Data

For the study area, a digital elevation map (DEM) was obtained from NASA’s Shuttle Radar
Topography Mission (SRTM) with a spatial resolution of 90 m [49]. A soil map, containing information
such as maximum rooting depth of soil profile, soil porosity, and bulk density, was obtained from the
global soil map of Food and Agricultural Organization (FAO). The database provided over 5000 soil
types from which 17 were in our study area. Each soil type comprised two layers (0–30 and 30–100 cm)
at the spatial resolution of 10 km and other soil variables calculated by Schuol et al. [50]. Daily climate
data including precipitation and temperature at 31 stations (Figure 1) were obtained from WATCH
(Water and Global Change) Forcing Data methodology applied to ERA-Interim (a re-analysis of
meteorological observations produced by the European Centre for Medium-Range Weather Forecasts)
data-Climate Research Unit (WFDEI-CRU) [51] at 0.5◦ × 0.5◦ resolution for 1980–2012. The land use
map was created from the Indian Remote Sensing-Linear P6 (IRS-P6) satellite with Linear Imaging
and Self Scanning (LISS-IV) sensor, IRS-P5 satellite with panchromatic cameras, Enhanced Thematic
Mapper+2001 (ETM+2001) Landsat, and from 3300 field sampling points collected by IWPCO (Iran
Water and Power Resources Development Company, Tehran, Iran) [52]. The monthly discharge values
at nine observed discharge outlets (Figure 1) from IWPCO [53] were used for model calibration
(1988–2012) and validation (1980–1987).

We obtained future daily climate data, including precipitation and minimum and maximum
temperatures, from the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP) for five GCMs
based on Coupled Model Intercomparison Project (CMIP5) data [54] driven by RCP scenarios of
the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report [55] at a 0.5◦ × 0.5◦

spatial resolution. Details of the five GCMs (HADGEMES, GFDL, IPSL, MIROC, and NORESM) are
summarized in Table 1.

Table 1. Description of the five Global Circulation Models (GCMs) used in this study obtained from
Coupled Model Intercomparison Project (CMIP5).

GCM Name Institute Full Name

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES realizations
contributed by Instituto Nacional de Pesquisas Espaciais)

IPSL-CM5A-LR Institute Pierre-Simon Laplace

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory-Earth System Model

MIROC-ESM-CHEM
Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo) and National
Institute for Environmental Studies

NorESM1-M Norwegian Climate Centre-Earth System Model

The daily rainfall and temperature data from the five GCMs were bias corrected using the nearest
local measured stations. For rainfall, we used a simple ratio method, in which for each month, we
divided the average GCM data by the observed data and divided the daily GCM data by this factor
to obtain future daily rainfall data. For the temperature, we tested linear and nonlinear models as
described by Wilby et al. [56] and chose a fourth-degree regression model. In general, the results of the
first-degree linear and fourth-degree nonlinear models were similar except for very small and very
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large temperature values, where the nonlinear model performed systematically better, as was also
reported by Abbaspour et al. [47].

We used ArcSWAT 2012 with Esri’s ArcGIS version 10.2. A total of 333 subbasins and 1507 HRUs
(Hydrologic Response Units) were created. The model was calibrated in five iterations with
480 simulations in each iteration. The time required for one single 33-year simulation was about
13 min. Considering 480 simulations in each iteration of calibration, we needed 100 h. In this paper, we
used the parallel processing features of SWAT-CUP (a calibration/uncertainty or sensitivity program
interface for SWAT) [57], where simulations were distributed over 24 CPUs, decreasing the required
time to approximately 4.5 h. After calibration, model outputs including soil water, discharge, and
precipitation at subbasin level were used as input variables for drought analysis.

2.4. Drought Analysis Methods

The commonly used SPI [10] was selected to monitor meteorological drought. It is computed by
fitting a suitable probability distribution function (fx) to the frequency distribution of precipitation. We
chose a 2-parameter gamma distribution as the probability density function [58,59]. The cumulative
distribution function (Fx) is then the integral over fx as:

Fx =
w x

0
fx(x) dx x : precipitation (1)

To obtain the SPI, we transformed Fx using an inverse normal transformation function with mean
0 and standard deviation 1. Six SPI classes were defined as: extreme wet, wet, mild, moderate, severe,
and extreme drought [59] (Table 2).

Table 2. Six drought classes and weight and rate assigned to each drought class based on drought
severity and drought occurrence probability, respectively. SPI, Standardized Precipitation Index; SRI,
Standardized Runoff Index; SSWI, Standardized Soil Water Index.

Class SPI, SRI, SSWI
Values Weight Rates Based on % of Occurrence

Probability (Pr)

Extreme wet Larger than 1 0 -

Wet 0 to 0.99 0 -

Mild −0.99 to 0 W1 = 1
If (17.9 < Pr ≤ 25.7)→ R1 = 1
If (25.7 < Pr ≤ 30.4)→ R1 = 2
If (30.4 < Pr ≤ 34.6)→ R1 = 3

Moderate −1.49 to −1 W2 = 2
If (5.9 < Pr ≤ 8.3)→ R2 = 1

If (8.3 < Pr ≤ 10.3)→ R2 = 2
If (10.3 < Pr ≤ 13)→ R2 = 3

Severe −1.99 to −1.5 W3 = 3
If (1.5 < Pr ≤ 3.7)→ R3 = 1
If (3.7 < Pr ≤ 5.6)→ R3 = 2
If (5.6 < Pr ≤ 8.3)→ R3 = 3

Extreme Smaller than −2 W4 = 4
If (0.7 < Pr ≤ 2.2)→ R4 = 1
If (2.2 < Pr ≤ 3.4)→ R4 = 2
If (3.4 < Pr ≤ 7.6)→ R4 = 3

SPI-X could be defined over different time scales (X = 1, 3, 6, 12, and 24-month). SPI-X at each
month is obtained from total precipitation over the last X months. For example, SPI-3 at the end
of February compares the December–January–February precipitation total in that particular year
with the December–January–February precipitation totals of all other years. The SPI method can
also be applied to soil moisture and discharge variables [10,60,61] as indicators of hydrological and
agricultural droughts, respectively. In this study, we used the same method to calculate SRI based on
discharge and SSWI based on soil water content.
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2.5. Drought Hazard Index

To aggregate the severity and occurrence probability features of each index into one unique index
for the entire study period, we calculated the Drought Hazard Index (DHI) using the methodology
proposed by Shahid et al. [62] and later by Rajsekhar et al. [63]. In this method, each of the four drought
classes is given a particular weight from 1 to 4, which represent mild (W1), moderate (W2), severe (W3),
and extreme droughts (W4), respectively (Table 2). Furthermore, each class i receives a rate Ri from 1
to 3, based on its probability of occurrence obtained from the Jenks natural break method [64] (Table 2).
The final DHI is aggregated as:

DHI = (W1 × R1) + (W2 × R2) + (W3 × R3) + (W4 × R4) (2)

As a result, three degrees of hazard intensity, namely low (DHI < 18), medium (21 < DHI < 18),
and high (DHI > 21), are defined using Jenks natural break classification method.

3. Results

3.1. Performance of the KRB Hydrologic Model

The KRB hydrologic model provided reasonable accuracy after calibration. The p-factor for
calibration (1988–2012) and validation (1980–1987) periods were larger than 0.55, indicating that more
than 55% of the observed data were bracketed by the 95PPU band (Table 3). The r-factor values were
mostly around 1 for all discharge stations, indicating reasonable prediction uncertainties in both
calibration and validation periods. The average values of bR2 were 0.53 and 0.60 for calibration and
validation periods, respectively. The NS efficiency values were larger than 0.5 in most discharge outlets,
which are satisfactory results.

Table 3. Calibration and validatation performances of simulated discharge in SWAT. NS, Nash Sutcliffe.

Outlet Names
Calibration Period (1988–2012) Validation Period (1980–1987)

p-Factor r-Factor bR2 NS p-Factor r-Factor bR2 NS

Akan 0.56 1.04 0.51 0.37 0.66 1.17 0.57 0.51
Polchehr 0.57 0.82 0.49 0.55 0.70 0.92 0.54 0.50

Ghurbagestan 0.74 0.83 0.59 0.67 0.73 0.93 0.71 0.66
Haleilan 0.67 0.82 0.62 0.65 0.73 0.95 0.68 0.62
Tangsaz 0.75 0.93 0.64 0.66 0.65 1.09 0.73 0.54
Afrine 0.53 0.66 0.46 0.56 0.63 0.58 0.37 0.42
Jelogir 0.64 0.89 0.67 0.66 0.71 1.12 0.67 0.59

Payepol 0.52 1.04 0.38 0.13 0.64 1.08 0.56 0.27
Hamidieh 0.55 1.08 0.43 0.18 0.65 1.23 0.51 0.17

3.2. Temporal Propagation of Droughts in Historic Period

To calculate SPI, SRI, and SSWI, monthly values of precipitation, river discharge, and soil water
(1980–2012) from 333 subbasins were aggregated into the NKRB, CKRB, and SKRB catchments levels
(Figure 1) using weighted areal averages. The SPI evolution over 1, 3, 6, 9, 12, and 24-month time
scales (Figure S1) showed higher drought frequency for shorter time scales. Moreover, less persistency
was noticed at time scales shorter than six months. On the other hand, although in SPI-24, the
severe drought period of 2000–2002 was identified, the extreme drought years of 1992 and 2008
were less obvious. This shows that 6, 9, 12-month time scales are more representative of drought
periods. In this paper, SPI-12 was selected as the time scale of interest, as was also suggested by
Lloyd-Hughes et al. [59], Gocic et al. [65], and Raziei et al. [66].

The historic time series of SPI-12, SRI-12, and SSWI-12 in the three catchments (Figure 2) show
that the basin experienced most severe drought conditions after 1999 and most extreme wet conditions
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during 1993–1996. Overall, five drought events (D1–D5) with different meteorological, hydrological,
and agricultural drought characteristics were identified between 1980 and 2012 (Figure 2a–c). In the
meteorological sector (Figure 2a), the first drought event (D1) started in late 1983 with mostly
moderate severity and lasted until late 1984. The event, however, persisted until early 1986 in SKRB.
Meteorological drought D2 started in 1989 with mild severity in the three catchments and lasted until
late 1991 with severe intensity in NKRB and CKRB. The subsequent event (meteorological D3) in 1997
had a short duration with mostly mild to moderate severity in all catchments. Meteorological event
D4 started in mid-1999 with extreme severity. It lasted until 2001 in NKRB and CKRB and until 2004 in
SKRB. The basin experienced another extreme event D5 from 2007 to 2010 with higher severity at the
beginning and in SKRB at the end of the period.
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Figure 2. The historic patterns of (a) SPI-12 for meteorological; (b) SRI-12 for hydrological; and
(c) SSWI-12 for agricultural droughts in three major catchments of KRB.

Not all meteorological droughts had hydrological (Figure 2b) and agricultural (Figure 2c)
signatures. Meteorological drought D1 registered as severe hydrological drought only in late 1984 in
CKRB and as agricultural drought in late 1984 in SKRB. The D2 event had mostly a mild to moderate
effect on hydrological drought, while producing severe agricultural drought in CKRB in 1991. D3 had
almost the same pattern in hydrological sectors, whereas severe agricultural droughts were identified
in 1997 in NKRB and CKRB. The major reason for higher severity of D3 in the agricultural sector
is probably related to two months of extreme drought in early 1996, resulting in mild agricultural
drought in 1996. From this time until the start of event D3, there was not enough time for soil moisture
to replenish itself. In SKRB, the extreme wet conditions after 1996 accelerated replenishment of soil
moisture and this caused a less severe agricultural drought during the D3 event. Meteorological
drought D4 resulted in extreme hydrological and agricultural droughts. The meteorological event D5
resulted in a similar pattern for the hydrological sector, except for the extreme case in 2010, which
showed up as an agricultural drought in SKRB.
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Comparison of the correlation coefficient in droughts of different sectors in the six time scales
(SPI-, SRI-1, 3, 6, 9, 12, 24, and SSWI-1, 3, 6, 9, 12, 24 months) and in the three catchments (Table 4)
showed that the meteorological droughts are better correlated with hydrological and agricultural
droughts of longer time periods. For example, SPI-1 is mostly correlated with SRI-3 (0.83 in NKRB, 0.79
in CKRB, and 0.60 in SKRB). SPI-3 and SPI-6 are mostly correlated with SRI-6 and SRI-9, respectively
(highlighted box in Table 4). Similarly, SPI-3 shows the highest correlation with SSWI-9 (0.79 in
NKRB, 0.78 in CKRB, and 0.76 in SKRB). This most likely suggests a 3-month lag of hydrological and
agricultural responses to meteorological drought.

Table 4. Correlation coefficient of SPI with SRI and SSWI in different time scales and in three catchments;
the highlighted boxes show the highest correlation values of SPIs with SRIs and SSWIs.

Catchment SPI-1 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24

NKRB

SRI-1 0.55 0.27 0.12 0.05 0.07 0.09
SRI-3 0.83 0.71 0.38 0.23 0.16 0.16
SRI-6 0.76 0.87 0.77 0.53 0.40 0.35
SRI-9 0.64 0.74 0.85 0.77 0.59 0.47

SRI-12 0.58 0.65 0.75 0.81 0.76 0.56
SRI-24 0.42 0.50 0.60 0.64 0.68 0.83

CKRB

SRI-1 0.49 0.24 0.10 0.05 0.07 0.10
SRI-3 0.79 0.66 0.37 0.23 0.18 0.19
SRI-6 0.72 0.83 0.76 0.53 0.42 0.40
SRI-9 0.61 0.73 0.85 0.78 0.62 0.54

SRI-12 0.54 0.64 0.75 0.82 0.80 0.64
SRI-24 0.39 0.50 0.62 0.66 0.71 0.87

SKRB

SRI-1 0.36 0.20 0.11 0.07 0.08 0.12
SRI-3 0.60 0.51 0.32 0.22 0.18 0.25
SRI-6 0.46 0.56 0.57 0.43 0.35 0.41
SRI-9 0.41 0.49 0.64 0.58 0.48 0.49

SRI-12 0.37 0.48 0.61 0.67 0.64 0.58
SRI-24 0.26 0.36 0.47 0.51 0.56 0.79

NKRB

SSWI-1 0.63 0.30 0.16 0.09 0.10 0.10
SSWI-3 0.70 0.65 0.37 0.27 0.23 0.19
SSWI-6 0.67 0.79 0.74 0.56 0.49 0.41
SSWI-9 0.57 0.71 0.81 0.78 0.67 0.56
SSWI-12 0.47 0.59 0.72 0.78 0.79 0.64
SSWI-24 0.32 0.42 0.50 0.52 0.56 0.82

CKRB

SSWI-1 0.68 0.32 0.15 0.09 0.09 0.09
SSWI-3 0.71 0.68 0.37 0.26 0.23 0.20
SSWI-6 0.63 0.78 0.74 0.55 0.47 0.42
SSWI-9 0.51 0.67 0.77 0.75 0.63 0.55
SSWI-12 0.41 0.56 0.67 0.73 0.74 0.62
SSWI-24 0.32 0.41 0.48 0.50 0.52 0.75

SKRB

SSWI-1 0.71 0.45 0.28 0.19 0.10 0.14
SSWI-3 0.62 0.74 0.50 0.43 0.28 0.30
SSWI-6 0.56 0.76 0.81 0.61 0.48 0.43
SSWI-9 0.49 0.69 0.85 0.83 0.65 0.53
SSWI-12 0.39 0.59 0.77 0.85 0.84 0.63
SSWI-24 0.32 0.43 0.53 0.53 0.56 0.88

3.3. Future Characteristics of Droughts (Severity-Frequency-Duration)

The temporal variation of the three types of droughts under the RCP2.6 (Figure S2) and RCP8.5
(Figure S3) scenarios in five GCMs (2020–2052) shows that KRB will likely be more susceptible to
droughts in the future. However, drought periods and their severities are different among GCM
models and for different types of droughts. Overall, SPI-12 patterns (Figure S2a) show more severe
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meteorological droughts after 2045 under RCP2.6. In this scenario, severe hydrological (Figure S2b)
droughts and extreme agricultural (Figure S2c) droughts are observed after 2035. In RCP8.5 (Figure S3),
severe and extreme droughts for all three types also mostly appear in the same time period.

We compared historic and future droughts by using Probability Density Functions (PDFs) of
SPI-12, SRI-12, and SSWI-12 for different severities (Figure 3a–r). The uncertainty bands stemming
from the differences in the five GCMs are wider for mild and moderate meteorological and hydrological
drought classes (SPI-12 and SRI-12 between −1.5 and 0) as compared with other classes, indicating
lesser agreement between different GCMs. For agricultural drought, larger uncertainty is noticed for
wet conditions (SSWI-12 between 0 and 1).

Water 2017, 9, 241  10 of 17 

 

The resulting PDFs in the entire region, with the exception of agricultural drought in CKRB and 
SKRB, show a shift to left in the grey band, especially in the left leg of graphs for both RCP2.6 and 
RCP8.5, indicating higher probability of droughts (especially mild and moderate droughts) in the 
future. The left shift is slightly larger in RCP8.5 compared to RCP2.6 in all catchments. Agricultural 
drought in CKRB and NKRB, however, shows a tendency to shift to the right for most GCM models, 
indicating smaller probability of mild to moderate droughts. No significant change is observed in 
the probability of extreme meteorological droughts in the three catchments (the left tails of the 
distributions). The wider bands of SRI-12 compared to SPI-12 indicate larger uncertainties in the 
hydrological drought predictions by GCMs. The agricultural drought index (Figure 3m–r) shows a 
shift to the right, especially in the right tail of graphs for both the RCP2.6 and RCP8.5 scenarios, 
indicating higher probability of wet conditions. On the other hand, the agricultural sector is more 
exposed by extreme and severe droughts in CKRB and SKRB, as their probabilities are higher. The 
wide uncertainty band during wet conditions shows less agreement among the five GCMs. 

 
Figure 3. The probability density function (PDF) of different severities of SPI-12 (a–f), SRI-12 (g–l), 
and SSWI-12 (m–r) in RCP2.6 and RCP8.5 scenarios. The grey bands are extracted from maximum 
and minimum values in the five GCMs and the black lines indicate the historic PDFs. 
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and SSWI-12 (m–r) in RCP2.6 and RCP8.5 scenarios. The grey bands are extracted from maximum and
minimum values in the five GCMs and the black lines indicate the historic PDFs.

The resulting PDFs in the entire region, with the exception of agricultural drought in CKRB and
SKRB, show a shift to left in the grey band, especially in the left leg of graphs for both RCP2.6 and
RCP8.5, indicating higher probability of droughts (especially mild and moderate droughts) in the
future. The left shift is slightly larger in RCP8.5 compared to RCP2.6 in all catchments. Agricultural
drought in CKRB and NKRB, however, shows a tendency to shift to the right for most GCM models,
indicating smaller probability of mild to moderate droughts. No significant change is observed
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in the probability of extreme meteorological droughts in the three catchments (the left tails of the
distributions). The wider bands of SRI-12 compared to SPI-12 indicate larger uncertainties in the
hydrological drought predictions by GCMs. The agricultural drought index (Figure 3m–r) shows
a shift to the right, especially in the right tail of graphs for both the RCP2.6 and RCP8.5 scenarios,
indicating higher probability of wet conditions. On the other hand, the agricultural sector is more
exposed by extreme and severe droughts in CKRB and SKRB, as their probabilities are higher. The wide
uncertainty band during wet conditions shows less agreement among the five GCMs.

To compare frequency and duration of historic droughts, we defined a drought event as having
SPI-12, SRI-12, or SSWI-12 < 0 for at least two months. The historic frequency shows there were
on the average 15 meteorological droughts, 5 hydrological droughts, and 10 agricultural droughts
(Figure 4a–c). These droughts had durations of 8 months, 3.5 months, and 6 months, respectively
(Figure 4d–f). During the historic period, meteorological droughts were more frequent with longer
duration. The reason is that we considered periods of longer than two months as a drought event.
So, some of the very short and mild meteorological events did not register signatures in other sectors
(Figure 2). Besides, SRI-12 and SSWI-12 are influenced by precipitation as well as temperature, whereas
SPI-12 depends only on precipitation.
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Figure 4. Comparison of the frequency and duration of historic and future of (a,d) SPI-12, (b,e) SRI-12,
and (c,f) SSWI-12 droughts based on an ensemble of five GCMs. The red lines inside the boxes show
the median, the boxplots show the 25 and 75 percentiles, and the whiskers show 5 and 95 percentiles
from 333 subbasins in KRB.

Similarly, future projections show the highest frequency of meteorological drought. However,
compared to the historic period, there are fewer differences between frequency and duration of the
three drought types. Moreover, the duration and frequency of future hydrological and agricultural
droughts are predicted to increase compared to historic period. It is interesting to note that future
prediction of meteorological droughts is smaller in frequency and shorter in duration (Figure 4a,d)
compared to historic meteorological drought. Drought frequency is expected to decrease from a
median value of 15 to 10 and 12 in RCP2.6 and RCP8.5, respectively. This pattern is mostly caused
by an unusually large number of droughts in the KRB during 2000 to 2010, which resulted in a high
historic drought frequency. Hydrological droughts are, however, more frequent in the future with
longer duration. There does not seem to be a large difference in the historic and future agricultural
droughts. This is mainly due to the impact of both precipitation and temperature variables in the
calculation of hydrologic and agricultural indices. Only slight differences between RCP2.6 and RCP8.5
are observed in all cases.
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3.4. Composite Droughts Index, DHI

Spatial distributions of the composite meteorological DHI under future climate change conditions
show that KRB would probably experience a higher degree of meteorological DHI compared to the
historic period. Most of KRB will probably be exposed to medium meteorological DHI except eastern
sides of CKRB where high meteorological DHI is predicted. Hydrological DHI responded differently
for both historic and future conditions (Figure 5d–f). Generally, KRB is predicted to be more exposed
to high hydrological DHI in western NKRB and CKRB. SKRB will probably be less exposed to high
hydrological DHI. High agricultural DHI during the historic period was limited to the western part of
KRB (Figure 5a,d), however, both RCP2.6 and RCP8.5 predict higher agricultural DHI (Figure 5g–i) in
all catchments. In fact, RCP8.5 puts most of KRB under high agricultural DHI.
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4. Discussion and Conclusions

SPI, SRI, and SSWI with the aid of a SWAT model captured past drought periods. The selected
indices were found to be suitable for drought monitoring, since the severe and extreme periods
agreed with historical records over the past 33 years of the study period reported previously [37,41].
We found a 3-month lag between incipient meteorological droughts and the time that hydrological
droughts were observed. While occurrence of a lag between meteorological and hydrological droughts
is reported in many studies [8,67], the length of lag time varies by study. For example, Liu et al. [28]
found that hydrological drought was not observed until 2 months after meteorological drought, and
Stefan et al. [68] reported a 2–3-month lag between the precipitation and river discharge anomalies
during winter and a 0–1 month delay in summer. Generally, not only precipitation, but also factors
such as rainfall interception, temperature, evapotranspiration, and a basin’s morphological conditions
contribute to discharge formation. In our study, the lag time between meteorological and hydrological
droughts might be related to different reasons in the upper to lower catchments. In NKRB and CKRB,
the lag might be mostly due to the mountainous characteristic of catchments. The flow that contributes
to rivers in these catchments are mostly from snow melt of the mountainous areas, which occurs at a
later time than the actual precipitation. However, lagged response in SKRB is most probably associated
with a mixed-flow regime. Within this catchment, not only precipitation, but also the discharge from
NKRB and SKRB contributes to flow, however, with some lag due to the varying time of concentration.
Therefore, the timing of hydrological drought differs from meteorological drought.

We chose soil moisture to quantify SSWI to monitor agricultural drought because it is more
relevant compared to evapotranspiration in basins with semi-arid climates. In the semi-arid regions,
the rate of potential evapotranspiration (atmospheric demand) is substantially larger than actual
evapotranspiration (soil’s ability to supply water), causing soil moisture to be at the wilting point for
most of the year [69]. In our study, SSWI-12 showed a 3-month delay with SPI-12, as temperature also
influenced soil moisture content. With increasing temperature in the summer season, evaporation
increases, causing a depletion of soil water content.

For KRB as a whole, the future climate is likely to increase the probability of severe and
extreme droughts. Comparison of the results with future projection of the Köppen-Geiger climate
classification [70] also confirms a shift of climate zone from warm to arid in SKRB. The frequency
and duration of future droughts will probably increase based on SRI-12 and SSWI-12, but decrease
for SPI-12. The reason is that SPI-12 is computed based on precipitation alone, while indices of
hydrological and agricultural droughts depend on both temperature and precipitation. The spatial
extent of high agricultural DHI is predicted to be much larger in the future, especially in SKRB. This
shows the complexity in translating meteorological droughts to agricultural and hydrological sectors,
as drought propagation into two latter types depends on the climate of the region as well as the
responses of the hydrological cycles and differs depending on physiographic characteristics of the
regions such as permeability, topography, and land use. Higher exposure of the agricultural sector
to drought poses additional challenges to agricultural production, as KRB has already experienced
serious water shortages in the last two major droughts (D4 and D5) and irrigated agriculture had to
rely heavily on the exploitation of groundwater.

In conclusion, one of the strengths of our applied approach is the use of a standardized definition
of drought indices, which made our analysis consistent for comparing different drought types
irrespective of the climatic conditions and the regions. The paper also made some contributions
toward exploring behaviors of drought propagation in hydrological systems and identifying regions
that will be more exposed to drought risks in the future. The distributed agro-hydrological model SWAT
was used to estimate soil water content and runoff at a fine spatial resolution. Comparison of multiple
drought indices of different aspects allows for a better monitoring of space-time drought characteristics.

Similar analyses and sets of selected indices could be applied to other basins with different scales
for a better understanding of drought effects. The high spatial resolution obtained from applying
a physically based model can be aggregated to district, farm, and provincial levels, as the findings
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from multiple scales are usually complementary to each other [71]. The standardized procedure
facilitates linking drought indices with socioeconomic factors to broaden the knowledge on physical
and social vulnerability. For example, by linking the agricultural DHI with crop yields, one can
quantify crop drought vulnerability and risks, which are essential for food security purposes. Similarly,
hydrological DHI is an appropriate candidate to measure drought indices that assess the status of
water resources vulnerability. Such joint interpretations help decision makers with proposing better
allocation of resources.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/4/241/s1,
Figure S1: Evolution of SPI over different time scales in three catchments of KRB; Figure S2: The future heat
map of (a) meteorological, (b) hydrological, and (c) agricultural droughts in RCP2.6 scenario in three catchments
of KRB; Figure S3: The future heat map of (a) meteorological, (b) hydrological, and (c) agricultural droughts in
RCP8.5 scenario in three catchments of KRB.
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