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Abstract: There is an increasing trend in the use of multi-objective evolutionary algorithms (MOEAs)
to solve multi-objective optimization problems of the allocation of water resources. However,
typically the outcome is a set of Pareto optimal solutions which make up a trade-off surface
between the objective functions. For decision makers to choose a satisfactory alternative from a set of
Pareto-optimal solutions, this paper suggests a new method based on least squares support vector
machine (LSSVM) and k-means clustering for ranking the optimal solutions for the multi-objective
allocation of water resources. First, the k-means clustering method was adopted to reduce the
large set of solutions to a few representative solutions. Then, to capture and represent the decision
maker's preferences as well as to select the most desirable alternative, the LSSVM method was
applied to obtain the utility value for each representative solution. According to the magnitude
of the utility values, the final priority orders of the representative solutions were determined.
Finally, this methodology was applied to rank the Pareto optimal solution set obtained from the
multi-objective optimization problems of water resources allocation for the water-receiving areas of
the South-to-North Water Transfer Project in Hebei Province, China. Moreover, the comparisons of
the proposed method with the information entropy method and the artificial neural network (ANN)
model were given. The results of the comparison indicate that the proposed method has the ability to
rank the non-dominated solutions of the multi-objective operation optimization model and that it
can be employed for decision-making on water allocation and management in a river basin.

Keywords: least squares support vector machine (LSSVM); k-means clustering; artificial neural
network (ANN); water resources allocation

1. Introduction

As a limited natural resource, water is increasingly demanded for various purposes, and how
to allocate water from a river basin is among the most widely discussed issues in water resources
management [1]. In principle, the allocation of water resources is a very complex management issue
involving social, economic, environmental, and political factors. Therefore, attempting to optimize
the allocation of water resources also requires solving multi-objective problems that require powerful
optimization tools to fully characterize the existing trade-offs [2,3].

In recent decades, there have been different optimization methods introduced into the literature
for optimal allocation of water resources. These methods have been applied with various degrees of
success, based on mathematical programming such as linear and dynamic programming [4–6], and
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more recently on evolutionary algorithms, such as strength Pareto EA (SPEA), non-dominated sorting
genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO) [7,8]. However,
considering the characteristics of water resources allocation, such as nonlinearity, discreteness,
non-convexity and high dimension decisions, multi-objective evolutionary algorithms (MOEAs) are
proven to be more suitable for discovering and exploiting the critical tradeoffs of multi-objective
water resource allocation problems, due to their efficiency and ease in handling non-linear and
non-convex relationships of real-world problems, compared to the capacity of traditional optimization
techniques [1–3,9].

Broadly, multi-objective optimization problems consist of two phases: the search for Pareto
optimal solutions, and the decision-making process to identify the preferred ones. The former is
a problem known as multi-objective optimization, the goal of which is usually to find the set of
Pareto optimal solutions. The latter phase is traditionally defined as the evaluation of non-dominated
solution sets, which focuses on problems of ranking alternatives from a set of options using multiple
evaluation attributes. However, most of the research on multi-objective water resource allocation
has been focused on the development of multi-objective optimization methods that generate a set
of Pareto optimal solutions [10–12]; few studies were performed on the choice of alternatives from a
set of Pareto optimal solutions. Reddy and Kumar [13] employed a pseudo-weight vector approach
to provide the relative weight of each alternative generated by EM-MOPSO. Through analyzing the
weight combinations, depending on the preference of the reservoir operator, a suitable policy was
implemented. Liu [14] applied MOPSO to multi-objective water resource allocation optimization and
presented an information entropy method to rank the decision results according to the magnitude of
the superiority degrees.

In application, the decision maker might prefer the least possible number of representative
solutions for further analysis. Hence, it is necessary to evaluate different trade-off alternatives for
water resource managers, after obtaining the set of broad Pareto-optimal solutions. Furthermore, the
evaluation and ranking of alternatives is grounded on their attribute values, and on the preferences
of the various decision makers. The key to similar decision-making issues is to obtain the preference
structure information of the decision makers. One common approach is to use the multi-attribute
utility functions to measure the satisfaction level of the decision-makers to each of the alternatives,
and then to sort the solution sets by utility values, ultimately selecting the most satisfying solution.
Multiple attribute utility functions are usually broken down into the additive and multiplicative form
of a single attribute utility function. The requirements for these utility function forms are very strict,
for example, the independence between the attributes and linear utility function for each attribute [15].
However, due to the complexity of these decision-making problems in the real world, these strict
conditions are difficult to meet. Therefore, further research on alternatives selection for multi-objective
water resource allocation is required.

It is evident that selecting the satisfactory solution from a number of potential alternatives in
water resource allocation involves a complex decision-making process with conflicting quantitative
and qualitative criteria and multiple decision-makers. Therefore, it is difficult to derive an accurate
formula to represent all the decision-making processes involved. In recent years, computing techniques
such as support vector machine (SVM) and artificial neural network (ANN), have been widely used
to model nonlinear processes. They can capture the behavior of the underlying processes (physical
or otherwise) [16]. ANNs, on the basis of the learning function of a human brain, have shown strong
ability of nonlinear mapping and have been gradually applied in various fields, including water
resources. However, there are some disadvantages of ANNs, such as over-fitting, slow convergence,
and becoming easily trapped in local minimum, which make it difficult to perform satisfactorily when
dealing with complex nonlinear processes [16,17]. The SVM proposed by Vapnik is an effective learning
method and is considered as an alternative method to ANNs [18–22]. Based on statistical learning
theory, the SVM has a high ability for generalization and is less prone to over-fitting [23]. SVMs seem
to overcome some of the basic weaknesses associated with ANNs modeling while retaining all of
ANNs strengths [16]. SVMs provide a better option for the modeling of nonlinear processes and
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the decision-making process can benefit from the use of SVM techniques. The least squares support
vector machine (LSSVM), originally proposed by Suykens et al. [24] is modified from SVM. With better
performance than SVM, LSSVM has been successfully applied in diverse fields [25,26]. In the last
decade, LSSVM has been extended to a wide range of water resources problems [27–29]. However, it
has not been used for research on choosing alternatives from a set of Pareto optimal solutions for the
multi-objective water resource allocation.

The main objective of this study is to develop a new method for selecting alternatives for
multi-objective water resource allocation, and to evaluate and rank alternatives from a set of Pareto
optimal solutions. In this paper, aiming at the Pareto optimal set generated by MOEAs for a
multi-objective water resources allocation problem, a new approach for ranking the optimal solutions
was proposed based on LSSVM and k-means clustering. Then, a case study of the water-receiving
areas of the South-to-North Water Transfer Project in Hebei Province of China was conducted. Results
demonstrate that the proposed approach is able to offer plenty of alternative policies for water
resource managers.

The rest of this paper is organized as follows: Section 2 provides a description of the study region
and elaborates on the methodology proposed for ranking solutions of multi-objective water resource
allocation optimization models. An illustrative case study is used to present the implementation of
the methodology and its corresponding results and discussions of the application are presented in
Section 3. Finally, conclusions are given in Section 4.

2. Study Area and Methodology

2.1. Study Area

The water-receiving area of the South-to-North Water Transfer Project in Hebei province of China
is located in the south-central area of Hebei province, Northern China, between 114◦23′ and 116◦42′

longitude east and 36◦18′ and 39◦30′ latitude north, respectively. The region covers a total area of
62,100 km2, and includes seven cities: Hengshui, Cangzhou, Langfang, Baoding, Shijiazhuang, Xingtai
and Handan in Hebei province, China. As a semi-arid region, the annual precipitation is about 550 mm,
70%–80% of which is concentrated in the rainy seasons (July–September), and the average annual
water resources is 5.48 billion m3. As a result, water scarcity is common in this region. Water resources
per capita of the region is less than 600 m3, which is less than one-third of China’s per capita amount.

The middle route of the South-to-North Water Transfer Project is a water diversion project built
to alleviate the water shortage in northern areas, ranging from the southwest to the northeast of this
region. With this water transfer project, the network system of water supply of this region has been
formed, consisting of the two water source project, the six water diversion project and the nine large
storage projects. Therefore, the South-to-North Water Transfer Project and its network system of water
supply for the region can contribute to alleviating the shortage of water resources and the deterioration
of the water environment and to promoting economic and social sustainable development. Thus,
how to allocate water becomes an important issue in a water-receiving area. To achieve rational
allocation of water resources in this region, a water allocation model with three objectives named
square sum of relative water shortage, water supply cost, and the amount of organic pollutants in
water, was built, and a set of non-dominated solutions was obtained [2]. However, in any application,
the decision-maker might prefer the smallest possible number of well representative solutions for
further analysis. Hence, it is necessary to evaluate the non-dominated solutions and make choices
between different trade-offs for the water resource managers after obtaining a set of non-dominated
solutions that are well spread and widely covered.

2.2. Methodology

In this study, a novel approach based on support vector machine and k-means clustering was
proposed when choosing from a set of Pareto optimal solutions for multi-objective water resource
allocation. Using the Pareto optimal set for the multi-objective water resource allocation problem
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generated by MOEAs such as MOPSO and NSGA, the k-means clustering method was adopted to
reduce the large set of solutions to a small number of representative solutions. Then, to capture and
represent the decision maker's preferences and to select the most desirable alternative, the LSSVM
method was employed to obtain the utility value for each representative solution.

2.2.1. k-Means Clustering Method

The k-means clustering method, proposed by MacQueen, is one of the most popular and effective
clustering methods used to minimize the sum of squared distances between all points and the cluster
centres [30]. The procedure follows a simple method of classifying a given data set into a certain number
of clusters (assume k clusters) fixed a priori. The main procedure consists of the following steps.

Step 1: Normalize all the sample data. Because the k-means algorithm requires calculating the
distance between the samples to the cluster center, some attributes with a large magnitude order
may affect matching results, which makes the clustering inaccurate or even wrong [31]. In order to
eliminate the influence of dimension and orders of magnitude, the data should be normalized before
the implementation of the k-means algorithm.

Step 2: Choose k initial cluster centres {m1, m2, · · · , mk}. Considering different centres causes a
different result, so the better choice is to place them as far away from each other as possible.

Step 3: Calculate the Euclidean distance from each point in the dataset to each cluster center.
All points are assigned to their nearest cluster centers according to the Euclidean distance formula
expressed as follows:

d(xi, mj) =

√√√√ q

∑
l=1

(xil −mjl)
2, i = 1, 2, · · · , N; j = 1, 2, · · · k (1)

where, d(xi, mj) is the distance from the i-th vector data to the j-th cluster center; xi is the i-th data and
mj is the mean for the points over cluster j.

Step 4: Recalculate the new k cluster centres as barycenters of the clusters resulting from the
previous step when each point in the data set is assigned to a cluster. The new cluster centre is given by

mjl =
1
n ∑

xj∈Cj

xjl , mj =
{

mj1, mj2, · · · , mjq
}

(2)

where Cj is a data set in the j-th cluster.
Step 5: Repeat steps 3 and 4 until the center point is not changed. Once these k cluster centres

change their location, the above steps should be carried on until no more changes arise, which indicates
the convergence criterion for clustering. Through selecting a non-dominated solution from each of the
final k clusters, a representative non-dominated set will be formed.

2.2.2. LSSVM Method

The LSSVM, originally proposed by Suykens et al., is modified from SVM. Compared with the
standard SVM, the LSSVM adopts a least squares linear system as a loss function and requires only
the solution to a convex linear problem, and not a quadratic problem (QP), as in the SVM. Thus, the
computational process will be simplified immensely and computational costs might be reduced when
large-scale QP problems are needed to be computed [32].

The regression estimation with the LSSVM is to estimate a function according to a given data set
{ri, ui}n

i=1 with input data ri ∈ Rm and output ui ∈ R, where n is the number of samples. In feature
space, the LSSVM regression function is given by Equation (3), where ϕ (.) is the high dimensional
feature space that is non-linearly mapped from the input space, ω is the adjustable weight vector, and
b is the scalar threshold. Then, for function estimation, the following optimization problem can be
described by Equation (4), where ξi is the random error, c is the regularization parameter. Finally, by
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introducing Lagrange multipliers ai, the regression estimation of the LSSVM can be formulated by
Equation (5), where K(ri, rj) is the kernel function to meet Mercer’s conditions. Such frequently used
kernel functions are linear, polynomial, sigmoid and radius basis function (RBF). Among them, the
RBF is an effective option applied most frequently with a stronger nonlinear approximation ability
and fewer parameters than others. It can be expressed as Equation (6), where σ is the width of the RBF.
A more detailed review of LSSVM algorithm for nonlinear function estimation can be found in [28].
In this study, the LSSVM-base regression was performed using a LSSVM toolbox for MATLAB [33].

u = f (r) = ωT ϕ(r) + b (3)
min 1

2‖ω‖
2 + 1

2 c
n
∑

i=1
ξ2

i

s.t. ui = ωT ϕ(ri) + b + ξi
i = 1, 2, · · · , n

(4)

f (r) =
n

∑
i=1

aiK(r, ri) + b (5)

K(ri, rj) = exp(‖ri − rj‖2/2σ2) (6)

Making a satisfactory choice from a representative set of non-dominated solutions in water resource
allocation is a complex decision-making process that involves evaluating and ranking alternatives. The
key to solving this problem is obtaining the preference structure information of decision makers. One
common approach is to use the multi-attribute utility function to measure the degree of satisfaction of
decision-makers to each alternatives, and then to sort the solution set according to the value of the
utility function in order to select the most satisfactory solution, which can be expressed as follows:

ui = F(ri) (7)

In general, multiple attribute utility functions are usually broken down into the additive and
multiplicative form of a single attribute utility function. However, the requirements for these utility
function forms are quite strict, such as the independence between the attributes and linear utility
function for each attribute. Due to the complexity of the actual decision-making problems, such
conditions are difficult to meet. In essence, the above utility function can be regarded as a mathematical
mapping problem, in which the input is the objective function value vector ri = {ri1, ri2, . . . rim}, and
the output is the corresponding utility value ui made by the decision makers. Therefore, this study
adopts the above LSSVM algorithm for nonlinear function estimation to estimate such mapping F
of Rm → R (Figure 1) between the objective function value vector ri and the utility value ui, which
reflects the preference structure of decision makers.
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Figure 1. Schematic diagram of support vector machine for multi attribute decision-making.

2.2.3. Implementation of LSSVM Model

In order to apply the LSSVM to estimate the above mapping F, there are three main problems
to be solved, including the selection of kernel function and its parameters, and the construction of
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the training sample dataset. For selecting kernel function, no systematic methodology is available;
it depends on the distribution of the data and generally can be selected through a trial and error
approach [22]. Due to the good generalizing properties of the RBF, it is employed in most of the
applications [16–28], so the RBF was chosen as kernel function for the function estimation of the
mapping F in this study. As for the selection of parameters, there are only two parameters, c and
σ, to tune into LSSVM model with RBF kernel, which have great impact on the performance and
generalization ability of the LSSVM. In previous studies, the parameters are usually determined by
a trial-and-error process which is less efficient and more difficult to reach a better set of parameters.
To find optimal parameters, many optimization methods have been applied, such as particle swarm
optimization (PSO), simple genetic algorithm, a grid search technique and k-folds cross-validation.
Due to the simple concept, easy implementation and quick convergence, we used PSO combined
with 10-fold cross validation procedure, by which these parameters were automatically tuned into the
training phase. A more detailed review of the kernel function and the parameters selection for LSSVM
can be found in [34]. Since there are plenty of studies on kernel function and parameters selection,
construction of the training samples dataset is the main focus of this research.

Suppose m is the number of objectives, k is the number of representative Pareto solutions,
and there is a set of training samples S = {ri, ui}n

i=1 where ri is the i-th input vector and ui is its
corresponding observed result. Here, ri denotes the objective function value, and ui is the assessment
result for multi-objective problems. It is evident that a set of training samples for LSSVM is the
foundation of conducting an overall assessment of the Pareto solutions, but due to the complexity
of the multi-attribute utility function structure, it is usually difficult to obtain utility values. In this
study, an approach to construct learning samples for the MCDM problem based on estimating the
utility functions is adopted. In general, two possible choices for utility functions are suggested, namely
linear and sigmoid functions. In this study, the sigmoid function was used which can be expressed
as follows:

u = 1/(1 + e−a(r−b)) (8)

where a and b are constants.
In order to make the learning samples reflect the overall characteristics of the decision-making

objects, three types of data samples: ideal point samples, random samples and scheme samples, are
constructed as follows:

(1) Ideal point samples

Let I1 and I2 respectively represent the index set of benefit-typed indices and cost-typed indices.
Then, r∗j is the ideal point for the jth indice rj if r∗j = max

i
rij, j ∈ I1, r∗j = min

i
rij, j ∈ I2, while r−j is

the negative ideal point for the j-th indice rj if r∗j = min
i

rij, j ∈ I1, r∗j = max
i

rij, j ∈ I2. Thus, ideal

point samples can be formed by the attribute values with the same utility value. For example, the
ideal solution r* = {r∗1 , r∗2 , . . . r∗m} and its corresponding utility value u* can compose the ideal point
sample, denoted as {r∗1 , r∗2 , . . . r∗m, u∗}, while the negative ideal solution r− = {r−1 , r−2 , . . . r−m} and its
corresponding utility value u− can form the negative ideal sample denoted as {r−1 , r−2 , . . . r−m , u−}.

(2) Random samples

A random sample can be formed by the attribute values
_
r dj (d = 1, 2, · · · , p, j = 1, 2, · · · , m) and

its corresponding utility value
_
u d (d = 1, 2, · · · , p), where the utility values

_
u d (d = 1, 2, · · · , p) are

valued according to a certain step size (h) in the interval 0.05–0.95, and the corresponding attribute
values

_
r dj (d = 1, 2, · · · , p, j = 1, 2, · · · , m) can be calculated at different utility values

_
u d by the

inverse of the utility function. Here, p is the size of random samples depending on the step size (h),
which can be obtained by calculating p = (0.95—0.05)/h − 1. Then, the attribute values with the same
utility value and its utility value can compose the random sample, denoted as {r̂d1, r̂d2, · · · , r̂dm, ûd}.
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(3) Scheme samples

In scheme samples, the utility values
_
u s (s = 1, 2, · · · , q) are derived from the real attribute data by

utility function. For different attribute values
_
r sj (s = 1, 2, · · · , q, j = 1, 2, · · · , m), the corresponding

utility values
_
u s (s = 1, 2, · · · , q) can be determined by the utility functions, where q is the size of

scheme samples determined according to the number of actual samples, and, in general, is computed
by q = k ·m. Then, a scheme sample, denoted as {r̂s1, r̂s2, · · · , r̂sm, ûs}, can be formed by the attribute
values with the same utility value.

2.2.4. Steps of the Methodology

The specific steps of the proposed method are described as follows:
Step 1: Obtaining the objective function value matrix. Suppose X = {x1, x2, · · · , xn} is a set

of non-dominated solutions obtained from MOEAs. Then the corresponding objective function
value matrix F = ( fij)n×m can be calculated for multi-objective problems with m objectives, where
fij is the value of the j-th objective of the i-th non-dominated solution, and n is the number of
non-dominated solutions.

Step 2: Standardizing the objective function value matrix F. In order to eliminate the effects of
different dimensions between indicators, the original data of indicators in F should be dimensionless
by data standardization. The normalized formula is defined as follows:

rij = ( fij − µj)/σj (9)

where rij is the standardized value of the j-th objective of the i-th non-dominated solution; µj, σj are
average value and standard deviation of the j-th objective, respectively.

Step 3: Forming representative objective function value matrix. Aiming at the large set of
non-dominated solutions for a multi-objective water resource allocation problem generated by MOEAs,
a representative objective function value matrix R = (rij)k×m can be selected from each of the k clusters
by the k-means clustering method.

Step 4: Establishing learning samples dataset for LSSVM. According to the above-mentioned
method of constructing sample dataset in the previous section of the paper, ideal point samples, random
samples and scheme samples can be obtained, which form a learning sample dataset S = {r̂i, ûi}

p
i=1,

with the input r̂i ∈ Rm, and the output ûi ∈ R, where Rm is the m-dimensional vector space and R is
the one-dimensional vector space. Then, for the training LSSVM model, the constructed dataset is
divided into two subsets, namely training dataset and testing dataset.

Step 5: Establishing the LSSVM model. For the LSSVM model, RBF is used as kernel function.
Thus, there are only two parameters, c and σ to be tuned. Then, PSO combined with 10-fold cross
validation procedure is adopted to choose two optimal parameters for the LSSVM model. In 10-fold
cross validation, the training dataset is randomly divided into ten subsets of equal size. Nine of the
subsets are used as the training set, and the remaining one is used as the validation set. Then, the
cross validation process is repeated ten times with each subset used once as the validation set for each
parameter setting. The mean square error (MSE) of the entire training set for each parameter setting is
calculated based on the regression model, which is expressed by the following equation:

MSE =

10
∑

i=1

l
∑

j=1
(uij −

_
u ij)

2)/l

10
(10)

where MSE is the mean square error, uij,
_
u ij are the j-th prediction and actual value of i-th validation

set, respectively, l is the size of the validation subset. The optimal parameters (c, σ) can be selected as
parameters of LSSVM, where MSE is minimum. By parameters optimization, the optimum values of c
and σ can be determined, and the LSSVM model can be established, which can capture the input and
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output relations for the training dataset. Then, the performance of the developed LSSVM model is
examined based on the testing dataset.

Step 6: Calculating the utility values of the objective function values with trained LSSVM model.
To carry out the assessment, after establishing the LSSVM model, using the objective function values
corresponding to a representative set of non-dominated solutions as the input of the developed LSSVM
model, the corresponding utility values can be obtained. According to the magnitude of the utility
values, the final priority order of the i representative non-dominated solution can be determined.

3. Results and Discussion

As stated above, a water allocation model with three objectives was built in [2], involving
minimization of square sum of relative water shortage, water supply cost, and the amount of organic
pollutants in water. Moreover, a set of non-dominated solutions that were well spread and widely
covered for this multi-objective water resource allocation was generated based on MOPSO technique,
and the Pareto optimal front was shown in Figure 2. However, in any application, the decision-maker
might prefer the smallest possible number of representative solutions for further analysis, and choose
the most optimal solution among them. So, it is necessary to evaluate different alternatives for water
resource management after obtaining a set of well-spread non-dominated solutions. In this study,
based on the obtained alternatives, the proposed method is applied to carry out the decision-making
analysis for the scheme choices for the water-receiving area of the South-to-North Water Transfer
Project in Hebei province.

Water 2017, 9, 257 8 of 15 

 

input and output relations for the training dataset. Then, the performance of the developed LSSVM 
model is examined based on the testing dataset.  

Step 6: Calculating the utility values of the objective function values with trained LSSVM 
model. To carry out the assessment, after establishing the LSSVM model, using the objective 
function values corresponding to a representative set of non-dominated solutions as the input of the 
developed LSSVM model, the corresponding utility values can be obtained. According to the 
magnitude of the utility values, the final priority order of the i representative non-dominated 
solution can be determined. 

3. Results and Discussion 

As stated above, a water allocation model with three objectives was built in [2], involving 
minimization of square sum of relative water shortage, water supply cost, and the amount of organic 
pollutants in water. Moreover, a set of non-dominated solutions that were well spread and widely 
covered for this multi-objective water resource allocation was generated based on MOPSO 
technique, and the Pareto optimal front was shown in Figure 2. However, in any application, the 
decision-maker might prefer the smallest possible number of representative solutions for further 
analysis, and choose the most optimal solution among them. So, it is necessary to evaluate different 
alternatives for water resource management after obtaining a set of well-spread non-dominated 
solutions. In this study, based on the obtained alternatives, the proposed method is applied to carry 
out the decision-making analysis for the scheme choices for the water-receiving area of the 
South-to-North Water Transfer Project in Hebei province. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) The Pareto frontier obtained by multi-objective particle swarm optimization (MOPSO) 
for the three-objective water resources allocation model; Relation between objectives of the Pareto 
frontier for the water allocation model: (b) f1 and f2; (c) f2 and f3; (d) f1 and f3. (f1—square sum of relative 
water shortages; f2—water supply cost; f3—the amount of organic pollutants (COD) in water). 

Figure 2. (a) The Pareto frontier obtained by multi-objective particle swarm optimization (MOPSO) for
the three-objective water resources allocation model; Relation between objectives of the Pareto frontier
for the water allocation model: (b) f 1 and f 2; (c) f 2 and f 3; (d) f 1 and f 3. (f 1—square sum of relative
water shortages; f 2—water supply cost; f 3—the amount of organic pollutants (COD) in water).

Firstly, in order to eliminate the influence of dimension difference, the objective function value
matrix F = ( fij)300×3 for all alternatives generated by MOPSO were standardized according to
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Equation (9). Then, through k-means cluster, the large number of alternatives was reduced to a small
number of representative alternatives, within which the number of clusters k was chosen as 20. Thus,
according to the k-means cluster algorithm described above, 20 representative alternatives were
obtained for the three-objective water resources allocation model. Figure 3 shows the 20 representative
clustered alternatives obtained by k-means cluster method.
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water shortages; f 2—water supply cost; f 3—the amount of organic pollutants (COD) in water).

Then, LSSVM was used to evaluate the 20 representative alternatives obtained from k-means
cluster method. The square sum of relative water shortages (f 1), water supply cost (f 2) and the amount
of organic pollutants in water (f 3) were selected as the input of the model, the corresponding utility
was taken as the model output. For j-th objective function, the maximum value was selected as its
ideal point r∗j from standardized alternatives, and its utility value u∗ was set to 0.95. At the same
time, the minimum value of j-th objective function was selected as its negative ideal point r−j and its
utility value u− was set to 0.05. According to the definition of ideal point samples, {r∗1 , r∗2 , r∗3 , u∗} and
{r−1 , r−2 , r−3 , u−} composed two ideal point samples (Table 1).

Table 1. List of the ideal point and negative ideal point.

Sample Name f 1 f 2 f 3 Utility Value

Ideal point 1.1491 1.5433 1.7070 0.95
Negative ideal point −2.4907 −1.7455 −1.7995 0.05

Note: The values of f 1, f 2 and f 3 in table 1 are all normalized.

To construct random samples and scheme samples, the sigmoid function was selected as utility
function expressed by Equation (8), in which aj and bj were determined by {r∗j , u∗} and {r−j , u−},
respectively; where aj and bj denote the parameters of utility function for j-th objective. For instance,
for f 1, a1 and b1 were computed by Equation (8) using the ideal point r∗1 , the negative ideal point r−1
and their utility values, where r∗1 = 1.1491, u∗ = 0.95, r−1 = −2.4907 and u− = 0.05 obtained from
Table 1. Thus, the two parameters, a1 and b1, could be obtained, which were equal to 1.6179 and
−0.6708, respectively. Then, based on the formation of Equation (8), the utility function for f 1, u1, can
be presented as:

u1 = 1/(1 + e−1.6179(r+0.6708)) (11)

Similarly, the utility functions for f 1 and f 2, can also be given as:

u2 = 1/(1 + e−1.7906(r+0.1011)) (12)
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u3 = 1/(1 + e−1.6794(r+0.0463)) (13)

According to the step size of 0.01, the utility values were valued in the interval [0.05, 0.95], and
utility values

_
u d (d = 1, 2, · · · , 89) can be obtained. Then, by the inverse of the determined utility

functions, the corresponding attribute values
_
r dj (d = 1, 2, · · · , 89, j = 1, 2, 3) were calculated at

different utility values
_
u d. For example, for

_
u 2 = 0.06when d takes 2, the values of the corresponding

attributes can be obtained by introducing
_
u 2 = 0.06 into the inverse of Equation (8), respectively, with

_
r 21 = −2.3715,

_
r 22 = −1.6378 and

_
r 23 = −1.6846. In the same way, the remaining 88 values of the

corresponding attributes can be computed. Thus, 89 random samples, which consisted of the attribute
values

_
r dj (d = 1, 2, · · · , 89, j = 1, 2, 3) and its corresponding utility value

_
u d(d = 1, 2, · · · , 89),

were formed, denoted as {r̂d1, r̂d2, r̂d3, ûd}89
d=1. Similarly, 54 scheme samples, {r̂s1, r̂s2, r̂s3, ûs}54

i=1, were
obtained from 20 representative alternatives (except for the ideal point samples). Moreover, for the
training LSSVM model, the constructed sample dataset (144 samples × 3 variables) was divided into
the training dataset and the testing dataset. Here, 10 sample data were chosen as a testing dataset and
the rest were used as a training dataset.

To apply the LSSVM model, the radial basis function (RBF) was used as the kernel function of
LSSVM. Further, to obtain optimum parameters c and σ, PSO was employed in which the evaluation
was provided by a 10-fold cross-validation. For parameters used in PSO, the initial population size
was set to 50; the cognitive parameter c1 and social parameter c2 were set to 2.0; the inertial weight
w was set to 0.9; the number of iterative step was set to 1000. The termination criterion is whether it
reaches the maximum number of iterations or if there is no significant improvement in the solution
in 250 consecutive iterations. Figure 4a shows the details of the improvement of fitness values over
the iterations. From Figure 4a it can be observed that for up to 175 iterations there was no significant
improvement in the fitness values which was 1.136 × 10−7. Based on the optimization, the values of
the optimal parameters were determined as c = 1000 and σ2 = 5.5548.Water 2017, 9, 257 11 of 15 
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Then LSSVM model with the optimal parameters was applied to calculate the utility values.
The performance of the LSSVM model was assessed by the root mean square error (RMSE) and the
relative mean error (RME) in this study. The performance statistics of the LSSVM model is given
in Table 2. From Table 2, it can be seen that RME and RMSE for the training dataset were 0.06731%
and 2.262 × 10−4, respectively, indicating that the developed LSSVM model had good performance.
Furthermore, as illustrated by the scatter plot of the observed value and the predicted value for the
training set shown in Figure 4b, it also shows that the developed model performed well, because the
value of R2 for training set was 1. Therefore, the developed LSSVM model can successfully capture
the input and output relationship for the training dataset. Then, the performance of the developed
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LSSVM model was examined for the 10 testing data. The simulation results are shown in Table 3 and
the performance statistics for testing data is given in Table 2. As shown in Table 2, the LSSVM model
with RMSE = 1.025 × 10−4, and RME = 0.0416%, predicted the utility value with high accuracy for
testing data, and all was less than 0.2%, indicating that the simulating effect of the model was good
and that the developed LSSVM model had the capability of predicting the utility values. The results
demonstrate that the developed LSSVM model performed similarly in training periods and testing
periods, which all had high accuracy.

Table 2. The performance statistics of least squares support vector machine (LSSVM) model and radial
basis function (RBF) network model during training and testing periods.

Model
Training Testing

RMSE RME RMSE RME

LSSVM 2.262 × 10−4 0.06731% 1.025 × 10−4 0.0416%
RBF network 3.211 × 10−4 0.1448% 3.159 × 10−4 0.1053%

Table 3. Predicting results for testing dataset based on the developed LSSVM model.

Testing Sample NO. 1 2 3 4 5 6 7 8 9 10

Expected value 0.07 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.93
Simulated value 0.0699 0.1499 0.2501 0.3502 0.4501 0.5499 0.6499 0.7499 0.8501 0.9301
Relative error (%) −0.1742 −0.0910 0.0335 0.0454 0.0171 −0.0130 −0.0207 −0.0078 0.0075 0.0055

Finally, the developed LSSVM model was used to rank representative alternatives. Taking the
objective function values corresponding to 20 representative alternatives as the input of the developed
LSSVM model, the corresponding utility values were determined by the developed LSSVM model
(Table 4). According to the magnitude of the utility values, the alternatives were ranked, and the final
priority order of each representative alternative was obtained. The sequences for 20 representative
clustered alternatives were given in Table 4. Based on the ranking results, the final decision can
be made.

Table 4. The ranking results of representative alternatives based on LSSVM, RBF networks and
information entropy.

Alternatives
NO.

f 1

f 2 f 3 LSSVM RBF Networks Information Entropy

(106 Million
Yuan/Year) (104 Tons/Year) Results Priority

Order Results Priority
Order Priority Order

1 0.2545 1.71 65.2 0.441780 18 0.397256 18 18
2 0.6819 1.1 46.3 0.643288 10 0.637061 9 11
3 0.9351 0.84 38 0.732777 2 0.732997 2 6
4 0.7518 1 44.2 0.676973 7 0.673814 5 9
5 0.6397 1.16 47.8 0.620609 11 0.611983 10 12
6 1.1993 0.65 32.9 0.749499 1 0.742739 1 5
7 1.6858 0.46 28.2 0.689679 5 0.652028 7 3
8 0.8246 0.81 42.8 0.723348 3 0.721588 3 7
9 0.0994 1.96 76.2 0.416740 20 0.351093 20 20
10 0.1415 1.89 72.5 0.419814 19 0.360474 19 19
11 0.4118 1.48 57 0.502330 15 0.475338 15 15
12 0.7492 0.91 45 0.694340 4 0.690562 4 8
13 0.3446 1.54 60.1 0.481052 16 0.447618 16 16
14 1.7138 0.47 26.2 0.688663 6 0.647925 8 1
15 2.4148 0.35 20.1 0.584945 12 0.49719 14 2
16 0.4964 1.35 53.3 0.546941 14 0.527872 13 14
17 0.2535 1.63 65.3 0.452988 17 0.409534 17 17
18 0.4717 1.27 54.7 0.561099 13 0.540233 12 13
19 1.8766 0.53 24.5 0.655651 9 0.604544 11 4
20 0.662 1 47.9 0.660599 8 0.652785 6 10

Furthermore, comparative research was carried out between the LSSVM and the radial basis
function (RBF) neural networks. The RBF network is a kind of feedforward neural network that is used
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for classification problems, function approximation, noisy interpolation, and regularization. Due to its
advantages over traditional multilayer perceptrons, namely faster convergence, smaller extrapolation
errors, and higher reliability, it has increasingly attracted interest for engineering applications. Here,
the RBF network is used as a regression tool to approximate function with a radial basis function as
activation function. A more detailed review of the RBF network algorithm for nonlinear function
estimation can be found in [35]. The RBF network model was developed using the same training
dataset, testing dataset and normalization technique employed for the LSSVM. Based on trial and error,
the final RBF network architecture was determined, which consisted of one input layer, one hidden
layer with six neurons and one output layer. Its performance statistics were shown in Table 2. For the
training data, RME and RMSE were 0.1448% and 3.211 × 10−4, respectively, while RME = 0.1053% and
RMSE = 3.159 × 10−4 for the testing data. Compared with the performance between the RBF network
model and LSSVM model shown in Table 2, it is clear that although the RBF network and LSSVM have
close performance during the training and testing periods, the LSSVM model, overall, has performed
better than the RBF network model. The results obtained confirmed the capability of the LSSVM model
for utility function estimates. Then, the RBF network model was applied to estimate utility values
of representative alternatives, and according to the magnitude of the utility values, the alternatives
were ranked, which are given in Table 4. Table 4 shows that the utility values of the RBF network were
very close to those of the LSSVM with the maximum difference of 0.08775. As for ranking results,
though there were ten ranking results that were not quite consistent, it should be pointed out that the
differences of ranking results between the LSSVM and the RBF network were within the two levels.
In general, ranking results obtained by the LSSVM and the RBF network were relatively consistent
with each other.

Another comparison was conducted between the developed LSSVM and the information entropy
approach. The same dataset and normalization technique were adopted as used in the above problem.
Based on the information entropy approach, the weights for each objective can be determined, which
was w = (0.224, 0.405, 0.371). The superiority degrees were obtained as a linear weighted function of
each objective standardized. According to the magnitude of the superiority degrees, the priority orders
of representative clustered alternatives were determined, which are shown in Table 4. Table 4 shows
that ranking results of the LSSVM model were essentially the same as those of the information entropy
model. This is because both LSSVM and the information entropy model are essentially an objective
weighting method, which directly applies distribution characteristics of sample data to determine
the weights [36,37]. The difference is that in the information entropy method, the weight values of
indicators are determined by calculating the entropy according to the degree of variation of each
indicator, while in LSSVM, support vectors, which can be regarded as weights, are calculated by
solving an optimization problem. From the angle of mathematical transformation, evaluating and
ranking alternatives in water resource allocation is a kind of mapping from the high dimension space
to the low. For the information entropy method, this process is regarded as a linear process, and the
priority order is calculated as a linear weighted function of each objective; LSSVM uses a nonlinear
process, which leads to slightly different result obtained by the two methods. The underlying reason
for this requires further explanation.

In general, the comparison results with the information entropy method show that the proposed
method used to evaluate the choice of scheme for the multi-objective water resource allocation problem
is feasible and useful. Accordingly, it can be concluded that the LSSVM model based on the k-means
cluster method can be used to carry out the decision analysis for the scheme choices for a multi-objective
water resource allocation problem.

4. Conclusions

In this paper, a new method based on LSSVM and k-means clustering was proposed for ranking
the optimal solutions generated by MOEAs for multi-objective water resources allocation. By using
the proposed method, the utility value for each representative alternative can be obtained. Meanwhile,
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according to the magnitude of the utility values, the final priority order of the representative solutions
can be determined, and a suitable policy can be implemented. Then, the proposed approach was
applied to rank the Pareto optimal solution set obtained from the multi-objective optimal allocation
of water resources in the water-receiving areas of the South-to-North Water Transfer Project in Hebei
Province, China. The results can be used for more effective decision-making processes regarding
water supply, environment and economic cost. Moreover, the application in water-receiving areas
demonstrates the effectiveness in supporting relevant decision-making processes for water resource
allocation, compared to the information entropy method and the RBF network. Accordingly, the
proposed approach can provide a useful tool for water resource managers during decision making
processes regarding rational allocation of water resources. It is also a viable alternative method for
relevant decision making processes for multi-objective water resource and hydrology problems.

Nevertheless, the proposed method is based on a deterministic evaluation. Considering the
uncertainty in the decision making processes of water resource allocation due to a lack of data and
changing environmental factors, further work can focus on defining uncertainties associated with
the decision making process and ultimately improve the quality of decisions. Moreover, since the
ranking results of different methods may be inconsistent in practical applications, some aggregation
methods such as Borda and Copeland should be used to integrate the ranking results, and to enhance
applicability and accuracy.
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