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Abstract: The Eastern Monsoon Region of China is sensitive to climate change because of its special
location. In this study, the Automated Statistical Downscaling (ASD) tool was used to simulate and
project future climate change scenarios in different temperate zones in the Eastern Monsoon Region
of China. The performances of the single General Circulation Model (GCM) and the GCMs ensemble
from Coupled Model Inter-comparison Project Phase 5 (CMIP5) were compared, and the capability of
the ASD model was evaluated. The simple mathematical averaging ensemble of GCMs is superior to
the single GCM and to the other two weighted ensembles. The ASD model was capable of presenting
the temporal and spatial variation of four variables (precipitation, mean air temperature, maximum
and minimum air temperature) during both the calibration and validation periods. The performance
of the ASD model varied among the different temperate zones. In the simulated future scenarios, the
air temperature in the four zones showed an upward trend. Except for the subtropical zone, there
was a tendency for increased precipitation in both the warm temperate zone and the cold temperate
and middle temperate zones. Of particular interest is that, in the subtropical zone, the precipitation
will decline in the future, whereas the air temperature (especially the maximum air temperature) will
increase, which may put more pressure on water resource situations in this area.

Keywords: climate change; statistical downscaling; ASD; CMIP5; GCMs evaluation; Eastern
Monsoon Region; China

1. Introduction

According to the fifth assessment report by the Intergovernmental Panel on Climate Change
(IPCC), there is no doubt that the temperature has increased during the past century. From 1880 to
2012, the global surface air temperature has increased by 0.85 ◦C. The warming trends will continue in
this century, with an increase of 0.3–4.8 ◦C expected by the end of the century [1]. Global warming will
have a significant impact on local climatic and hydrologic processes, resulting in a series of problems
such as mutated water cycles, inhomogeneous spatial distribution of precipitation, and more frequent
extreme climatic and hydroligical events, which in turn will affect the ecological, social, and economic
systems of human society. Therefore, it is essential to perform qualitative and quantitative predictions
of future climate change scenarios from a regional perspective.

The General Circulation Models (GCMs) are often employed to simulate global and regional
climate systems. However, such models can only provide information at a coarse resolution [2,3],
which cannot be used directly in regional hydrological modelling [4,5]. However, this deficiency can
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be compensated for by the application of downscaling techniques [6]. On the basis of large-scale
GCMs output, climate scenarios with finer resolution can be achieved using downscaling methods.
Considering that the hydrologic impacts of climate change vary from region to region [7–9], finer
resolution scenarios can be employed as an input in hydrology; for instance, in runoff simulation.
Downscaling methods fall into two general categories; dynamical downscaling and statistical
downscaling [10–14]. Until now, the most common dynamic approach has been to run a regional
climate model at high resolution nested within a GCM at coarse resolution. Despite its drawbacks
such as the requisition of high computer configuration, the heavy computational burden, and the
need for professional meteorological background knowledge [15], this approach has been widely
implemented [16–18].

The basis of statistical downscaling methods is the establishment of statistical relationships
with clear physical meanings between large scale climate predictors and fine resolution ground
observations [19]. The method is capable of correcting systematic errors in GCMs’ output with less
computational complexity and a higher feasibility [20]. There are several statistical downscaling
methods, and the availability of these methods varies between different regions [21–25].

Climate change has become a significant issue. A number of studies on the topic of statistical
downscaling methods have been conducted in China [26–30]. Most of the previous researches focused
on particular regions or basins. However, no comprehensive study at the regional or mega scale
under heterogeneous heat conditions has been conducted. The Eastern Monsoon Region, covering
eight river basins and five temperate zones, has a monsoonal climate, which significantly affected
social-economic development in the region. Good knowledge of future climate change scenarios will
be of great significance in assessing the risk of droughts and floods in the future, and these results
could further be utilized for planning the sustainable utilization of water resources in the region.

In this study, the ASD (Automated Statistical Downscaling) was adopted to investigate the future
climate scenarios in five temperate zones in the Eastern Monsoon Region, and the evaluation of the
performance of the ASD in these temperate zones of the Eastern Monsoon Region was performed.
The objectives of this study were to: (1) compare the performance of the single GCM and the GCMs
ensemble in order to prepare the data required for input into the ASD model; (2) evaluate the capability
of the ASD model to reveal the temporal and spatial characteristics of precipitation and air temperature;
and (3) generate future climate change scenarios in five temperate zones in the Eastern Monsoon
Region of China. The results from the study provide a valuable database for future climate change
scenarios in the Eastern Monsoon Region.

2. Study Area and Data Description

2.1. Study Area

The Eastern Monsoon Region is the most developed region in China, accounting for 46% of
China’s land and 95% of its population. The region is sensitive to climate change, with severe water
issues. It is considered a core area in water resources planning at the national level.

To reflect the heat distribution conditions in the different regions, the whole area of China was
divided into six temperate zones based on the cumulative temperature. This method was adopted
in our study to explore future climate change scenarios in different temperate zones. The Eastern
Monsoon Region covers five temperate zones; the cold temperate zone (CTZ), middle temperate zone
(MTZ), warm temperate zone (WTZ), subtropical zone (STZ), and the plateau climate zone (PCZ), as
shown in Figure 1. There are only two meteorological stations in the cold temperate zone that can
provide integral long time serial data. In addition, the cold temperate zone and middle temperate zone
have similar climatic conditions. Therefore, the two zones were combined together in this research,
abbreviated as the CMT Zone.
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was adopted as observed in large-scale climate fields. During calibration, statistical relationships 
between local observed meteorological variables (the ‘predictands’) and observed large-scale 
climate fields (the “predictors”) were developed. 

Based on CMIP5, a total of 19 GCMs under scenario RCP4.5 (medium greenhouse gas emission 
scenario), derived by different institutions, were used in this research. The dataset was obtained 
from the Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC). 
The detailed information of the 19 GCMs is listed in Table 1. 
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College of Global Change and Earth System Science, 
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Figure 1. The location of gauging stations in the Eastern Monsoon Region.

2.2. Data Description

To build and validate the statistical downscaling model, a large set of data is required for both
predictors and predictands.

The observed daily data from 1961 to 2010 collected at 209 national meteorological observatory
stations (Figure 1) were used in this research, including daily precipitation, mean air temperature, and
maximum and minimum air temperature. The locations of the gauging stations can be seen in Figure 1.
The stations covering the entire research area are uniformly distributed.

The reanalysis dataset is from the European Centre for Medium-Range Weather Forecasts
(hereafter named ERA-40), ranging from 1957 to 2002 with a spatial resolution of 2.5◦ (long.)× 2.5◦ (lat.).
Eleven ERA-40 variables are used as the predictors in our study, including 500 hPa specific humidity,
850 hPa specific humidity, sea-level pressure, 500 hPa air temperature, 850 hPa air temperature,
surface air temperature, 850 hPa zonal wind, surface zonal wind, 500 hPa geopotential height,
700 hPa geopotential height, and 850 hPa geopotential height. The data from 1961 to 1990 was
adopted as observed in large-scale climate fields. During calibration, statistical relationships between
local observed meteorological variables (the ‘predictands’) and observed large-scale climate fields
(the “predictors”) were developed.

Based on CMIP5, a total of 19 GCMs under scenario RCP4.5 (medium greenhouse gas emission
scenario), derived by different institutions, were used in this research. The dataset was obtained
from the Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC).
The detailed information of the 19 GCMs is listed in Table 1.
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Table 1. Detailed information of 19 General Circulation Models (GCMs).

No. Model Institution Nation Resolution

1 ACCESS1.3 Commonwealth Scientific and Industrial Research
Organization and Bureau of Meteorology Australia 145 × 192

2 BCC-CSM1.1 Beijing Climate Center, China
Meteorological Administration China 64 × 128

3 BNU-ESM College of Global Change and Earth System Science,
Beijing Normal University China 64 × 128

4 CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 64 × 128

5 CCSM4 National Center for Atmospheric Research America 192 × 288

6 CMCC-CESM Centro Euro-Mediterraneo per I
Cambiamenti Climatici Europe 48 × 96

7 CNRM-CM5
Centre National de Recherches
Météorologiques/Centre Européen de Recherche et
Formation Avancée en Calcul Scientifique

France 128 × 256

8 CSIRO-Mk3.6.0
Commonwealth Scientific and Industrial Research
Organization in collaboration with Queensland
Climate Change Centre of Excellence

Australia 96 × 192

9 EC-EARTH EC-EARTH consortium Europe 160 × 320

10 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese
Academy of Sciences and CESS,Tsinghua University China 60 × 128

11 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory America 90 × 144

12 GISS-E2-R NASA Goddard Institute for Space Studies America 90 × 144

13 HadGEM2-AO National Institute of Meteorological Research/Korea
Meteorological Administration Korea 145 × 192

14 HadGEM2-CC Met Office Hadley Centre England 145 × 192

15 INMCM4 Institute for Numerical Mathematics Russia 120 × 180

16 IPSL-CM5A-LR Institut Pierre-Simon Laplace France 96 × 96

17 MIROC-ESM

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and National
Institute for Environmental Studies

Japan 64 × 128

18 MPI-ESM-LR Max Planck Institute for Meteorology Germany 96 × 192

19 NorESM1-M Norwegian Climate Centre Norway 96 × 144

3. Methodology

3.1. Assessment on GCMs Performance

As the 19 GCMs models perform differently, it is necessary to first evaluate the simulation
efficiency. Different methods of doing this have been demonstrated in the literature on GCM
evaluations [3,31]. The method of Rank Score was adopted in this research, using a group of statistics,
which includes VC (Variation Coefficient), RMSE (Root Mean Squared Error), SPCC (Spatial Pearson
Correlation Coefficient), TPCC (Temporal Pearson Correlation Coefficient), and LT (Linear Trend) as
objective functions, and given different weighting values between 0 and 9. Rank Score is capable of
assessing mean value, standard deviation, spatial and temporal distribution, and variation trends
comprehensively. A smaller Rank Score would indicate a better GCM. The formula of the Rank Score
is expressed as:

RSi =

{
Int
[

xi−xmin
xmax−xmin

× 10
]
, xi < xmax

9 , xi = xmax
(1)
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where xi is the relative error of the GCM simulation deviate from the observation, i is the number
of GCMs adopted in the research, and xmin and xmax are the minimum and maximum values of the
relative error, respectively. The function “Int” truncates a number to yield the integer portion of the
number. A smaller xi results in a smaller RSi.

The performance comparison between a single GCM and the GCM ensemble was also undertaken,
which aims to search for preferable GCM data. The GCM ensemble data were derived in two ways;
by computing the simple mathematical average of the 19 models and through a weighted average
method, in which the weight values were determined according to the two skill scores, S1 and S2 in
Taylor’s study [32]. The formulas for the skill scores are as follows:

S1 =
4(1 + R)(

σ+ 1
σ

)2
(1 + R0)

(2)

S2 =
4(1 + R)4(

σ+ 1
σ

)2
(1 + R0)

4
(3)

σ =
SDgcm

SDobs
(4)

where R is the correlation coefficient between the GCM simulations and observations, R0 is the
maximum value of R, and SDgcm and SDobs are the standard deviations of the GCM simulation and
observation, respectively. When SDgcm and R are close to SDobs and R0, respectively, the skill scores
will be close to 1, which indicates better performance of the model. Conversely, if the ratio of SDgcm

to SDobs is close to 0 or infinity or if R is close to −1, the skill scores will approach 0, indicating a
lower simulation capability of the model. The function of the standard deviation is emphasized in S1,
whereas S2 lays more stress on the correlation coefficient between the simulation and observation.

3.2. ASD (Automated Statistical Downscaling) Model

The regression-based ASD model was inspired by the SDSM (Statistical Downscaling Model) and
was developed by Hessami [33] using Matlab. Considering that air temperature is directly influenced
by large scale predictors, modeling of the temperature event in ASD is unconditional and is performed
in one step:

Ti = γ0 +
n

∑
j=1

γj pij + ei (5)

where Ti is the temperature, n is number of predictors, pij is the predictor, and γ is the model parameter.
The residual term ei is modeled as a Gaussian distribution:

ei =
√

VIF/12 ziSe + b (6)

where zi is a normally distributed random number, Se is the standard error of the estimate, VIF is the
variance inflation factor, and b is the model bias, which can be set using the following equations:

b = Mobs −Md (7)

VIF = 12(Vobs −Vd)/S2
e (8)

where Mobs and Md are the mean of the observations and the mean of the deterministic part of the model
output during the calibration period, Vobs is the variance of the observations during the calibration
period, Vd is the variance of the deterministic part of the model output during the calibration period,
and Se is the standard error.
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Modeling of a precipitation event is conditional because the occurrence of precipitation events
must be determined first:

Oi = α0 +
n

∑
j=1

αj pij (9)

where Oi is the daily precipitation occurrence and α is a model parameter.
Two regression methods were used in the ASD model to build a statistical relationship between

large scale predictors and regional predictands. Linear regression and ridge regression are used
when strong correlation between the predictors is exhibited. Unlike the case in SDSM in which the
selection of predictors is an iterative process and partly relies on a user’s subjective regression [34], the
ASD model predictor selection process involves predictors being selected using a backward stepwise
regression method. Furthermore, ASD is user friendly and is suitable for processing batch data.

4. Results and Discussion

4.1. Assessment of GCMs Performance

The rank scores of the different GCMs and the GCMs ensembles determined are shown in Figure 2.
The number ranging from 1 to 19 on the X-axis stands for the different GCMs listed in Table 1; number
20 represents the GCMs ensemble using a simple mathematical average method; and numbers 21 and
22 represent the weighted GCMs ensembles based on the skill scores S1 and S2. From the results, the
GCMs ensembles are consistently superior to single models, and the simple averaging ensemble is
superior to the weighted averaging ensembles. Hence, the simple averaging GCMs ensemble (MGCM)
was adopted in the following research to provide future climate scenarios with high resolution.
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4.2. Selection of Predictors

Statistical downscaling is based on the fundamental assumption that climate is conditioned
by local physiographic characteristics as well as the larger scale atmospheric state. Based on
this assumption, statistical relationships between local observed meteorological variables
(the “predictands”) and observed global scale fields from ERA-40 reanalysis data (“the predictors”)
may be developed. To identify the statistical relationships between large scale predictors and local
predictands, it is important to first select global scale circulation factors that predict regional climatic
variables. In the ASD model, the first step is to choose the proper predictors. In this study, all predictors
are from ERA-40 reanalysis data, and all predictands are from in-situ observational data. The ASD
method involves building a regression model between each predictand and all predictors. Once the
explained variance exceeds 90% or higher, the predictors included in the regression model are reliable
predictors and then are chosen for the next projection. Following the rules of predictor selection in
statistical downscaling, eleven general circulation factors from the ERA-40 reanalysis data, which
possess high correlation with local variables in the research area, were adopted as candidate predictors,
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including hus500 (500 hPa humidity field), hus850 (850 hPa humidity field), slp (sea-level pressure),
ta500 (500 hPa temperature field), ta850 (850 hPa temperature field), tas (surface air temperature),
ua850 (850 hPa zonal wind), uas (surface zonal wind), zg500 (500 hPa geopotential height field), zg700
(700 hPa geopotential height field), and zg850 (850 hPa geopotential height field). In the process
of calibration, either four or five of these eleven candidate predictors were screened to establish
correlation with local predictands.

The Eastern Monsoon Region is subject to the East Asian Monsoon, for which the dominant
atmospheric circulation systems change dramatically in different seasons, influencing the selection of
predictors. As shown in Figure 3, different local variables such as precipitation and air temperature are
influenced by different atmospheric predictors. For the air temperature, tas and uas are the dominant
factors; for precipitation, ta500 and ua850 play more important roles and the influence of uas is
negligible. From a spatial perspective, the selected predictors vary from zone to zone. In the CMZ,
WTZ, and STZ, tas is of relative higher significance among the predictors, whereas in the PCZ, the
influence of tas is weak and the major factors are ta500 and hus500, which may be related to the more
complicated geological and climatic conditions. Also, due to the different latitudes, the influence of
uas becomes weaker from the CMZ to the STZ.
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Figure 3. Percentage of selected predictors in different temperate zones (Note: 1-hus500; 2-hus850;
3-slp; 4-ta500; 5-ta850; 6-tas; 7-ua850; 8-uas; 9-zg500; 10-zg700; 11-zg850. prec: precipitation; temp:
mean air temperature; tmax: maximum air temperature; tmin: minimum air temperature).

4.3. Calibration of ASD

In our study, the calibration period was from 1961 to 1990. The explained variance was calculated
to evaluate the performance of the ASD model during the calibration. In Figure 4, the explained
variances for the precipitation, mean air temperature, maximum air temperature, and minimum air
temperature are represented by boxplots. The middle black line indicates the median and the shaded
region represents the middle (50%) of the variance. The lines extending out of the shaded region are
the top and bottom 25% of data and the horizontal lines at the top/bottom of the boxplot are the
minimum and maximum values.
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Figure 4. Explained variance of Automated Statistical Downscaling (ASD) output in four
temperature zones.

For the mean air temperature, the explained variances vary from 84.4% to 97.0%, with median
values 92.3% to 96.3%. In the CMZ, the explained variances of mean air temperature in most stations
exceeded 95%, and the 75th percentile value of 96.1% is very close to the 25th percentile value of 96.6%,
indicating the stably higher simulation efficiency. In considering the median values and the height
of the boxes, the simulation effectiveness for the maximum air temperature is lower than those for
the mean air temperature and the minimum air temperature. The explained variances of maximum
air temperature at most stations in the four zones are less than 95.0%, with the median explained
variance ranging from 85.1% to 95.0%. Furthermore, the relatively greater height of the four boxes
indicates significant dispersion, which may relate to the poorer stability in maximum air temperature
simulation. In considering the minimum temperature, the median values range from 91.0% to 94.9%,
and the height of the four boxes is much smaller. For three temperature variables, the higher median
values along with the smaller box height both indicate the superior simulation effect in the CMZ and
the WTZ zones. However, the ability of ASD to capture the details of the precipitation amount is
much lower, indicated by lower explained variances ranging from 13.0% to 28.0%, with a median
value of approximately 20%. Even in the CMZ, a better simulation was obtained with a median
value of explained variance of only 22.8%. This is mainly related to the complexity of the predictors
affecting precipitation [35,36] as well as the random nature of precipitation events. According to other
literature, the explained variances of statistical downscaling methods for daily precipitation simulation
are mostly lower than 40% [37].

Generally, the capability of the ASD model differs significantly between variables and zones. ASD
performs better in simulating the air temperature than the precipitation amount, and the further north
the zone is located, the higher the effectiveness of the model. The optimal performance was achieved in
the mean air temperature simulation in the CMZ. Moreover, from Figure 4, optimal performance of the
ASD was achieved in the CMZ as well as in the WTZ, which had a higher level of explained variance
and a lower degree of dispersion. For the STZ and the PCZ, the effectiveness of the air temperature
simulation in the STZ is higher, but the precipitation simulation in the PCZ is preferable.

The percentages of explained variance from other downscaling studies are displayed in Table 2.
Since there are few references to the ASD model, the research selected in Table 2 was mainly based on
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the SDSM, which is similar to the ASD model with respect to the simulation mechanism. The explained
variance of the downscaling precipitation was low, and the results of air temperature simulation were
closer to the overall level.

Table 2. Comparison of explained variance in different downscaling research.

Scholar Research Area
Percentage of Explained Variance (%)

Precipitation Mean Air Temperature Maximum Air Temperature Minimum Air Temperature

Zhao and Xu [27] Source of Yellow
River Basin 7.00–25.3 49.5–55.4 23.8–27.51

Liu et al. [38] Upper-middle reaches
of Yellow River 8.0–20.0 63.0–69.0 >64.0

Chu et al. [7] Hai River Basin 99.36–99.64

Chen [39] Yangtze-Huaihe
River Basin 8.8–20.6

Liu and Xu [29] Wei River Basin 70.8–89.1 63.8–8601

Liu et al. [40] Taihu Basin 20.8–33.0 70.1–80.1 75.4–84.5

This research Eastern monsoon
region, China 13.0–27.9 84.5–97.0 77.1–96.1 82.2–96.1

In short, the predictors selected by the ASD model can reasonably predict four ground variables,
and the model performed well in simulating local predictands.

4.4. Validation of ASD

In this research, the validation period was from 1991 to 2005 (15 years total). To validate the ASD
model, common evaluation indices such as the correlation coefficient (R) and normalized root mean
standard error (NRMSE) were adopted to quantify the simulation results of the daily series in each
zone. NRMSE is defined as the ratio of the root mean standard error and the standard error and can
reflect the deviation of the simulation from the observation. A smaller value of NRMSE indicates higher
simulation efficiency [28]. The results of the validation process shown in Table 3 indicate significant
differences between the various zones. The correlation coefficient of the air temperature in the CMZ
and the WTZ is larger than 0.8. The value of NRMSE is relatively low, suggesting optimal performance
of the ASD model in the CMZ and the WTZ, which is in agreement with the calibration results. For the
STZ and the PCZ, there was little difference in the values of R and NRMSE, except for the precipitation
simulation, for which clear advantages were associated with the PCZ. The complicated topography
may be the reason for the poorer performance of the ASD model in these two zones. Furthermore, the
geographical position of the STZ results in greater influence of the monsoons in this zone, which made
it more difficult for ASD to simulate the climatic variables with higher reliability.

Table 3. Comparison of evaluation indices in four temperate zones.

Zones
Precipitation Mean Air Temperature Maximum Air Temperature Minimum Air Temperature

R NRMSE R NRMSE R NRMSE R NRMSE

CMZ 0.47 * 1.30 0.90 *** 0.46 0.87 *** 0.55 0.89 *** 0.48
WTZ 0.39 1.40 0.89 *** 0.50 0.80 *** 0.66 0.88 *** 0.51
STZ 0.24 1.47 0.80 *** 0.62 0.70 *** 0.79 0.83 *** 0.59
PCZ 0.33 1.35 0.84 *** 0.57 0.70 *** 0.80 0.83 *** 0.58

Notes: * represents 90% confidence level; ** represents 95% confidence level; *** represents 99% confidence level.

According to the results of the significance test, all three temperature variables are consistently
significant at the 95% and 99% confidence level, while the precipitation is not significant, which is
beyond our expectation. As the precipitation is influenced by large-scale general circulations and
complex local weather systems, the prediction of precipitation is always a difficult problem. However,
only limited atmospheric circulation factors were considered to predict the precipitation in the ASD
model. So the poor performance in the prediction of precipitation was presented in our study, which
agrees well with the previous results [37,41].
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To further validate the performance of simulated precipitation, the deviation (Er) and coefficient
of determination (R2) for the probability of wet days and the mean rainfall of wet days were calculated
between simulated precipitation and observations (listed in Table 4). The coefficient of determination
is a measure used in statistical analysis that assesses how well a model explains and predicts future
outcomes, and it measures the proportion of the variance in the dependent variable explained by
the independent variable. R2 is usually used for the test in the goodness of fit. This coefficient is the
quotient of the explained variation (sum of squares due to regression) to the total variation (total sum
of squares), as follows:

r2 =
∑(ŷi − y)2

∑(yi − y)2 (10)

where yi is the observation, y is the mean value of the observation, and ŷi is the simulation. The coefficient
of determination is represented as a value between zero and one. The closer the value is to one, the better
the fit does (representing the fit between the ASD simulation and observation in our study).

Table 4. Er and R2 of the probability of wet days and the average rainfall of wet days.

Zones
Probability of Wet Days Mean Rainfall of Wet Days

Er (%) R2 Er (mm/Day) R2

CMZ −1.25 0.906 −0.38 0.923
WTZ 1.45 0.897 0.62 0.910
STZ 0.71 0.872 1.05 0.874
PCZ 1.72 0.839 −0.17 0.861

It was found that simulated wet days in ASD were fewer than the observed wet days in the
CMZ, with a negative deviation of 1.25%. The simulated mean rainfall of wet days in the CMZ is
also lower than observed, with a negative deviation of 0.38%. The coefficients of determination for
probability of wet days and mean rainfall of wet days consistently exceed 0.9. In the other three zones,
the deviations of probability of wet days are positive and the simulated wet days were more than
observed, ranging from 0.71% to 1.72%, and the coefficients of determination were between 0.839 and
0.897. The deviations of the mean rainfall of wet days vary from −0.17 to 1.05, and the coefficients of
determination range from 0.861 to 0.910. We find that the ASD model can better capture the probability
of wet days and the mean rainfall of wet days (the explained variances are consistently over than
0.839), although this model still has shortcomings in predicting the total amount of precipitation and
its variability, which needs to further improve.

The spatial distribution of precipitation, mean air temperature, maximum air temperature, and
minimum air temperature from both the observation data and the ASD output are exhibited in Figure 5.
As seen in Figure 5, the gradient change of the precipitation and air temperature from southeast to
northwest can be captured accurately by the ASD model, which indicates a strong spatial correlation
of the ASD output.
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Figure 6 plots the value of ASD simulation minus observation to indicate the differences between
ASD simulation and observation data in the Eastern Monsoon Region of China. Combined with the
data from the four zones, the deviations from the observed precipitation and air temperature by ASD
were minor compared with the observations in the CMZ and the PCZ. The simulated precipitation
deviations in these two zones are 8.64% and 5.99%, respectively; whereas in the WTZ and the STZ, the
deviations are 14.79% and 23.16%, respectively. The simulated air temperatures in the CMZ and the
WTZ are slightly lower than observation data by 0.15–0.89 ◦C; whereas in the STZ and the PCZ, the
simulation values are higher by 0.01 to 0.40 ◦C for most stations. For the maximum air temperature
and the minimum air temperature, higher simulation values have also been noted in the STZ and
PCZ zones.2017, 9, 305  12 of 17 
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Generally, based on the statistical relationship between the large scale predictors and the local
predictand developed in the calibration period, the ASD model is capable of simulating the air
temperature. The simulation results of the precipitation, temporally and spatially, using the ASD
model are also considered to be acceptable. Hence, the scenarios generated by the ASD model are
reliable in the Eastern Monsoon Region of China.

4.5. Generation of Climate Change Scenarios

Following the calibration and validation periods, the large scale meteorological variables from
GCMs are downscaled through the ASD model. The seasonal and annual climate change scenarios
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(compared to the base period of 1991–2005) in the four zones during 2020–2050 are shown in Figure 7.
The changes in the annual mean precipitation in the four zones (CMZ, WTZ, STZ, and PCZ) are 4.30%,
4.28%, −6.90%, and 0.02%, respectively. For the mean air temperature, the changes are 1.20, 0.89, 0.99
and 1.04 ◦C, respectively. The maximum (minimum) air temperature changes are 1.23 (1.16), 0.74 (1.01),
1.11 (0.95) and 1.20 ◦C (0.97 ◦C), respectively. The three air temperature variables at an annual scale in
the four zones suggest an overall increase in the future. For precipitation, upward trends were found
in both the CMZ and the WTZ, but in the STZ a strong downward trend was detected.
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The change of the seasonal scenarios in the four zones exhibited obvious differences.
For precipitation, the values for future precipitation in the spring in the four zones all decreased
by 5–10%. The reduction of spring precipitation in the past has been detected [42], and the reduction
trend in the future in relevant areas has been projected [43]. The projection of lower precipitation in
spring in parts of China may be explainable. In the other seasons, precipitation shows an upward trend,
except in the STZ. For the air temperature, the values for seasonal change of the three air temperature
variables in the four zones all exhibited rising trends, with an increase in the range of 0.59–1.85 ◦C.
Compared with the maximum air temperature, the change of the temporal sequence in the minimum
air temperature was more similar to the mean air temperature. The most significant upward trend was
detected in the CMZ and the STZ. Given that precipitation in the STZ will decrease, the increasing
evapotranspiration level due to the higher air temperature would aggravate water scarcity in this zone.

The spatial distribution of the future changes of four variables in four zones was drawn using GIS.
The results are shown in Figure 8, from which we can see a significant spatial difference in the changes.
For precipitation, the annual mean precipitation in most of the STZ would decrease, especially in the
southeastern area, where the decrease would be nearly 28%. In the CMZ and in most of the WTZ
and PCZ, the future precipitation would increase by 0–29.8%, whereas the spatial distribution of the
change in the maximum air temperature was more similar to the mean air temperature. For these two
variables, remarkable downward trends were detected in the WTZ, whereas, in the PCZ and most of
the STZ and CMZ, the trends were upward. In the northern area of the CMZ and in the southeastern
area of the STZ, the upward trends were more remarkable, with increases of 1.5–2.5 ◦C. Consistent
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with the result derived from the change of the temporal sequence, precipitation in the southeastern
area of the STZ will tend to decrease in the future. Meanwhile, the air temperature in this region will
increase in the future, which would lead to more evapotranspiration. These two factors may result in a
worsening of the water resource situation.
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5. Methodological Limitations

In this study, only the ensemble mean of all models was downscaled based on the evaluation
(shown in Figure 2). It is clear that there is significant uncertainty among models, and it is necessary
to take this uncertainty into consideration. A study exploring uncertainty in GCMs as well as in the
ASD model is an area of future research. Among the four greenhouse gas emission scenarios, only the
medium scenario RCP4.5 was adopted in our study, but in the future it would be useful to introduce
other scenarios (such as RCP 8.5, RCP 6.0, RCP 2.6). This will allow a comprehensive comparison to
explore what would happen for other scenarios. Due to the calculation burden and time constraints,
other scenarios were not considered in this research.

6. Conclusions

The evaluation results indicate that the GCMs perform differently over the Eastern Monsoon
Region of China. Overall, the GCMs ensembles are superior to the single model, and the simple
averaging ensemble surpasses the weighted averaging ensembles. MGCMs were capable of depicting
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the annual trends and spatial distribution of the climatic variables; however, MGCMs exhibit poorer
performance in simulating exceedingly high or low values of variables, which is due to the simple
averaging process, wherein extreme values were averaged out. Considering the purpose of this
research, the output of MGCMs can be used to describe seasonal and annual climate change trends, as
well as spatial distribution in future scenarios. However, in other research studies for extreme climatic
events, it is considered essential to explore other methods.

In the process of predictor selection, different local variables, such as precipitation amount and
air temperature in different zones, were related to various atmospheric predictors. From a spatial
perspective, the selected predictors vary from zone to zone. Generally, ta500, tas, and zg500 are the
most significant predictors for the four variables in the four temperate zones. Simultaneously, due to
the different latitudes, the influence of uas becomes weaker from the CMZ to the STZ.

During calibration and validation, ASD behaves better in simulating the air temperature than
the precipitation amount. For air temperature, the explained variances in the CMZ are greater than
91.0%, whereas the explained variances for precipitation are 13.0–28.0%, even in the CMZ, where,
despite relatively better simulation being observed, the median value of explained variance was only
22.8%. Compared to other related research, this simulation efficiency for precipitation downscaling is
acceptable. In view of the different temperate zones, the further north the zone is located, the higher
the effectiveness of the model. The optimal performance of ASD was achieved in the CMZ and in the
WTZ, which may be due to the complicated topography and the geographical position of these two
zones. Overall, the ASD method was adaptable to the Eastern Monsoon Region of China.

The projection of future scenarios from 2020 to 2050 showed that air temperature and air
temperature extremes in most areas of the four zones would exhibit upward trends in the future
in the range of 0–2.5 ◦C. For precipitation, clear decreasing trends were detected in the spring and
in the STZ. In the other seasons and zones, upward trends were found of less than 30%. Notably,
from the temporal trends analysis, compared with the maximum air temperature, the change of the
temporal sequence of the minimum air temperature was more similar to the mean air temperature.
However, from the characteristics of the spatial distribution, the change pattern of the maximum air
temperature was more similar to the mean air temperature. From the spatial distribution of the climate
change scenarios, precipitation in the southeastern area of the STZ will decline in the future, whereas
the air temperature (especially the maximum air temperature) in this region will increase, which may
result in a worsening of the water resource situation in the area. Such a trend would negatively impact
agricultural production and the overall ecological environment. In such cases therefore, it would be
necessary to suitably implement water management strategies to reduce the potential risks.
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