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Abstract:



The upper tail of a flood frequency distribution is always specifically concerned with flood control. However, different model selection criteria often give different optimal distributions when the focus is on the upper tail of distribution. With emphasis on the upper-tail behavior, five distribution selection criteria including two hypothesis tests and three information-based criteria are evaluated in selecting the best fitted distribution from eight widely used distributions by using datasets from Thames River, Wabash River, Beijiang River and Huai River. The performance of the five selection criteria is verified by using a composite criterion with focus on upper tail events. This paper demonstrated an approach for optimally selecting suitable flood frequency distributions. Results illustrate that (1) there are different selections of frequency distributions in the four rivers by using hypothesis tests and information-based criteria approaches. Hypothesis tests are more likely to choose complex, parametric models, and information-based criteria prefer to choose simple, effective models. Different selection criteria have no particular tendency toward the tail of the distribution; (2) The information-based criteria perform better than hypothesis tests in most cases when the focus is on the goodness of predictions of the extreme upper tail events. The distributions selected by information-based criteria are more likely to be close to true values than the distributions selected by hypothesis test methods in the upper tail of the frequency curve; (3) The proposed composite criterion not only can select the optimal distribution, but also can evaluate the error of estimated value, which often plays an important role in the risk assessment and engineering design. In order to decide on a particular distribution to fit the high flow, it would be better to use the composite criterion.
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1. Introduction


Flood frequency analysis plays a key role and is a constant topic in hydrology and water resources, especially for hydraulic design and flood hazard mitigation and management (e.g., [1,2]). Adequate estimations of extreme annual maximum daily flow are very important for flood control in which the upper-tail behavior of the flood frequency distribution is the key [3,4]. The frequency analysis of hydrological extremes requires a fit of a probability distribution to the observed data in order to suitably represent the frequency of occurrence of rare events [5]. More than 20 statistical distributions have been used as the flood frequency distributions [3]. Statistical criteria must be used to determine the suitable distribution for flood frequency analysis [6]. However, for a given region, different model selection methods often result in different optimal distributions, especially when the focus is on the upper tail of flood frequency distribution [7]. The flood estimation vary widely for different distributions. Therefore, the most suitable distribution must be chosen.



There are mainly two kinds of model selection techniques: hypothesis tests based on goodness-of-fit and information-based criteria [5]. The commonly used hypothesis tests are the Kolmogorov–Smirnov (KS) test, Anderson–Darling (AD) test, probability plot correlation coefficient (PPCC), chi-squared test and log-likelihood ratio tests (t-test and F-test). Information-based criteria include the Akaike Information Criterion [8], Akaike Information Criterion–second order variant (AICc) and Bayesian Information Criterion (BIC).



There have been some studies in the past on the comparison of various model selection methods. The choice of a distribution for flood frequency should be based on features reflecting the upper tail shape [9]. However, there are rare studies about the comparison of model selection criteria with emphasis on the upper tail of flood frequency distribution. Cicioni et al. (1973) considered the two-parameter lognormal (LN2), three-parameter log-normal (LN3), Pearson type III distribution (P3) and Generalized Extreme Value (GEV) distributions for the flood data from 108 stations in Italy with record length of more than 27 years, and used Chi-squared, KS, Cramer–Von Mises and AD tests for distribution selection, giving the result that the Chi-squared test selected LN2 but other tests selected GEV [7]. Haktanir and Horlacher (1993) applied a statistical model comprising nine different probability distributions for flood frequency analysis of annual flood peak series for 11 unregulated streams [10]. The distributions were compared by classical goodness-of-fit tests (GOFT) on the observed series. However, different classical goodness-of-fit tests often result in different distributions for a specific region. Haddad et al. (2012) presented a case study with flood data from Tasmania in Australia in order to select the best fit flood frequency distribution by examining four model selection criteria: AIC, AICc, BIC and a modified Anderson–Darling (AD) Criterion [11]. It was found from the Monte Carlo simulation that AD is more successful in correctly recognizing the parent distribution than AIC and BIC when the parent is a three-parameter distribution. On the other hand, AIC and BIC are better at correctly recognizing the parent distribution when the parent is a two-parameter distribution. Baldassarre (2009) demonstrated that model selection criteria such as AIC, BIC and AD which are seldom used in hydrological applications, can help to identify the best probability model [12]. These three methods were compared through an extensive numerical analysis by using synthetic data samples. The model selection criteria based on AIC, BIC and AD were also adopted by Laio et al. (2009) and Calenda et al. (2009) [5,13], with further investigation to verify which of the selection criteria is more efficient, especially in the case of small samples and heavy tailed distributions, as these are commonly encountered in flood frequency analysis. The studies were carried out by a Monte Carlo simulation to investigate the robustness of the model selection criteria in recognizing the real parent distributions. Overall, none of the classical hypothesis tests and information-based criteria can be used as a universal indicator to select the suitable distributions for different stations around the world. Burnham and Anderson (2002) indicated that the hypothesis test and information-based approaches have different selection frequencies [14]. Even if the same parameter estimation method is used, different model selection criteria result in different optimal distributions. This is perhaps because each type of model selection criteria has its own characteristics and applicable scope [15]. Therefore, it is not surprising that the results of these tests are not always in agreement.



Estimating the magnitude and frequency of large floods is difficult and involves a large degree of uncertainty, especially when the flow record is of limited length. The Monte Carlo method and Paleohydrologic techniques offer a way to lengthen a short-term data record and, to reduce the uncertainty in hydrologic analysis [16,17,18].



The basic assumption of traditional frequency analysis methods is that the hydrological data used are stationary, independent and identically distributed over time. However, in the past decades this stationarity assumption has been severely challenged because global climate change [19] and/or large-scale human activities [20] have altered the statistical characteristics of hydrological processes [21]. Some hydrologists have declared that “stationarity is dead” [22], and suggest that nonstationary probabilistic models need to be identified and possibly used in some practical cases when the characteristics of hydrological processes have been significantly changed [23,24,25].



Selection of a flood frequency distribution is a necessary step in flood frequency analysis. However, selection of the best fit distribution from a large number of candidate distributions available in the literature is a difficult task. There are two reasons behind having no unique probability distributions for a given region. (1) Flood characteristics are different in different rivers; (2) there is a lack of an effective model selection criterion to be used to determine the suitable distribution for flood frequency analysis.



Flood frequency curves of different distributions show differences mainly at the tails of the distributions, especially at the high flow part which generally shows big differences for different distributions [10]. Hosking and Wallis (1986) argued that the choice of a distribution for flood frequency should be based on features reflecting the upper tail shape [9]. The observed flow data at the high flow part play an important role in the flood frequency analysis and should be addressed in the goodness-of-fit. The question is which model selection criterion can be a good indicator of the goodness of prediction for the extreme upper tail quantiles such as return periods of 100 years or more. In order to determine the more efficient model selection criterion which focuses on the upper-tail behaviour and reduces the influence of the lower tail end, a new composite criterion method to identify the optimal distribution is proposed in this study. The composite criterion can evaluate the goodness of predictions of the extreme upper-tail events carried out using synthetic samples of data by Monte Carlo simulation with Kappa distribution as the parent distribution. Stochastic simulation is widely applied for estimating the design flood of various hydrological systems.



In order to reveal the best fitted distribution for different regions in the flood frequency analysis with emphasis on the upper-tail behavior, the study aims at clarifying how the model selection methods work in different situations in the flood frequency analysis by (1) verifying whether hypothesis tests or information-based criteria methods are more efficient at the high flow part by clarifying the characteristic of model selection methods, and (2) trying to establish a composite of model selection criteria methods which can meet the demand of the engineering design. The findings from this study will benefit hazard mitigation and water resources management.




2. Methodology


2.1. Typical Probability Distributions


Many probability distributions (PDs) have been considered, in different situations, for the probabilistic model of extreme events, including P3, LP3, LN2, LN3, Gumbel (Extreme value type I, EV1), Weibull (Extreme value type III), GEV and Generalized logistic distribution (GLO). Rao and Hamed (2000) and Reiss and Thomas (2001) provided details of their probability density functions [26,27]. Eight well-known flood frequency probability distributions were used in this study. Two of them have two parameters (LN2 and Gumbel) and six have three parameters (LN3, Weibull, GEV, GLO, P3 and LP3). Two of them are heavy tail distributions (GLO and LP3), i.e., distribution tends to have large values with outliers (very high values); an often used definition of heavy tailed distributions is based on the fourth central moment [28]; four of them are mixed tail distributions (GEV, Gumbel, LN3 and LN2) and the other two are light tail distributions (P3, Weibull which can also be subexponential). More details regarding the tail of the PDs can be found in, for example, Adlouni et al. (2008) [28].




2.2. Model Selection Methods


There are mainly two kinds of model selection techniques: hypothesis tests based on goodness-of-fit and information-based criteria [5]. The traditional hypothesis testing methods are KS and AD [7]. KS and AD methods involve the confidence level and threshold (p values). If the p value is greater than the confidence level (typically 0.05), the original hypothesis is accepted as the data obeys the distribution, otherwise the original hypothesis is rejected. It was found from related researches that information-based criteria (AIC, BIC and AICc) can help to identify the best probability model in certain situations [11,12]. With respect to the distribution selection, two hypothesis tests (KS and AD) and three information-based criteria (AIC, BIC and AICc) are used in this paper (Table 1). The distributions are ranked according to their performances against each test or criterion. The best fitted distributions are the ones which perform in the top three of all the tests and criteria. Specific steps of computing the information-based criteria for each probability model are as follows.

	(1)

	
The log-likelihood function value for each probability model was computed according to Table 1. Where parameters P (scale, location, shape) are the parameter values that maximize the log-likelihood function. The estimation method for parameter P of flood frequency probability models is the maximum likelihood, which was used to compute the log-likelihood function for each probability model.




	(2)

	
The values of AIC, BIC, AICc can be computed according to Table 1 on the basis of the value of log-likelihood function and the number of parameters.









Table 1. Model selection criteria methods for hydrological frequency analysis.







	
Goodness-of-Fit Test (GOFT)

	
Statistic Value

	
Description

	
Characteristic






	
KS

	
[image: there is no content] [34]

	
[image: there is no content] is a plot on the Empirical frequency curve and F−1(p) is the Inverse function of cumulative distribution function F(x) for probability P(i).N is the size of samples.

	
KS test measures the greatest discrepancy between the observed and hypothesized distributions.




	
AD

	
[image: there is no content] [35]

	
AD uses the sum of the squared differences between the empirical and theoretical distributions with weights to emphasize discrepancies in the tails. AD Statistic has shown good capabilities for a small sample size and heavy tailed distributions [ 15,36].




	
AIC

	
[image: there is no content] [8]

	
[image: there is no content] is the likelihood function of a certain distribution with parameter set [image: there is no content] and data array D. m is the number of parameters P and n is the size of the sample.

	
The log-likelihood maximised function value is used to select the model and penalize heavier for the number of estimated parameters P. In some situations where the sample size n is small with respect to the number of estimated parameters P, the AIC may perform inadequately [11]; a second-order variant of AIC, called AICc, should be used.




	
BIC

	
[image: there is no content] [37]

	
Similar to the AIC, but developed in a Bayesian framework. BIC penalizes heavier than AIC for number of estimated parameters P and small sample sizes [11].




	
AICc

	
[image: there is no content] [14]

	
The AICc penalizes heavier than AIC for number of estimated parameters P and can be adopted when n/P <40 to reduce bias [13].











2.3. Parameter Estimation


The most common parameter estimation methods in flood frequency analysis are moments and the maximum likelihood [29]. Because the maximum likelihood estimation (MLE) generally shows less bias than other methods and provides a more consistent result to parameter estimation, it is recommended by Federal Emergency Management Agency of the United States (FEMA)’s guideline (2004) [30]. Therefore, in this paper, the MLE method was used for parameter estimation. More details regarding methods on parameter estimation can be found in, for example, Martins and Stedinger (2000), Hirose (1996), and Otten and Montfort (1980) [31,32,33].




2.4. Rigorous Program to Select the Optimal Distribution by Hypothesis Tests and Information-Based Criteria


In order to perform more rigorous and systematical analysis, we only present the first two optimal distributions for the hypothesis test and the information-based criteria. This is achieved through a rigorous program in finding the two optimal distributions from the candidate distributions. The procedure is demonstrated here by taking the information-based criteria as an example.

	(1)

	
The candidate distributions are ordered from most to least favourite with AIC, BIC, AICc criteria. If the first distribution with the highest number of occurrences was selected respectively by AIC, BIC, AICc, then it is selected as the first optimal distribution of the information criteria.




	(2)

	
After selecting the first optimal distribution, it is removed from the candidate distributions. Repeat step (1) to find the best distribution from the remaining distributions as the second optimal distribution.




	(3)

	
In step (1), if two or more distributions have the same number of times appearing at the first position, then they will be sorted by the total number of occurrences in the preferred distribution (two or more distributions) selected respectively by AIC, BIC, AICc; the distribution with more occurrences is preferred.










2.5. Composite Criterion for Model Selection with Focus on the High Flow Part


An additional composite model selection criterion, based on an extensive numerical analysis by using synthetic data samples, is proposed here. Because the choice of a distribution for flood frequency should be based on features reflecting the upper tail shape [9], the composite criterion will be considered as a standard to make the final decision in this paper. The performances of the five model selection methods (Table 1) are compared in the “Results and Discussions” section. The upper tail of the frequency curve of this paper refers to the part of probability of exceedance <50%, which is greater than the 2-year flood. The observed flow data at the high flow part play a key role in flood frequency analysis. However, most classical model selection methods cannot evaluate the high flow part well [38]. The purpose of a composite criterion is to test and verify the performance at the upper tail of flood frequency distribution (return period more than 5-year), including the verification of the epitaxy capability (return period more than 100,200-year) of the model. Due to the limited length of observations (Table 2), the significance of perturbation at the upper tail of observed flood flow was assessed by generating synthetic samples using Monte Carlo simulation. In order to avoid overlooking the ‘true’ distribution caused by randomly multiple sampling the observed data, the representative of observed data samples was intensively analyzed before the flood frequency calculation (Table 3). Specific steps to verify the performance at the upper tail of flood frequency distribution are as follows.



Table 2. Background information of the four study basins.







	
Basin and Station Name

	
Country

	
Area (Km2)

	
Terrain

	
Climate Zone

	
Data Length

	
Cs of the Flood Series






	
Kingston at Thames

	
UK

	
9948

	
Plain

	
Temperate

	
1883–2009

	
1.181




	
Lafayette at Wabash

	
USA

	
18,821

	
Alluvial Plain

	
Humid Continental Climate

	
1907–1991

	
0.280




	
Shijiao at Beijiang

	
China

	
38,363

	
Hill

	
Subtropical Monsoon

	
1956–2008

	
0.230




	
Lutaizi at Huai

	
China

	
91,620

	
Hill

	
Warm Temperate and Half Wet Monsoon Climate

	
1951–1998

	
1.198










Table 3. Randomness test for annual maximum daily flows in the four rivers.







	
Study Area

	
Significance

	
Persistency

	
Trend

	
Jump




	
t

	
Spearman

	
Hurst Coefficient






	
Kingston at Thames

	
Stats

	
0.057

	
1.446

	
0.568




	
Critical Value (5%)

	
1.979

	
1.96

	
0.628




	
Accept or Not

	
yes

	
yes

	
yes




	
Lafayette at Wabash

	
Stats

	
1.286

	
−0.453

	
0.491




	
Critical Value (5%)

	
1.989

	
1.96

	
0.323




	
Accept or Not

	
yes

	
yes

	
yes




	
Shijiao at Beijiang

	
Stats

	
−0.953

	
0.927

	
0.500




	
Critical Value (5%)

	
2.008

	
1.96

	
0.674




	
Accept or Not

	
yes

	
yes

	
yes




	
Lutaizi at Huai

	
Stats

	
−0.534

	
−0.925

	
0.435




	
Critical Value (5%)

	
2.014

	
1.96

	
0.255




	
Accept or Not

	
yes

	
yes

	
yes











	(1)

	
Choose a distribution from which the simulated data are generated. The Kappa and Wakeby distributions are widely recommendable choices [12]. Hosking (1997) used the four-parameter Kappa distribution as the overall simulation in regional flood frequency analysis and obtained reliable simulation results. The same distribution was used for the simulations in this study [39].




	(2)

	
The four-parameter Kappa distribution, as the parent distribution, was estimated by L-moments of samples for the observed flood flow to determine parameter values. The synthetic samples, with the same length of the observations, were randomly simulated from the fitted four-parameter Kappa distribution. The detailed steps are described below:



First, the first four order linear moments are obtained based on the observed sequence. Then, based on the linear moment of the observed data, the L-moments method is used to estimate the parameters of the Kappa distribution. Finally, a random sample is generated using the Kappa distribution with the estimated parameter values. The length of the random sample is the same as the length of the observed sequence.




	(3)

	
The simulated samples were fitted by eight distributions as recommended before. All eight probability distributions were then used to estimate the design floods with return periods T=5, 10, 20, 30, 50, 70, 90, 100 and 200 years.




	(4)

	
Repeat steps (2) and (3) for a given number of times (denoted by Nsim), and save the calculated results. Nsim = 500 in this study.




	(5)

	
The relative error of the design value (RE) for each simulation was calculated by


[image: there is no content]



(1)




where T is the return period, [image: there is no content] is the quantile of Kappa distribution with the parameter values obtained through L-moments for the observations, and [image: there is no content] is the quantile of the fitted distribution by using one of the designed distributions. The Box plots were drawn according to 500 relative errors (REs), which reflect the overall situation of REs, as well as the deviation of the design value. The criteria of goodness were both the smallness in magnitude of the median of 500 REs and, equally important, the narrowness of the Box plots and of the max–min ranges of all the REs.




	(6)

	
The root-mean-square error(RMSE) was calculated as the quantile corresponding to the assigned return periods, T = 5, 10, 20, 30, 50, 70, 90, 100 and 200 years.


[image: there is no content]



(2)




where Nsim is the number of Monte Carlo simulations; other notations are the same as in Equation (1).




	(7)

	
The arithmetic mean [image: there is no content] of the RMSE was calculated for the return period T for a given distribution.




	(8)

	
The [image: there is no content] and Box plots of REs are the composite criteria used for assessing the degree of the goodness-of-fit at the high flow part. The smaller [image: there is no content] value means a better fitting.










2.6. Verify the Performance of the Five Selection Criteria by Using a Composite Criterion


The performance of the five selection criteria was verified by using a composite criterion with focus on upper tail events. The procedure is as follows.

	(1)

	
The optimal (ranked as the top two) distributions selected by hypothesis tests and information-based criteria are listed first.




	(2)

	
Test the performance of distribution selected by hypothesis tests and information-based criteria on the large floods with a long return period by a composite criterion.




	(3)

	
Based on the test results by the composite criterion, compare the estimation error of distribution selected by hypothesis tests and information-based criteria for large floods. If the estimation error is small, this criterion which selected the distribution is better for high flow part (Shown as Box plots of RMSE and RE).










2.7. Change Point of Flood Series Detection


The Rescaled Range (R/S) analysis method and Hurst Coefficient method are used to identify the change point and test the variation degree of time series. The variability and variation degree of time series are determined by the value of the Hurst Coefficient, which can be obtained by R/S analysis [40]. The Hurst coefficient value is equal to 0.5 when a time series does not have long persistence and increases/decreases from 0.5 when a series has long persistence/anti-persistence. More details regarding the method introduction can be found in, for example, Xie et al. (2008) [40], Wallis and Matalas (1970) [41]. R/S is defined as,


[image: there is no content]



(3)




where R is the range of cumulative departures from the mean, S is the standard deviation, and [image: there is no content] is the sample length, [image: there is no content] ≥ 1. According to the observed data, the least squares method can be used to obtain the parameters c and Hurst coefficients h.





3. Study Area and Data


In order to verify the applicability of the methodology in different regions around the world, four hydrological stations with long historical data are used as case studies, including Kingston at Thames River, Lafayette at Wabash River, Shijiao at Beijiang River and Lutaizi at Huai River. These four stations are located in different areas in 23.5–66.5 degrees north of latitude in China, the UK and the US respectively (see Figure 1 and Table 2) with long-term data ranging from 48 to 127 years. Figure 1 gives their geographical locations and Table 2 summarizes the geographical and data information. The stations cover a wide range of climate conditions. Annual maximum daily flows are used in the analysis.


Figure 1. The locations of the studied stations.



[image: Water 09 00320 g001]






Thames River is the biggest river in the UK with the length of 338 km and drainage area of 9948 km2. It is located at a temperate climate zone with high humidity and relatively stable temperature. Kingston station, located at the lower reach of Thames River, is used in the study. The skewness coefficient Cs of the flood series at Kingston station is large with the value of 1.181, which implies a steep upper tail of the optimal frequency distribution.



With a length of 810 km, Wabash River is the largest and most important river in Indiana, USA. Wabash basin, mostly in Indiana, is dominated by a humid continental climate with cold winters, and warm and wet summers. Lafayette station, which is located at the middle reach of Wabash River and controls a drainage area of 18,821 km2, is used in the study. The small Cs value of 0.280 for the flood series at Lafayette station indicates that the upper tail of the optimal frequency distributions is gentle at this station.



Beijiang River, located at the subtropical monsoon climate zone of China, has an annual average temperature between 14 and 22 °C, and an annual mean rainfall of 1700 mm. Shijiao station, the main controlling station (controlling a drainage area of 38,363 km2) located at the lower reach of the Beijiang River, is used in this study. The small Cs value of 0.230 for the flood series at Shijiao station shows a gentle upper tail frequency distribution at this station.



Huai River, located between Changjiang River (Yangtze River) and Huanghe River (Yellow River), covers a large area. Its north part is in a warm temperate zone, while the south part is in a monsoon climate zone with an annual average temperature between 11 and 16 °C. Lutaizi station, the control station in the middle river reach with a drainage area of 91,620 km2, is selected as a case study in this paper. For Lutaizi Station, the large Cs value of 1.198 infers a steep upper tail frequency distribution.



The record lengths of the data are given in Table 2 in descending order. The observed flood discharge series at each station is visually investigated to see if there are apparent trends or jumps. Statistical tests including the Spearman test for trend and the R/S analysis method for change point are conducted formally and summarized in Table 3, from which it can be seen that there are no statistically significant trends and change point for annual maximum daily discharges. The fluctuation change of annual maximum flow is the biggest at Lafayette station and is the lowest at Kingston station. The autocorrelation coefficient and randomness test indicate that hydrological sequences satisfy the independent assumption (Figure 2). Therefore, the flood series data of the studied rivers fulfil the basic assumptions of traditional frequency analysis methods, i.e., stationary, independent and identically distributed over time.


Figure 2. Autocorrelation coefficient for annual maximum daily flows in the four rivers.



[image: Water 09 00320 g002]







4. Results and Discussions


The MLE method is conducted for parameter estimation of all eight distributions (P3, GLO, GEV, Weibull, Gumbel, LN3, LN2 and LP3), and the results are given in Table 4 with the associated return levels being plotted in Figure 3. The values of hypothesis tests and information-based criteria are summarized in Table 5, in which the smaller value for the test statistics means a better fitting by that test.


Figure 3. A comparison of the eight typical frequency distributions for four rivers with parameters estimated by MLE. (a) Thames River; (b) Wabash River; (c) Beijiang River and (d) Huai River.



[image: Water 09 00320 g003]






Table 4. Parameter estimation for annual maximum daily flows in the four rivers.







	
Study Area

	
PDs

	
Parameters (MLE)




	
Scale

	
Shape

	
Location






	
Kingston at Thames

	
P3

	
0.027

	
8.51

	
15.31




	
GLO

	
56.67

	
−0.16

	
310.86




	
GEV

	
89.059

	
0.036

	
278.97




	
Weibull

	
282.29

	
2.36

	
76.12




	
Gumbel

	
88.47

	
——

	
277.22




	
LN3

	
0.26

	
5.94

	
−69.57




	
LN2

	
0.33

	
5.73

	
——




	
LP3

	
39.104

	
171.62

	
1.34




	
Lafayette at Wabash

	
P3

	
0.011

	
32.36

	
−1644.73




	
GLO

	
299.93

	
−0.065

	
1365.28




	
GEV

	
506.81

	
0.203

	
1185.48




	
Weibull

	
1433.11

	
2.56

	
117.46




	
Gumbel

	
490.76

	
——

	
1133.93




	
LN3

	
0.12

	
8.41

	
−3140.96




	
LN2

	
0.45

	
7.15

	
——




	
LP3

	
28.22

	
171.62

	
1.082




	
Shijiao at Beijiang

	
P3

	
0.0019

	
36.96

	
−9811.59




	
GLO

	
1819.32

	
−0.068

	
9436.47




	
GEV

	
3054.67

	
0.22

	
8325.95




	
Weibull

	
8802.03

	
2.64

	
1782.32




	
Gumbel

	
2912.39

	
——

	
8000.08




	
LN3

	
0.11

	
10.26

	
−19384.8




	
LN2

	
0.37

	
9.11

	
——




	
LP3

	
34.13

	
171.36

	
4.087




	
Lutaizi at Huai

	
P3

	
0.00055

	
1.89

	
566.84




	
GLO

	
1264.17

	
−0.36

	
3480.44




	
GEV

	
1671.23

	
−0.12

	
2861.17




	
Weibull

	
3676.23

	
1.39

	
672.028




	
Gumbel

	
1750.16

	
——

	
2942.83




	
LN3

	
0.43

	
8.47

	
−1281.45




	
LN2

	
0.62

	
8.109

	
——




	
LP3

	
20.55

	
166.68

	
0.00001










Table 5. A comparison of the test statistic values of the eight typical frequency distributions for hypothesis tests and information-based criteria.







	
Study Area

	
Frequency Distributions

	
KS

	
AD

	
AIC

	
BIC

	
AICc






	
Kingston at Thames

	
P3

	
0.064

	
0.502

	
1542.419

	
1550.951

	
1542.614




	
GLO

	
0.053

	
0.292

	
1538.728

	
1547.260

	
1538.923




	
GEV

	
0.054

	
0.355

	
1540.212

	
1548.745

	
1540.407




	
Weibull

	
0.089

	
1.366

	
1552.091

	
1560.623

	
1552.286




	
Gumbel

	
0.055

	
0.384

	
1538.708

	
1544.396

	
1538.804




	
LN3

	
0.057

	
0.389

	
1540.801

	
1549.334

	
1540.996




	
LN2

	
0.056

	
0.396

	
1540.227

	
1545.916

	
1540.324




	
LP3

	
0.072

	
0.532

	
1544.700

	
1553.300

	
1544.900




	
Lafayette at Wabash

	
P3

	
0.060

	
0.443

	
1313.154

	
1320.482

	
1313.450




	
GLO

	
0.070

	
0.397

	
1314.564

	
1321.892

	
1314.860




	
GEV

	
0.063

	
0.455

	
1312.927

	
1320.255

	
1313.224




	
Weibull

	
0.073

	
0.563

	
1312.474

	
1319.802

	
1312.770




	
Gumbel

	
0.086

	
1.040

	
1317.343

	
1322.228

	
1317.489




	
LN3

	
0.060

	
0.437

	
1313.190

	
1320.518

	
1313.487




	
LN2

	
0.110

	
1.849

	
1324.446

	
1329.332

	
1324.593




	
LP3

	
0.114

	
2.174

	
1331.104

	
1338.432

	
1331.401




	
Shijiao at Beijiang

	
P3

	
0.106

	
0.436

	
1013.854

	
1019.764

	
1014.343




	
GLO

	
0.122

	
0.573

	
1012.876

	
1018.787

	
1013.366




	
GEV

	
0.098

	
0.424

	
1010.321

	
1016.232

	
1010.811




	
Weibull

	
0.096

	
0.416

	
1010.571

	
1016.481

	
1011.060




	
Gumbel

	
0.109

	
0.644

	
1012.438

	
1016.379

	
1012.678




	
LN3

	
0.106

	
0.439

	
1010.753

	
1016.664

	
1011.243




	
LN2

	
0.114

	
0.709

	
1014.045

	
1017.986

	
1014.285




	
LP3

	
0.119

	
0.867

	
1018.547

	
1024.458

	
1019.037




	
Lutaizi at Huai

	
P3

	
0.077

	
0.181

	
873.463

	
879.077

	
874.008




	
GLO

	
0.069

	
0.290

	
876.908

	
882.521

	
877.453




	
GEV

	
0.085

	
0.255

	
875.763

	
881.377

	
876.308




	
Weibull

	
0.070

	
0.188

	
872.889

	
878.503

	
873.435




	
Gumbel

	
0.096

	
0.370

	
874.770

	
878.513

	
875.037




	
LN3

	
0.088

	
0.237

	
875.352

	
880.966

	
875.898




	
LN2

	
0.080

	
0.233

	
873.109

	
876.852

	
873.376




	
LP3

	
0.077

	
0.289

	
875.939

	
881.553

	
876.485










4.1. Optimal Frequency Distribution for Different Model Selection Methods


There are different selections of frequency distributions by using hypothesis tests and information-based criteria approaches for each river. Taking Thames River as an example, for the hypothesis tests KS and AD, the comparison results indicate that the data are best fitted by GLO distribution, followed by GEV and Gumbel distributions (Table 5). When information-based criteria methods (including AIC, AICc and BIC) are used in the comparison, results show that Gumbel fits the observed floods best, followed by GLO distribution (see Table 5; Figure 3). Some different results can be found between hypothesis tests and information-based criteria methods. Heavy tailed GLO distribution is the best fitted frequency distribution by the hypothesis tests, while mixed tailed Gumbel distribution is the best by the information-based criteria in Thames River.



As is the case for Thames River, the best fitted flood frequency distributions in Wabash River vary slightly between two types of model selection methods. Mixed tailed LN3 distribution is the best fitted frequency distribution for hypothesis tests, while light tailed Weibull distribution is the best for information-based criteria (Table 5).



There is always a difference between the two types of selection methods in the other two river basins. In Huai River, light tailed (P3, Weibull) distributions are suitable frequency distributions for hypothesis tests, while mixed tailed (LN2) or light tailed (Weibull) distributions are the best for information-based criteria (Table 5). In Beijiang River, light tailed (Weibull, P3) and mixed tailed (GEV) distributions are suitable frequency distributions for hypothesis tests, while mixed tailed (GEV) and light tailed (Weibull) distributions are the best for information-based criteria. The results show that the optimal flood frequency distributions are basically the same in both rivers although slightly different orders exist in Beijiang River. The study points out that in Beijiang River there is a slight tendency towards the selection of light tailed distributions, while heavy tailed distributions are inappropriate (Table 5).




4.2. Composite Criterion for Model Selection


For Thames River, the composite criterion of [image: there is no content] and Box plots of REs can correctly recognize, in most of the cases, that the optimal distribution belongs to the Gumbel. Information-based criteria turn out to be the best methods in this case, even with varying return periods (Table 6 and Figure 4). The Cs values have a close relationship with the optimal frequency distributions (Figure 3), the large Cs value of 1.181 for the flood series at Kingston station agrees with the selection of mixed tail distribution Gumbel as the optimal distribution.


Figure 4. Box plots of the relative errors (REs) of the Kingston at Thames River for sample series length 127, with Kappa as the parent probability distribution (PD).



[image: Water 09 00320 g004]






Table 6. RMSE and [image: there is no content] calculated for different return periods T in the four rivers.







	
River

	
PD

	
T = 5

	
T = 10

	
T = 20

	
T = 30

	
T = 50

	
T = 70

	
T = 90

	
T = 100

	
T = 200

	
[image: there is no content]






	
Thames

	
GUM

	
0.039

	
0.044

	
0.049

	
0.047

	
0.050

	
0.048

	
0.052

	
0.052

	
0.059

	
0.049




	
GLO

	
0.032

	
0.042

	
0.056

	
0.066

	
0.083

	
0.094

	
0.111

	
0.114

	
0.145

	
0.083




	
GEV

	
0.038

	
0.045

	
0.055

	
0.063

	
0.076

	
0.088

	
0.089

	
0.093

	
0.126

	
0.075




	
Wabash

	
LN3

	
0.043

	
0.050

	
0.062

	
0.067

	
0.079

	
0.092

	
0.086

	
0.079

	
0.095

	
0.073




	
P3

	
0.049

	
0.066

	
0.070

	
0.081

	
0.081

	
0.088

	
0.086

	
0.095

	
0.101

	
0.080




	
WEI

	
0.043

	
0.046

	
0.052

	
0.058

	
0.064

	
0.075

	
0.075

	
0.076

	
0.088

	
0.064




	
GEV

	
0.043

	
0.048

	
0.058

	
0.064

	
0.077

	
0.077

	
0.085

	
0.090

	
0.107

	
0.072




	
GLO

	
0.041

	
0.045

	
0.059

	
0.068

	
0.092

	
0.110

	
0.129

	
0.136

	
0.176

	
0.095




	
Beijiang

	
WEI

	
0.046

	
0.051

	
0.061

	
0.055

	
0.057

	
0.060

	
0.063

	
0.063

	
0.064

	
0.058




	
GEV

	
0.048

	
0.052

	
0.059

	
0.058

	
0.069

	
0.071

	
0.078

	
0.085

	
0.096

	
0.068




	
P3

	
0.055

	
0.061

	
0.085

	
0.078

	
0.080

	
0.089

	
0.089

	
0.093

	
0.114

	
0.083




	
Huai

	
WEI

	
0.099

	
0.103

	
0.114

	
0.118

	
0.126

	
0.133

	
0.145

	
0.146

	
0.146

	
0.126




	
P3

	
0.103

	
0.109

	
0.136

	
0.161

	
0.169

	
0.171

	
0.190

	
0.188

	
0.216

	
0.160




	
LN2

	
0.097

	
0.107

	
0.138

	
0.166

	
0.214

	
0.245

	
0.273

	
0.294

	
0.369

	
0.211




	
GLO

	
0.101

	
0.132

	
0.234

	
0.331

	
0.443

	
0.468

	
0.508

	
0.500

	
0.551

	
0.363










As is the case for Thames River, information-based criteria are shown to be the best methods in Wabash River, even with varying return periods (Table 6 and Figure 5). It is found that Weibull can be judged as a suitable flood frequency distribution, which fits high flows well and is insensitive to low flows. For Lafayette station, the smaller Cs value of 0.280 is reflected by the selection of light tail Weibull distribution. There is a slight tendency towards the selection of light tailed distributions in Wabash River.


Figure 5. Box plots of the relative errors (REs) of the Lafayette at Wabash River for sample series length 85, with Kappa as the parent PD.



[image: Water 09 00320 g005]






However, hypothesis tests appear to be the best methods in Beijiang River, even with varying return periods (Table 6 and Figure 6). In this river basin, Weibull is inferred as the suitable flood frequency distribution based on the composite criterion of [image: there is no content] and Box plots of REs. The smallest Cs value of 0.230 for Shijiao station is consistent with the selection of light tail Weibull distribution.


Figure 6. Box plots of the relative errors (REs) of the Shijiao at Beijiang River for sample series length 53, with Kappa as the parent PD.



[image: Water 09 00320 g006]






It should be noted that hypothesis tests and information-based criteria methods all give unsatisfactory performance in Huai River (Table 6 and Figure 7); Weibull can be viewed as the preferable flood frequency distribution in Huai River by the results of composite criterion. Its large Cs value of 1.198 is not consistent with the selection of light tail Weibull distribution, mainly because the influence of the extremely large flood in 1954.


Figure 7. Box plots of the relative errors (REs) of the Lutaizi at Huai River for sample series length 48, with Kappa as the parent PD.



[image: Water 09 00320 g007]







4.3. Comparison on Hypothesis Tests and Information-Based Criteria for Upper Tail


The objective of this section is to verify whether the hypothesis tests and information-based criteria work correctly for the upper tail of flood frequency distributions and to analyse the cause and the mechanism when they are applied to identify the PDs of hydrological extremes.



4.3.1. Characteristics of Statistical Hypothesis Test


(1) Kolmogorov–Smirnov (KS)


The KS test measures the greatest discrepancy between the observed and hypothesized distributions which locate at the upper tail or lower tail of the distribution. So the optimal PDs selected by KS are different from the ones selected by a composite criterion when the greatest discrepancy locates at the lower tail. The optimal PD selected by KS is not suitable for fitting high flow. For example, although the values of the KS test for GLO PD in Thames River, LN3 PD in Wabash River, and GLO PD in Huai River are considerably smaller than that of all the other PDs, these particular models overestimate or underestimate the upper tail events a great number of times. Furthermore, these particular distributions always have a rather wide spread of REs, with [image: there is no content] value appreciably large (see Figure 4, Figure 5, Figure 7 and Table 6).




(2) Anderson–Darling Criterion (AD)


AD uses the sum of the squared differences between the empirical and theoretical distributions with weights to emphasize discrepancies in the tails. AD not only focuses on high flow end, but also addresses low flow end. Similar to KS, the optimal PD selected by AD is different from the one selected by a composite criterion when the emphasis is on the discrepancies located at the lower tail. For example, although the values of the AD test for GLO PD in Thames River and GLO PD in Wabash River are considerably smaller than that of all the other PDs, these models overestimate the upper tail events a greater number of times. Furthermore, these distributions always have a rather wide spread of REs, with [image: there is no content] value appreciably large (Figure 4 and Figure 5; Table 6). The optimal PDs selected by AD are never suitable for fitting high flows. In contrast, although GLO and LN3 do not perform so well at high flows, they fit the data well at the lower tail of the distribution, and these PDs are selected by AD in Wabash River as a final selection.




(3) Characteristics Summary


The statistical hypothesis tests (KS and AD) do not show rigorous results when focusing on the goodness of predictions of the extreme upper tail events. Although the values of the composite criterion for Gumbel PD in Thames River and Weibull PD in Wabash River show the best fitted distributions, the fitted order of Gumbel PD by KS and AD tests in Thames River is in the third place, and Weibull PD in Wabash River ranks fifth. Weibull PD selected by the composite criterion in Huai river ranks second by KS and AD. The results confirm some findings recently presented in the scientific literature. Laio et al. (2009) indicated that the statistical hypothesis testing methods have some evident limitations, because the obtained results are subjective, depending, for example, on the significance level chosen, and ambiguous, as often more than one distribution passes the goodness-of-fit tests [5].





4.3.2. Characteristics of Information-Based Criteria


(1) AIC, AICc Criteria


The optimal distributions selected by AIC and AICc are basically the same, and perform consistently with the distributions selected by the composite criterion. Although there are some differences in the values of AIC and AICc criteria for GEV PD in Beijiang River, they are considerably smaller than that of all the other PDs. However, these models overestimate the upper tail events when the return periods are greater than 70 years and underestimate the upper tail events for other return periods occasionally. The LN2 PD is selected by the AICc criterion in Huai River, however, LN2 PD sometimes overestimates the upper tail events and always has a rather wide range of REs, and with large [image: there is no content] values (Figure 6 and Table 6).




(2) BIC Criterion


BIC is a Bayesian version of the AIC which incorporates some information about the prior distribution of the parameters of the model. BIC penalizes heavier than AIC and AICc for the number of estimated parameters P and small sample sizes [11]. So it is easier to select a distribution with fewer parameters, such as LN2 and Gumbel for the same sequence length. This is why the optimal distribution (LN2) selected by BIC does not perform consistently with the Weibull PD selected by the composite criterion. LN2 PD often overestimates the upper tail events (Figure 7). In addition, the BIC criterion often prefers the LN2 PD to AIC and AICc in Huai River, Thames River and Beijiang River, and prefers the Gumbel PD to AIC and AICc in Beijiang River and Huai River.




(3) Characteristics Summary


The optimal frequency distributions selected by AIC, BIC and AICc are basically the same as the distributions selected by the composite criterion. The information-based criteria are more sensitive to the high flow than hypothesis tests. BIC and AICc have a slight tendency towards the selection of two-parameter distributions. These results are due to the characteristics in penalizing for the number of estimated parameters P, by which BIC and AICc penalize heavier than AIC for small sample sizes. This is the reason that the optimal distribution (LN2) selected by information-based criteria does not perform consistently with the distribution selected by composite criterion (Weibull) in Huai River. This result confirms some findings recently presented in the scientific literature such as Baldassarre (2009) [12]. The capability of the information-based criteria to recognize the correct parent distribution from available data samples varies from case to case; it is rather good in some cases, in particular when the parent is a two-parameter distribution [5].



In general, the information-based criteria perform better than hypothesis tests when the focus is on the goodness of predictions of the extreme upper tail events. Although the order is not always ranked first for the best fitted distributions selected by the composite criterion, these distributions all can be identified correctly by AIC, BIC and AICc in all the four rivers. Furthermore, these particular distributions selected by information-based criteria always have a rather narrow spread of REs, with small [image: there is no content] value. In contrast, the optimal frequency distributions for KS and AD are basically not the same as the distribution selected by the composite criterion. The reasons that information-based criteria are more sensitive to the high flow than hypothesis tests are as follows. The KS and AD criteria compare the distance of the flood point between theoretical and empirical frequencies. The closer the distance between the two, the better the model fitting degree. For the measured flood samples, small- and medium-level floods occur more frequently than big floods; the data for big floods at the upper tail of flood frequency distribution are scarce. Therefore, KS and AD may choose the distributions which focus on small- and medium-level floods (especially for the three-parameter distributions, because the fitting multi-parameter model can theoretically achieve good effect). This is different from the principle of information-based criteria, which do not compare the data distance between theoretical and empirical flood frequencies (distributions were selected on the basis of maximum likelihood values). Besides, information-based criteria can avoid over fitting and ensure the selection of the distribution which has a good epitaxial predictability by penalizing the model complexity. Furthermore, the value of the log-likelihood function can also reflect the goodness-of-fit of the probability model to observed points. The optimal distributions selected respectively by the KS and AD are often different. This can be easily seen from the results in Table 7 for Wabash River and Huai River. In contrast, the optimal frequency distributions selected respectively by AIC, BIC and AICc are basically the same. It is generally believed that AIC, BIC, AICc are stable for high flow in different rivers. In order to decide whether a particular distribution fits the high flow, it would be better to use the composite criterion which has the strongest applicability, followed by information-based criteria. The applicability of hypothesis tests is poor.



Table 7. The best fitted frequency distributions in the four rivers.







	
River

	
Hypothesis Tests

	
Information-Based Criteria

	
Composite Criterion




	
KS

	
AD

	
KS, AD

	
Average Number of Parameters

	
AIC

	
BIC

	
AICc

	
AIC, BIC, AICc

	
Average Number of Parameters






	
Kingston at Thames

	
GLO, GEV, GUM

	
GLO, GEV, GUM

	
Glo, Gev (Heavy or Mixed)

	
3

	
GUM, GLO, GEV

	
GUM, LN2, GLO

	
GUM, GLO, LN2

	
Gum, Glo (Mixed or Heavy)

	
2.5

	
Gum (Mixed)




	
Lafayette at Wabash

	
LN3, P3, GEV

	
GLO, LN3, P3

	
Ln3, P3 (Mixed or Light)

	
3

	
WEI, GEV, P3

	
WEI, GEV, P3

	
WEI, GEV, P3

	
Wei, Gev (Light or Mixed)

	
3

	
Wei (Light)




	
Shijiao at Beijiang

	
WEI, GEV, P3

	
WEI, GEV, P3

	
Wei, Gev (Light or Mixed)

	
3

	
GEV, WEI, P3

	
GEV, GUM, WEI

	
GEV, WEI, LN3

	
Gev, Wei (Mixed or Light)

	
3

	
Wei (Light)




	
Lutaizi at Huai

	
GLO, WEI, P3

	
P3, WEI, LN2

	
P3, Wei (Light)

	
3

	
WEI, LN2, P3

	
LN2, WEI, GUM

	
LN2, WEI, P3

	
Ln2, Wei (Mixed or Light)

	
2.5

	
Wei (Light)














5. Conclusions


In this study, eight probability distributions have been used for flood frequency analysis in four selected rivers with different climatic conditions, and their goodness-of-fit has been examined by various statistical methods. By applying all the distributions with different selection criteria for comparison to a composite criterion, the following conclusions are drawn.

	(1)

	
There are different selections of frequency distributions in the four rivers by using hypothesis tests and information-based criteria approaches. Hypothesis tests are more likely to choose complex, parametric models, and information-based criteria prefer to choose simple, effective models. Different selection criteria have no particular tendency toward the tail of the distribution.




	(2)

	
The information-based criteria perform better than hypothesis test methods most of the time when focusing on the goodness of predictions of the extreme upper tails of PDs. The distributions selected by information-based criteria are more likely to be close to true values than the distributions selected by hypothesis test methods in the upper tail of the frequency curve.




	(3)

	
The composite criterion not only can select the optimal distribution, but also can evaluate the error of the estimated value. In order to decide on a particular distribution to fit the high flow, it would be better to use the composite criterion.
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