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Abstract: Information about the hydrological behaviour of a river basin prior to setting up, calibrating
and validating a distributed hydrological model requires extensive datasets that are hardly available
for many parts of the world due to insufficient monitoring networks. In this study, the focus was
on prevailing spatio-temporal patterns of remotely sensed evapotranspiration (ET) that enabled
conclusions to be drawn about the hydrological behaviour and spatial peculiarities of a river basin at
rather high spatial resolution. The prevailing spatio-temporal patterns of ET were identified using
a principal component analysis of a time series of 644 images of MODIS ET covering the Wami River
basin (Tanzania) between the years 2000 and 2013. The time series of the loadings on the principal
components were analysed for seasonality and significant long-term trends. The spatial patterns
of principal component scores were tested for significant correlation with elevations and slopes,
and for differences between different soil texture and land use classes. The results inferred that
the temporal and spatial patterns of ET were related to those of preceding rainfalls. At the end of
the dry season, high ET was maintained only in areas of shallow groundwater and in cloud forest
nature reserves. A region of clear reduction of ET in the long-term was related to massive land use
change. The results also confirmed that most soil texture and land use classes differed significantly.
Moreover, ET was exceptionally high in natural forests and loam soil, and very low in bushland
and sandy-loam soil. Clearly, this approach has shown great potential of publicly available remote
sensing data in providing a sound basis for water resources management as well as for distributed
hydrological models in data-scarce river basins at lower latitudes.

Keywords: evapotranspiration; hydrological behaviour; land cover change; MODIS ET; principal
component analysis; shallow groundwater

1. Introduction

A sound understanding of hydrologic cycles of river basins is a crucial part in planning and
managing water resources. Reliable predictions from distributed hydrological models require extensive
datasets for setup, calibration and validation. Usually, time series of discharge and groundwater head
are used to assess hydrological behaviour. However, these time series are often too short, corrupt
and not even available in data-scarce regions. In addition, information provided by a hydrograph
is integrated in space. In contrast, evapotranspiration (ET) data based on multi-temporal remote
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sensing products are now increasingly available for many parts of the world, and hence can be used to
provide extensive information about hydrological behaviour in river basins. ET data comprise a direct
quantification of hydrological fluxes that are second to precipitation, exceeding groundwater recharge
and runoff in many regions of the world. Therefore, sophisticated analysis of remotely sensed ET data
might even enable us to infer spatio-temporally distributed information about boundary conditions
for groundwater, climate, elevations, slopes, soil texture, land use, and long-term trends for single
variables of influence which are of vital importance for management as well as hydrological modelling.
This information may help reduce the number of computational units in a distributed hydrological
model as well as constraining it.

In spite of the fact that ET is at the centre of hydrological processes in river basins, its conventional
measurements or estimations (pan evaporation, lysimeter data, etc.) are not available at the desired
spatial and temporal resolutions. Therefore, remote sensing is the only viable option to map ET
of relatively large areas in a globally consistent and economically feasible manner [1,2]. Remotely
sensed ET data provide only a snapshot of ET at an instance of image acquisition, but repeated
images capture seasonal changes and long-term trends. The recent availability of satellite images
of medium spatio-temporal resolution from the MODerate resolution Imaging Spectroradiometer
(MODIS) imagery program has increased its application potential [3,4]. One of the products of this
imagery program is the MODIS evapotranspiration (MODIS ET) data.

In Africa, and specifically Sub-Saharan Africa, the MODIS ET data has been widely applied [3–10].
In Tanzania particularly, the MODIS ET data has been applied in three river basins including the Wami
River basin [3,9,10]. For example, the data have been applied in the Internal Drainage basin in the
northwest of the Wami River basin to assess the dynamics of Lake Manyara [9]. In that study, Deus and
Gloaguen [9] evaluated the suitability of the MODIS ET by comparing with measured pan ET and found
coefficients of correlation of 0.60 and 0.73 for monthly and annual ET respectively. In the Pangani River
basin in the north of the Wami River basin, the data were used to map ET trends [3]. In that basin,
Kiptala, et al. [3] found that in vegetated land surface, the MODIS ET has a coefficient of spatial correction
of 0.74 when compared with monthly ET derived from the surface energy balance procedure. In the Wami
River basin, the data have also been used to assess the seasonal variation of ET [10]. These examples
demonstrate that the MODIS ET data has a great potential for hydrological studies in this region.

Interpreting a long time series with high spatio-temporal variability is not a trivial task [11–13].
Exploratory data analysis using multivariate statistical techniques for dimensionality reduction,
for example principal component analysis (PCA) have been used in various water-related
studies [14–23]. In remote sensing studies, methods such as minimum noise fraction (MNF) and
PCA have been applied for dimensionality reduction, pattern recognition, land cover change detection,
land cover characterization, image transformation, image classification, and image fusion [24–32].
In this study, PCA was used for dimensionality reduction because it generates higher signal-to-noise
ratio than MNF when mixed pixels are used (i.e., a mixed pixel maps several different ground
objects) [23,33]. This inconvenience of different neighbouring physical areas being mapped onto
the same pixel is common in MODIS data because of the whiskbroom design and the observation
geometry of the MODIS instrument, and spatial uncertainty in the registration of images [34]. Moreover,
Xavier et al. [35] also argue that PCA is able to reveal interannual and non-periodical signals such as
long-term trend, short-term trend, and seasonal variation in the time series of remotely sensed data.

In some studies, remote sensing data have been primarily used to assess spatial patterns of variables
like land cover [28,30], that could then be inputted directly into hydrological models. This study followed
a different approach. An extensive dataset of multi-temporal images of ET was systematically analysed
to extract as much information as possible about features that help to better understand hydrological
processes in a data-scarce region. For example, enhanced ET during long dry periods might indicate
regions of extensive irrigation of crops or shallow groundwater being available for plant roots, long-term
shifts of ET patterns could reflect major land use changes, etc. Thus, the focus of the analysis was
on spatial patterns during certain boundary conditions, or even on changes of spatial patterns. This
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approach exactly aims at making maximum use of the potential of remote sensing data rather than
aiming at calibration or validation of remote sensing data in order to come up with absolute values.
Once this information has been compiled, it can extend the basis for sound water resources researches as
well as constraining respective spatially distributed hydrological models right from the beginning.

The layout of the rest of the paper is as follows: Section 2 introduces the study area, data used,
applied principal component analysis and statistical tests. Section 3 presents the results. Section 4
discusses the main findings. Finally, Section 5 offers an outlook on future studies.

2. Material and Methods

2.1. Study Area

The study region is the Wami River basin, located between 5◦00′–7◦27′ S and 36◦00′–39◦00′ E
in east-central Tanzania (Figure 1). It has an area of approximately 41,170 km2 and its elevation
ranges from 0 to 2360 m a.s.l. (Figure 1). The river basin is separated into two major parts by the
Eastern Arc Mountains (EAMs) which comprise the Rubeho, Ukaguru, Nguru, and Nguu mountain
ranges (Figure 1). The geology comprises diverse lithologies derived from cratonic granitoids of the
Precambrian age in the west, highly metamorphosed rocks of the Orogenic belts in the central and
Neogene deposits in the eastern parts [10]. The river basin has been affected by faults, causing terrace
and cascade flows at the western boundary of the coastal plain [10].
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Model Intercomparison Project (ISI-MIP) databases, respectively). 

The topographic slopes are much steeper in the EAMs compared to other parts of the river basin 
and the slope angles range between 0° and 27° (Figure 2a). The predominant soil texture is loam and 
sandy-clay-loam which constitute 38% and 41% of the river basin area respectively (Figure 2b) [36]. 
The predominant land use classes are bushland (savannah), woodland (deciduous trees), grassland, 
ranch (savannah grassland), cropland (small-scale farming), irrigation areas, and natural forests 
(evergreen trees). Bushland, woodland and grassland cover 23%, 44%, and 20% of the basin area 
respectively [37] (Figure 2c). Ranch, cropland and irrigation areas cover about 10%. Natural forests 
which are predominantly located along the EAMs cover about 3%. The area of the EAMs is a globally 
important eco-region [38,39] and one of the world’s hotspots of biological diversity [40,41]. Madoffe 
et al. [42] reported that in the year 1900 there was three times the amount of natural forest cover 
compared to the 2000s. In order to reduce further losses of biodiversity, logging was banned in the 
EAMs in the mid-1980s and 1990s and forest boundaries were restored in most reserves [42]. Other 
activities such as agriculture development, fuel wood collection, and charcoal burning were also 
prohibited in the protected areas. The river basin comprises the Saadani National park which is also 
very important for the downstream ecosystem. 

Figure 1. The Wami River basin (elevation, rainfall stations and grid points from Shuttle Radar
Topography Mission (SRTM), Tanzania Meteorological Agency (TMA) and Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP) databases, respectively).

The topographic slopes are much steeper in the EAMs compared to other parts of the river
basin and the slope angles range between 0◦ and 27◦ (Figure 2a). The predominant soil texture
is loam and sandy-clay-loam which constitute 38% and 41% of the river basin area respectively
(Figure 2b) [36]. The predominant land use classes are bushland (savannah), woodland (deciduous
trees), grassland, ranch (savannah grassland), cropland (small-scale farming), irrigation areas, and
natural forests (evergreen trees). Bushland, woodland and grassland cover 23%, 44%, and 20% of the
basin area respectively [37] (Figure 2c). Ranch, cropland and irrigation areas cover about 10%. Natural
forests which are predominantly located along the EAMs cover about 3%. The area of the EAMs is
a globally important eco-region [38,39] and one of the world’s hotspots of biological diversity [40,41].
Madoffe et al. [42] reported that in the year 1900 there was three times the amount of natural forest
cover compared to the 2000s. In order to reduce further losses of biodiversity, logging was banned
in the EAMs in the mid-1980s and 1990s and forest boundaries were restored in most reserves [42].
Other activities such as agriculture development, fuel wood collection, and charcoal burning were also
prohibited in the protected areas. The river basin comprises the Saadani National park which is also
very important for the downstream ecosystem.
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occurs from late October to April (ONDJFMA). The bimodal rainfall comprises the light rainfall 
season between late October and December (OND) and the heavy rainfall season from March to May 
(MAM). The dry period starts in June and ends in September or early October. This is the period with 
no or little rainfall in the river basin from upstream to downstream. During this period the deciduous 
trees shed their leaves, most parts of the river flows are confined within the banks and most flood 
plains dry up. The average MODIS ET is between 353 and 1637 mm/year (2000–2013), with higher ET 
in the downstream area than in the upstream area (Figure 3). 
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(MODIS ET) (2000–2013). 

To some extent the hydrologic cycle of the Wami River basin is affected by domestic water 
supply, irrigation, recently introduced rainwater harvesting agriculture, increasing demand for 
charcoal, fuel wood, and timber [43,44]. The irrigation activities (e.g., sugarcane and rice plantations) 
accounted for an average of 96% of total abstracted water in the year 2010 [45,46].  

2.2. Data 

2.2.1. Land Surface and Meteorological Data 

The land surface data for correlation and difference tests included elevation, slopes, land use, 
and soil texture data from various databases. A digital elevation model of 90 m resolution was 
downloaded from the Shuttle Radar Topography Mission (SRTM) database [47] and was used to 

Figure 2. Topograhic slopes (derived from STRM-90m), soil texture classes of the year 2003 [36] and
land use classes of the year 1997 [37].

The average daily air temperature in the river basin is between 21 and 27 ◦C (2000–2012), and
the average rainfall is between 585 and 1175 mm per annum (2000–2012). The river basin has two
major rainfall zones: A unimodal rainfall zone with one heavy rainfall season in the upstream area
and a bimodal rainfall zone with two rainfall seasons in the downstream area. The unimodal rainfall
occurs from late October to April (ONDJFMA). The bimodal rainfall comprises the light rainfall season
between late October and December (OND) and the heavy rainfall season from March to May (MAM).
The dry period starts in June and ends in September or early October. This is the period with no or
little rainfall in the river basin from upstream to downstream. During this period the deciduous trees
shed their leaves, most parts of the river flows are confined within the banks and most flood plains
dry up. The average MODIS ET is between 353 and 1637 mm/year (2000–2013), with higher ET in the
downstream area than in the upstream area (Figure 3).
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Figure 3. Average annual MODerate resolution Imaging Spectroradiometer evapotranspiration
(MODIS ET) (2000–2013).

To some extent the hydrologic cycle of the Wami River basin is affected by domestic water supply,
irrigation, recently introduced rainwater harvesting agriculture, increasing demand for charcoal,
fuel wood, and timber [43,44]. The irrigation activities (e.g., sugarcane and rice plantations) accounted
for an average of 96% of total abstracted water in the year 2010 [45,46].

2.2. Data

2.2.1. Land Surface and Meteorological Data

The land surface data for correlation and difference tests included elevation, slopes, land use,
and soil texture data from various databases. A digital elevation model of 90 m resolution was
downloaded from the Shuttle Radar Topography Mission (SRTM) database [47] and was used to
classify topography and to compute slopes. Land use classes were derived from land use data
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available at a scale of 1:250,000 from the Africover database [37]. The FAO [37] produced land use
data from digitally enhanced high-resolution LANDSAT TM images acquired mainly in the year 1997.
The soil texture classes of the year 2003 were derived from soil texture data available at a scale of
1:2,000,000 from the FAO-ISRIC [36] database.

The daily rainfall and air temperature data for climate variability tests were obtained from
the Tanzania Meteorological Agency (TMA). To supplement the measured meteorological data,
the reanalysed precipitation and air temperature data from the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP, [48]) database were used.

Data for verifying the inferred hypotheses were depths to static water levels of wells and the
visible satellite imageries. The depths to static water levels of groundwater wells in the Wami River
basin were obtained from the Wami/Ruvu Basin Water Office [49]. The visible surface reflectance
images (MOD09) of 10 June 2001 and 10 June 2012 both at a resolution of 500 m were downloaded
from the United States Geological Survey (USGS) database (http://earthexplorer.usgs.gov/, accessed
on 20 September 2016).

2.2.2. MODIS ET Data and Pre-Processing

ET data used were provided by MODIS. MODIS is an extensive program using the Terra and
Aqua satellite data to provide a comprehensive series of global observations of the earth’s land, oceans,
and atmosphere in the visible and infrared regions of the electromagnetic spectrum [50]. The Terra
earth observation system was launched in the year 1999 and the Aqua earth observation system in the
year 2002 [50]. The Terra satellite goes from north to south across the equator and Aqua passes south
to north over the equator [3].

The MODIS ET was calculated based on the Penman-Monteith equation [51]. The calculation
was done on vegetated regions, but it did not include urban areas, permanent wetlands, and water
bodies [51], thus these areas were also not considered in this study. The input data for the MODIS ET
calculation were other MODIS products and meteorological reanalysis data. The MODIS products
used were the global 1 km Collection 4 MODIS land cover type 2 (MOD12Q1), Collection 4 0.05-degree
Climate Modeling Grid MODIS albedo (MOD43C1), global 1 km MODIS Collection 5 leaf area index
and the fraction of photosynthetic absorbed radiation (MOD15A2) [51]. The global daily meteorological
reanalysis dataset used were air temperature, air pressure, humidity, and solar radiation at a resolution
of 1.00◦ by 1.25◦ from the NASA’s Global Modeling and Assimilation Office [51]. Since the MODIS
ET product is a composite index of a number of remote sensing products of various spatio-temporal
resolutions and some global meteorological data, it was only used as a convenient index that has
a hydrological interpretation. Thus, the focus of this study was not on accuracy of the MODIS ET
rather on its spatio-temporal patterns.

For this study the most recent version (version 5: V005) of 8-day ET data with a spatial resolution
of 1 km (MOD16A2) were used. The dataset was downloaded from the Numerical Terradynamic
Simulation Group database of the research laboratory at the University of Montana in Missoula
(http://www.ntsg.umt.edu/project/mod16, accessed on 17 October 2014) [51]. The downloaded
MOD16A2 dataset contained 644 images between 1 January 2000 and 27 December 2013 (see Video S1
in the Supplementary Materials).

The 644 images of MOD16A2 with their corresponding quality control datasets (MOD16A2 QC)
were extracted from HDF files and converted into the Geotiff format. Then the images were clipped
to the size of the Wami River basin. The 644 MOD16A2 QC images were analysed for cloud cover.
The average cloud cover per MOD16A2 image was 19%. Since clouds rarely repeated in the same
areas, distortion due to clouds was negligibly small. Therefore, the computation of cloud masks was
omitted as heavy fragmentation of the time series would occur if the masks were applied for even small
clouds in every affected image and cumulatively applied to the entire time series [25]. In addition,
MOD16A2 uses daily global reanalysis weather data as part of its input which potentially mitigates the
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effect of missing data due to cloudiness [52]. For the purpose of consistency in the following sections,
the MOD16A2 is referred to as the MODIS ET.

2.3. Analysis of Hydrological Behaviour

2.3.1. Principal Component Analysis

The primary objective of applying PCA to the MODIS ET dataset was to extract the most typical
spatial patterns from the whole dataset of 644 images. The typical spatial patterns could include
long-term prevailing patterns as well as peculiar patterns that were restricted to a single season or
became clearly stronger or weaker in the long-term. Patterns of long-term changes usually point to
possible effects of climate or land use change [29,53].

PCA, also known as the Karhunen-Loeve transformation or empirical orthogonal function [11,19],
is a linear method that can be used to reduce the number of variables down to a few principal components
(PCs) which explain most of the variance of the dataset [54–57]. The PCA approach basically decomposes
a correlation matrix into eigenvectors and eigenvalues. The resulting eigenvectors, i.e., the principal
components are un-correlated and are ordered by the fraction of variance they explain in descending
order [58]. When PCA is applied to a set of time series, the first component usually describes the mean
behaviour of the entire dataset and the following components reflect typical deviations from that mean
behaviour [59].

Prior to the application of PCA, the 644 images of MODIS ET data covering the Wami River
basin were flattened and arranged in matrix X (Equation (1)), where x represents a value of a pixel i
from an image j. The variable n is the number of pixels in the image, thus each column in matrix X
contains all pixels in a single image (48,132 pixels), whereas m is the number of images in the dataset
(644 images).

X =



x11 x12 · · · x1j · · · x1m
x21 x22 · · · x2j · · · x2m

...
...

...
...

...
...

xi1 xi2 · · · xij · · · xim
...

...
...

...
...

...
xn1 xn2 · · · xnj · · · xnm


(1)

Each column in matrix X was normalized to a mean of zero and unit standard deviation using
Equation (2) to obtain matrix Z (Equation (3)), where xj and σj are the column mean and column
standard deviation of matrix X, respectively. Normalization of the matrix prevented images with
extreme conditions from dominating the PCA process.

zij =
xij − xj

σj
(2)

Z =



z11 z12 · · · z1j · · · z1m
z21 z22 · · · z2j · · · z2m

...
...

...
...

...
...

zi1 zi2 · · · zij · · · zim
...

...
...

...
...

...
zn1 zn2 · · · znj · · · znm


(3)

After that, the correlation matrix S (Equation (4)) containing the Pearson correlation coefficients
between each column vector and others in matrix Z was calculated.

S = corr (Z) (4)
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The Python routine numpy.linalg.svd() [60–62] was then used to perform the eigenvalue
decomposition of the correlation matrix S which resulted in eigenvectors U and eigenvalues Λ, where
T stands for transpose (Equation (5)). The eigenvalues are proportional to the fraction of variance
explained by the respective eigenvectors [58].

S = UΛUT (5)

The complete set of typical patterns was determined by multiplying the standardised dataset Z
with the eigenvectors U to obtain the matrix of the principal component scores P (Equation (6)).

P = ZU (6)

Each column vector of matrix P was then transformed to a 2-D pattern, inversely to the procedure
described in Equation (1). Thus, any single principal component reflects only a fraction of the spatial
pattern of a given MODIS ET image that has not been represented by any other principal component.
These spatial patterns were then compared to those of elevation and slope, and also used to check for
significant differences between different soil texture and land use classes in order to determine the
land surface drivers of the hydrological behaviour in the river basin.

The extent to which a spatial pattern depicted by a single principal component plays a role
for a single image of the MODIS ET dataset was quantified by the loadings [14]. Loadings L were
calculated as the Pearson correlation coefficients of the pairwise comparisons of the scores of a single
principal component from matrix P with standardized images from matrix Z (Equation (7)). Therefore,
the spatial pattern of scores of a component was more pronounced on the highest absolute values
of loadings, i.e., the extremes of loadings denoted periods where the respective spatial pattern was
especially important.

L = corr (P, Z) (7)

Because the 644 images of the MODIS ET constituted a time series, their respective loadings on
principal components also constituted time series. Therefore, any single MODIS ET image can then be
reconstructed by adding the scores of the PCs multiplied by their respective loadings.

The time series of loadings on selected PCs were analysed for clear seasonal patterns and long-term
trends. For a more intuitive interpretation of the components, the scores and loadings on the first,
third, and fifth PCs were reversed (multiplied by −1). The sign reversing led to the positive and
negative scores and loadings representing high and low ET respectively. Subsequent analyses used
these reversed PCs. To check for major land use changes, bands 1 (648 nm), 4 (555 nm), and 3 (470 nm)
of the surface reflectance data were mapped as red, green, and blue (RGB) colours respectively to
obtain the visible appearance of the Wami River basin in the years 2001 and 2012.

2.3.2. Trend Tests

The loadings on each PC constituted a time series of 644 points spanning between 1 January 2000
and 27 December 2013 at 8-day intervals. In order to check for temporal patterns of PCs, the
loadings were tested for long-term trends using the pre-whitened Mann–Kendall test and Sen’s
slope [63–66]. The trend-free pre-whitening procedure was used to correct the time series of loadings
for autocorrelation prior to the Mann-Kendall test [66]. The Mann–Kendall test was then used to look
for a significant monotonic trend in a given dataset of loadings and Sen’s slope was used to determine
the magnitude of that trend, assuming that it was linear. For a p value less than or equal to 0.05 we
rejected the null hypothesis of no long-term trend in the time series of loadings.

In order to investigate the effects of atmospheric forcing on the patterns of PCs, the meteorological
effects test was also conducted. Prior to meteorological effects test, the daily rainfall and air temperature
data spanning between the years 2000 and 2012 were converted into 8-day periods to yield the same
temporal resolution as the loadings. The new time series of rainfall and air temperature at the stations
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and grid points were then tested for long-term trends using the pre-whitened Mann-Kendall test and
Sen’s slope [63–66]. For a p value less than or equal to 0.05 we rejected the null hypothesis which stated
that there was no long-term trend in the time series of rainfall or air temperature data.

2.4. Land Surface Drivers of Hydrological Behaviour

2.4.1. Statistical Dependence Test for Metric Data

The relationship between elevations or slopes and individual principal component scores were
tested for significance using Kendall’s rank correlation test [64]. This test is based on the ranks of data
and uses the τ coefficient to measure the statistical dependence. Kendall’s τ takes values between −1
and +1, where a positive τ value indicates a perfect positive relationship between two variables and
a negative τ value an opposing relationship. For a p value less than or equal to 0.05 we rejected the
null hypothesis which stated that Kendall’s τ between principal component scores and elevations or
slopes was equal to zero.

2.4.2. Statistical Difference Test for Nominal Data

The Kruskal-Wallis [67] and Wilcoxon [68] tests were used to check for significant differences of
the scores of PCs for different soil texture and land use classes. Prior to the tests, all pixels of scores
of a component in question were sorted and grouped in accordance with the soil texture or land use
classes. Firstly, the Kruskal-Wallis test was used to detect differences in the scores between at least
two of all soil texture or land use classes. When that was the case, the Wilcoxon post-hoc test was
subsequently applied for pairwise comparison of scores of soil texture or land use classes. For both
tests a p value less than or equal to 0.05 was used for rejection of the null hypothesis of no differences
between different classes.

3. Results

3.1. Trends in Meteorological Data

The meteorological trend tests between the years 2000 and 2012 showed that, the p values for
rainfall ranged between 0.31 and 0.97 (>0.05), and the p values for air temperature ranged between
0.08 and 0.56 (>0.05). Therefore, long-term trends of rainfall and air temperature were not significant
at the 5% level. Thus, any trend found for individual PC necessarily had to be ascribed to different
causes. However, these findings did not necessarily rule out the possibility that individual extreme
meteorological events could have caused major effects on some ET patterns.

3.2. Principal Components

This study did not aim at a full understanding of the spatio-temporal patterns of ET. Instead,
it aimed at extracting only the most dominant and peculiar information from 644 images of the MODIS
ET dataset. Therefore, only PCs that reflected meaningful effects were considered. The study also
followed the assumption that each single PC might reflect more than one effect or process that affect
the hydrologic cycle of the river basin, partly only during very rare and extreme conditions. Thus,
only the first five out of 644 PCs were selected based on the interpretability of their spatio-temporal
patterns with respect to physical effects or processes. These first five PCs explained 81.2% of the
variance in the dataset (Table 1).
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Table 1. Eigenvalues, fractions of explained variance and cumulative proportions of the first five
principal components (PCs).

Principal
Component Eigenvalue Proportion of Explained

Variance (%)
Cumulative Proportion

(%)

1 405.9 63.0 63.0
2 55.8 8.7 71.7
3 36.5 5.7 77.4
4 13.5 2.1 79.5
5 10.9 1.7 81.2

Time periods on loadings were identified where the spatial pattern represented by the scores of
an individual principal component played a major role (see Videos S2 to S6 in the Supplementary
Materials). Correspondingly, a trend in the time series of loadings indicated whether the role of the
respective spatial pattern increased or decreased in the long-term. Because data were normalized prior
to the PCA, zero component scores represented average scores, positive scores denoted a higher than
average markedness of the respective effect, and negative scores a lower than average markedness.
However, what was considered an effect could equally be considered an inverse effect with a reversed
sign (see Videos S3 and S4 in the Supplementary Materials). For example, a strong reduction in ET in
the dry period compared to the mean pattern is necessarily inverse to a strong increase in ET in the
wet period compared to the mean pattern.

The following sections present results of the five selected scores and loadings on PCs.
The differences in the scores of PCs for different soil texture and land use classes are also presented.
The long-term trends of loadings on these PCs are presented in Table 2. The results for relationships
between scores and elevations or slopes are presented in Table 3.

Table 2. Trend analysis of the time series of PC loadings at 5% level of significance.

Principal Component Mann-Kendall Trend Test
(Two-Tailed p Value)

Sen’s Slope (Change of
Loading per Annum)

1 0.43 0.00
2 0.00 +0.01
3 0.00 +0.01
4 0.03 0.00
5 0.00 +0.02

Table 3. Kendall’s rank correlation between the scores of the principal components and elevations
or slopes.

Principal
Component

Elevations Slopes

τ p Value τ p Value

1 −0.26 0.00 +0.16 0.00
2 +0.24 0.00 +0.04 0.00
3 +0.30 0.00 +0.24 0.00
4 −0.21 0.00 −0.13 0.00
5 −0.16 0.00 −0.11 0.00

3.2.1. First Principal Component

The first principal component (PC1) covered the largest fraction of explained variance (63.0%)
(Table 1). The loadings on PC1 were usually close to 0.9 throughout the period, except for the first
months of the year and did not show any significant trend (Figure 4a, Table 2). The map of average
ET throughout the whole period and the scores of PC1 were nearly identical (cf. Figures 3 and 4b)
with a coefficient of spatial correlation equal to 99.9%. Consequently, higher-order PCs depict typical
deviations from PC1 during respective specific conditions.
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The scores of PC1 divided the river basin into two parts which showed high and low ET in
the downstream and upstream areas respectively (Figure 4b). In addition, natural forests exhibited
relatively high scores indicative of systematically high ET (cf. Figures 2c and 4b). The Wami river
riparian zone showed relatively high ET in the midstream and downstream areas, but it showed low
ET in the upstream area (Figure 4b).

The scores of PC1 showed a significant negative correlation with elevations, and a significant
positive correlation with slopes (Table 3). The scores of PC1 also exhibited significant differences
among all soil texture classes, but loam and sandy-loam soils exhibited the highest and lowest medians
respectively (Figure 4c). In addition, clay and sandy-clay-loam soils exhibited the narrowest and widest
distributions of scores respectively. The scores between irrigation areas and woodland (p value = 0.15)
as well as between bushland and ranch areas (p value = 0.14) did not differ significantly, but the
remaining land use classes exhibited significant differences (Figure 4d). Natural forests exhibited
the highest median, whereas bushland and ranch areas exhibited the lowest median of the scores
of PC1. However, cropland and ranch areas exhibited the widest and narrowest distributions of
scores respectively.
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3.2.2. Second Principal Component

The second principal component (PC2) covered 8.7% of explained variance (Table 1). The loadings
on PC2 showed an increasing trend (Table 2), but there were also single extreme events in the years
2002, 2006, and 2007 (Figure 5a). The time series of loadings exhibited a clear seasonal pattern with the
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highest loadings (about 0.6) at the end of the annual dry season in September and October (Figure 5a).
Negative peaks of loadings occurred in March but did not undercut −0.4. This illustrates that the
spatial pattern of PC2 predominantly captured the September–October period as compared to March.

Low scores, i.e., lower than average ET in the September-October period were found in most
lowland areas in the downstream part of the river basin (cf. Figures 1 and 5b). Higher than average ET
in this period were found in the loam soil region in the downstream part, and in the sandy-clay-loam
soil region in the western and north-western parts of the river basin (cf. Figures 2b and 5b). In these
regions the depth to static water levels was less or equal to 10 m below the ground (Figure 5b). By using
the inverse proportionality, higher and lower than average ET in the September–October period might
correspond to static water depths of less or equal to 10 m and greater or equal to 23 m below the
ground respectively.

Natural forest areas clearly stand out as sharply delineated regions of high scores, i.e., higher
than average ET in the September–October period (cf. Figures 2c and 5b). Groundwater data were
not available for these regions in the mountainous region of the EAMs. However, a shallow depth to
groundwater is not very likely here.
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Figure 5. Time series of the loadings on the second principal component (PC2) (a). Map of the scores
of PC2, natural forest areas and depths to static water levels (DSWL) measured below the ground
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distributions at the 5% level of significance are marked with the same small letter.

In the September–October period, the scores of PC2 significantly increased with both elevations
and slopes, although the relationship was stronger for elevations than for slopes (Table 3). Unlike other
soil texture classes, the scores of PC2 for sandy-clay-loam and loam soils did not differ significantly
(Figure 5c). However, sandy-loam and clay soils exhibited the highest and lowest medians respectively.
The narrowest and widest distributions of the scores were exhibited by clay-loam and loam soils
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respectively. Among the land use classes, only the scores of PC2 for bushland and irrigation areas did
not differ significantly. Moreover, natural forests and woodland exhibited exceptionally the highest
and lowest medians respectively (Figure 5d). Nevertheless, natural forest and irrigation areas exhibited
the widest and narrowest distributions of scores of PC2 respectively.

3.2.3. Third Principal Component

The third principal component (PC3) explained 5.7% of the variance (Table 1). Figure 6a shows
that the loadings on PC3 exhibited a clear seasonal pattern with highly positive peaks (about 0.6) in the
January–February period and minor peaks in the August–September period. Moderate negative peaks
(about −0.4) occurred in the May–June period and in the October–November period. The loadings
showed a significant increase and individual strong events in the January–February periods in the
years 2010, 2011, and 2013 (Figure 6a, Table 2).

High scores of PC3 indicated higher than average ET in the upstream area of the river basin
during the January–February period (Figure 6b). In contrast, ET was relatively low in the downstream
area and in the ranch region in the upstream area during this period (cf. Figures 2c and 6b). Similarly
as for the previous PCs natural forests exhibited relatively high ET during this period.

The scores of PC3 correlated equally well positively with both elevations and slopes (Table 3).
There were significant differences between all soil texture classes, but sandy-loam and clay-loam soils
exhibited the highest and lowest medians respectively (Figure 6c). However, sandy-loam and clay have
the widest and narrowest distributions of scores respectively. The scores of PC3 for land use classes
showed that, bushland and woodland were similar but the remaining classes differed significantly.
The highest and lowest medians were exhibited by natural forest and irrigation areas (Figure 6d).
Nevertheless, bushland and woodland exhibited the widest distributions, whereas irrigation areas
exhibited the narrowest distribution.

Water 2017, 9, 333  12 of 24 

 

The scores of PC3 correlated equally well positively with both elevations and slopes (Table 3). 
There were significant differences between all soil texture classes, but sandy-loam and clay-loam soils 
exhibited the highest and lowest medians respectively (Figure 6c). However, sandy-loam and clay 
have the widest and narrowest distributions of scores respectively. The scores of PC3 for land use 
classes showed that, bushland and woodland were similar but the remaining classes differed 
significantly. The highest and lowest medians were exhibited by natural forest and irrigation areas 
(Figure 6d). Nevertheless, bushland and woodland exhibited the widest distributions, whereas 
irrigation areas exhibited the narrowest distribution. 

 
Figure 6. Time series of the loadings on the third principal component (PC3) (a). Map of the scores of 
PC3 and natural forest areas (b). Quartiles of the scores of PC3 for different soil texture (c) and land 
use (d) classes, similar score distributions at the 5% level of significance are marked with the same 
small letter. 

3.2.4. Fourth Principal Component 

The fourth principal component (PC4) covered 2.1% of the variance (Table 1). In contrast to the 
first three principal components, the loadings on PC4 exhibited only weak seasonal patterns with 
maximum values between October and February, but with pronounced short-term fluctuations 
(Figure 7a). The loadings exhibited a significant increase with extreme positive values in the end of 
January 2007 and extreme negative values in March 2013 (Figure 7a, Table 2). 

The scores of PC4 showed a remarkably spatial pattern, clearly independent of the topography 
(cf. Figures 1, 2a, and 7b). The scores divided the river basin into three nearly homogeneous parts 
with high ET in the upstream and downstream areas, and low ET in the midstream area, west of the 
mountainous regions.  

The scores of PC4 negatively correlated with both elevations and slopes (Table 3). However, the 
relationship was stronger for elevations than for slopes. The scores of PC4 also showed that all soil 
texture classes exhibited different distributions significantly. Sandy-loam and loam soils exhibited 
the highest and lowest medians respectively (Figure 7c). However, the widest distribution of scores 
was exhibited by sandy-clay-loam, whereas the narrowest distribution was exhibited by clay-loam. 
For land use, all classes were significantly different except for bushland and cropland. The land use 
classes which exhibited the highest and lowest medians of the scores of PC4 were bushland and ranch 

Figure 6. Time series of the loadings on the third principal component (PC3) (a). Map of the scores of
PC3 and natural forest areas (b). Quartiles of the scores of PC3 for different soil texture (c) and land
use (d) classes, similar score distributions at the 5% level of significance are marked with the same
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3.2.4. Fourth Principal Component

The fourth principal component (PC4) covered 2.1% of the variance (Table 1). In contrast to
the first three principal components, the loadings on PC4 exhibited only weak seasonal patterns
with maximum values between October and February, but with pronounced short-term fluctuations
(Figure 7a). The loadings exhibited a significant increase with extreme positive values in the end of
January 2007 and extreme negative values in March 2013 (Figure 7a, Table 2).

The scores of PC4 showed a remarkably spatial pattern, clearly independent of the topography
(cf. Figures 1, 2a and 7b). The scores divided the river basin into three nearly homogeneous parts
with high ET in the upstream and downstream areas, and low ET in the midstream area, west of the
mountainous regions.

The scores of PC4 negatively correlated with both elevations and slopes (Table 3). However,
the relationship was stronger for elevations than for slopes. The scores of PC4 also showed that all
soil texture classes exhibited different distributions significantly. Sandy-loam and loam soils exhibited
the highest and lowest medians respectively (Figure 7c). However, the widest distribution of scores
was exhibited by sandy-clay-loam, whereas the narrowest distribution was exhibited by clay-loam.
For land use, all classes were significantly different except for bushland and cropland. The land use
classes which exhibited the highest and lowest medians of the scores of PC4 were bushland and ranch
areas respectively (Figure 7d). Irrigation areas exhibited the narrowest distribution of scores, but
woodland and bushland exhibited the widest distributions of scores (Figure 7d).
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3.2.5. Fifth Principal Component

The fifth principal component (PC5) covered 1.7% of the variance (Table 1). The time series
of loadings on PC5 exhibited substantial short-term variation and lacked a clear seasonal pattern
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(Figure 8a). However, they exhibited the clearest long-term trend among the first five components
with an average increase of 2% per annum (Table 2).

High scores were found in the downstream parts of the river basin and in the lowlands east and
south of the EAMs (cf. Figures 1 and 8b). In contrast, consistently low scores occurred especially in the
region north and west of the EAMs, except for regions of natural forests that exhibited relatively high
scores irrespective of their location in the river basin (cf. Figures 2c and 8b).

Both elevations and slopes were significantly correlated with the scores of PC5 (Table 3). We
also found significant differences among the scores of PC5 for all soil texture classes, but the highest
and lowest medians were exhibited by clay and loam soils respectively (Figure 8c). However, loam
soil also has the widest distribution of scores, whereas clay has the narrowest distribution of scores.
For land use, classes with similar patterns of scores were cropland and grassland, but other classes
were significantly different (Figure 8d). The highest and lowest medians of the scores of PC5 for land
use classes were exhibited by natural forest and ranch areas respectively. But the widest distributions
of scores were exhibited by natural forest and woodland, whereas the narrowest distributions were
found in irrigation and ranch areas.

Figure 9 shows the land covers in the Wami River basin in the years 2001 and 2012. The images
show that in the period between the years 2001 and 2012, forests diminished in the north of the river
basin and along the EAMs (cf. Figures 1, 2c, 8b and 9). However, natural forests appeared to be the
same during that period (cf. Figures 8b and 9). Moreover, slight changes of land cover in the west of
the river basin were also found.Water 2017, 9, 333  14 of 24 

 

 
Figure 8. Time series of the loadings on the fifth principal component (PC5) (a). Map of the scores of 
PC5 and natural forest areas (b). Quartiles of the scores of PC5 for different soil texture (c) and land 
use (d) classes, similar score distributions at the 5% level of significance are marked with the same 
small letter. 

 

Figure 9. Satellite imageries for the years 2001 (a) and 2012 (b) mapped as red, green, and blue (RGB)  
(648, 555, and 470 nm). The deep and light green colours represent dense and sparse forests 
respectively, other colours represent scattered vegetation (not discernible at 500 m resolution). 

4. Discussion 

4.1. General Approach 

The objective of this study was to infer information about hydrological behaviour in the Wami 
River basin as a basis for sustainable water resources and land use management as well as 
constraining subsequent hydrological models in a data-scarce environment. Thus, contrary to 
numerous other applications of the PCA approach, here the basic idea was not to assign processes or 
specific variables of influence to the PCs, but to identify prevailing and peculiar spatio-temporal 
patterns that were restricted to certain specific boundary conditions. 

Correspondingly, this study focused on the spatial patterns of ET and how these changed during 
specific boundary conditions rather than aimed at a quantitative assessment of water fluxes. The 
latter is known to be prone to substantial uncertainties and to require substantial efforts of ground 
truth measurements. In contrast, the approach followed in this study makes maximum use of the 
potential of remote sensing data, i.e., grasping the spatial patterns rather than giving absolute 
numbers. However, there are still some sources of uncertainty that need to be considered. 

Figure 8. Time series of the loadings on the fifth principal component (PC5) (a). Map of the scores of
PC5 and natural forest areas (b). Quartiles of the scores of PC5 for different soil texture (c) and land
use (d) classes, similar score distributions at the 5% level of significance are marked with the same
small letter.



Water 2017, 9, 333 15 of 25

Water 2017, 9, 333  14 of 24 

 

 
Figure 8. Time series of the loadings on the fifth principal component (PC5) (a). Map of the scores of 
PC5 and natural forest areas (b). Quartiles of the scores of PC5 for different soil texture (c) and land 
use (d) classes, similar score distributions at the 5% level of significance are marked with the same 
small letter. 

 

Figure 9. Satellite imageries for the years 2001 (a) and 2012 (b) mapped as red, green, and blue (RGB)  
(648, 555, and 470 nm). The deep and light green colours represent dense and sparse forests 
respectively, other colours represent scattered vegetation (not discernible at 500 m resolution). 

4. Discussion 

4.1. General Approach 

The objective of this study was to infer information about hydrological behaviour in the Wami 
River basin as a basis for sustainable water resources and land use management as well as 
constraining subsequent hydrological models in a data-scarce environment. Thus, contrary to 
numerous other applications of the PCA approach, here the basic idea was not to assign processes or 
specific variables of influence to the PCs, but to identify prevailing and peculiar spatio-temporal 
patterns that were restricted to certain specific boundary conditions. 

Correspondingly, this study focused on the spatial patterns of ET and how these changed during 
specific boundary conditions rather than aimed at a quantitative assessment of water fluxes. The 
latter is known to be prone to substantial uncertainties and to require substantial efforts of ground 
truth measurements. In contrast, the approach followed in this study makes maximum use of the 
potential of remote sensing data, i.e., grasping the spatial patterns rather than giving absolute 
numbers. However, there are still some sources of uncertainty that need to be considered. 

Figure 9. Satellite imageries for the years 2001 (a) and 2012 (b) mapped as red, green, and blue (RGB)
(648, 555, and 470 nm). The deep and light green colours represent dense and sparse forests respectively,
other colours represent scattered vegetation (not discernible at 500 m resolution).

4. Discussion

4.1. General Approach

The objective of this study was to infer information about hydrological behaviour in the Wami
River basin as a basis for sustainable water resources and land use management as well as constraining
subsequent hydrological models in a data-scarce environment. Thus, contrary to numerous other
applications of the PCA approach, here the basic idea was not to assign processes or specific variables
of influence to the PCs, but to identify prevailing and peculiar spatio-temporal patterns that were
restricted to certain specific boundary conditions.

Correspondingly, this study focused on the spatial patterns of ET and how these changed during
specific boundary conditions rather than aimed at a quantitative assessment of water fluxes. The latter
is known to be prone to substantial uncertainties and to require substantial efforts of ground truth
measurements. In contrast, the approach followed in this study makes maximum use of the potential of
remote sensing data, i.e., grasping the spatial patterns rather than giving absolute numbers. However,
there are still some sources of uncertainty that need to be considered.

The extent of meaningful physical information extracted from a PCA of remotely sensed ET can
vary with the resolution (i.e., <1 km) and the type of remotely sensed data used. Yang et al. [69]
illustrated that different remote sensing ET products use different formulae and assumptions, that
result in different estimates of ET. Uncertainties in remote sensing ET estimates also depend on
geographic location that affects climate (i.e., cloud cover, solar radiation intensity, etc.). Since this study
was conducted in the equatorial region in a tropical climate (i.e., high solar radiation intensity, etc.)
and focused on relative spatial patterns rather than on absolute ET values, the uncertainties of the
MODIS ET were considered minimal. In addition, systematic errors of remote sensing data have little
impact on long-term anomalies [5].

Neither rainfall nor air temperature exhibited a significant trend during the study period.
Consequently, meteorological effects between the years 2000 and 2012 are considered to be negligible.
Thus, significant trends in the scores of individual PCs offer some evidence for systematic shifts in
land cover. The following sections discuss the inferences on hydrological behaviour and possible land
surface drivers.

4.2. First Principal Component: Mean Behaviour of ET

All 644 images were strongly positively correlated with PC1 which did not change in the long-term.
In fact, PC1 often expresses the most cumulative information from the dataset [30]. The similarity
between the map of average ET and the scores of PC1 suggest that PC1 mainly reflects the mean
behaviour of ET in the river basin. Similarly, PCA of time series often yields a first component that
depicts the mean behaviour [17,18,59,70]. This component explained 63.0% of the variance of spatial
and temporal patterns of ET, thus it represents the most prevailing conditions in the river basin.
The respective spatial pattern of ET likely reflects the spatial patterns of vegetation type and density
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in the river basin. For example, the downstream part of the river basin exhibited higher ET than the
upstream part. In fact, Figure 9 attests higher canopy density in the former than in the latter.

The negative correlation for the scores of PC1 against elevations indicated higher water availability
for ET in low elevations than in high elevations. This is due to higher rainfall in low elevations in
the downstream area than in high elevations in the upstream area. It is because the EAMs prevent
the influence of Indian Ocean cyclonic rains from reaching the upstream area. Hence, heavier rainfall
is encountered in the downstream area than in the upstream area [45,71]. The significant, but small
positive correlation for the scores of PC1 against slopes was caused by the relatively high ET in the
natural forest along the EAMs, where steeper slopes are found.

All soil texture classes differ significantly with respect to the scores of PC1. This could partly be
ascribed directly to the different water retention capacities of different soils. On the other hand, land
cover and correspondingly vegetation density are also related to soil texture, which has an indirect
effect on ET. Soil texture classes are not randomly distributed within the catchment, thus different ET
from different classes might partly be related to the spatial pattern of rainfall as well. The similarity of
ET between the irrigation areas and woodland suggests that due to irrigation activities, the rice and
sugar cane plantations evaporate and transpire as much water as woodland which has deeper roots.
Correspondingly, the similarity between bushland and the ranch region could be due to the fact that
bushes remain at the ranch even after grazing and may transpire similarly to bushland. The widest
distributions of ET in loam, sandy-clay-loam, cropland, and bushland areas were caused by scattering
of these soil texture and land use classes across the river basin, thus they exhibited both low and high
ET in the upstream and downstream areas respectively (Figures 2 and 4). However, the narrowest
distributions of ET in clay, clay-loam, irrigation and ranch areas were caused by localized nature of
these soil texture and land use classes, thus they exhibited localized high and low ET in the upstream
and downstream areas respectively.

4.3. Second Principal Component: Dry Season Effects

The clear seasonal patterns shown by the loadings on PC2 in September–October and March
represented the end of the dry period and the middle of the major rainy season (wet period) respectively.
In contrast, the significant trend of the loadings on PC2 seemed primarily to be due to single, extreme
dry events in the years 2002, 2006, and 2007 which led to relatively low ET across the river basin.
Thus, we assume that the trend did not really reflect a continuous increase over time.

The spatial pattern of the scores of PC2 exhibited enhanced ET at the end of the dry period in the
western part, north-western part and further downstream. In these regions the depths to static water
levels in the wells were less or equal to 10 m below the ground [10,49]. The most plausible reason
is that, plants have access to shallow groundwater that is related to geological structures in these
regions. In the western part of the river basin, granites and migmatites are abundant, where the graben
and horst formed by geological faults striking NNE-SSW are found [10]. In this area, groundwater is
mainly restricted to the weathered and fractured part. The faults increase the water-holding capacity
of granitic aquifers. In the north-western part, the graben and horst formed by NNE-SSE-striking
faults act as the main groundwater reservoir [10]. Further downstream, composite metamorphic
crust domains and granulites, gneisses and migmatites are found, but the geological fault is not well
developed. Correspondingly, the aquifers are not as productive as in the western part of the river
basin [10].

Apart from this, clearly higher than average ET that was detected at the end of the dry season
in natural forest areas at high elevations, cannot be related to shallow groundwater. These areas
clearly stood out compared to all other vegetation types, especially with respect to exceptionally sharp
boundaries to adjacent areas with different vegetation cover. It is remarkable that this holds for PC1,
PC3, and PC5 as well. In the case of PC2, that has extended ET even at the end of the dry season, it is
due to canopies of evergreen forest intercepting nightly fog [72]. Trees in these cloud forests do not
shed leaves even in the dry period.
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Usually, during the dry season most of the forest plants shed their leaves due to the decrease of
soil moisture. However, in the upstream area, vegetation in the areas with water table close to the
surface exhibited relatively high ET as compared to the downstream area. That explains the significant
positive correlations of scores of PC2 against both elevations and slopes.

Significantly differing scores for different soil texture classes except for loam and sandy-clay-loam
give some evidence for different water retention properties that play a role especially during the dry
season. The similar ET between loam and sandy-clay-loam is due to shallow groundwater that is
largely found in the upstream area where the two soil texture classes exist. No significant differences in
ET were found between irrigation areas and bushland. Both land cover classes exhibited low ET at the
end of the dry period. This might be the case just by coincidence. The bushland ET was presumably
restricted by low water availability, whereas in the irrigation areas this is the crop harvesting period
(end of June–end of September). The widest distributions of ET in loam, sandy-clay-loam and natural
forest areas were caused by the north-south spread of loam and natural forest as well as the presence
of sandy-clay-loam in the upstream and downstream areas, thus they exhibited both high and low ET
respectively (Figures 2 and 5). In contrast, the narrowest distributions of ET in clay and ranch areas
were caused by their localized presence in the downstream and upstream areas respectively.

4.4. Third Principal Component: General Spatial Patterns of Rainfall

The highest loadings on PC3 in the January–February, May–June, and October–November periods
coincided with the peaks of the ONDJFMA, MAM, and OND rainfall seasons. Thus, the loadings on
PC3 reflected primarily ET effects due to rainfall distribution in the river basin. The spatial pattern
of PC3 shows that the rainy period of January–February caused higher ET in the upstream area
due to the unimodal (ONDJFMA) rainfall whereas in the downstream areas there was no rainfall
in that period. As a result, the scores of PC3 have positive correlations against both elevations and
slopes in the January–February period. The observed significant trend of the loadings on PC3 was
caused by relatively heavier January–February rainfall events in the years 2010, 2011, and 2013 in
the upstream area. Thus, we assume that the trend did not really reflect a continuous increase. In the
ranch region low ET might be due to late vegetation sprout. The natural forests in the downstream
area exhibited relatively high ET in the January–February period when there were no heavy rainfall
events because the plants in the EAMs are cloud forests [72].

The scores of PC3 for different soil texture classes differed significantly. Despite the shallow
groundwater (see Section 4.3) and rainfall effects during the peak of ONDJFMA, larger water holding
capacity of loam soil in the upstream area contributed to the availability of more water than the sandy
soil in the downstream area. In addition, different vegetation cover played different roles. The similarity
of scores of PC3 between bushland and woodland in the January–February period may be caused by
vegetation sprout of the deciduous trees which shed their leaves in the June–September/early October
period in the woodland. Thus, during the sprout period the rate of transpiration from bushland and
woodland may not be very different.

4.5. Fourth Principal Component: Single Major Rainstorms

The spatial pattern of PC4 differs remarkably from the other four PCs because it is not clearly
related to any topographical structure or vegetation pattern. The transition zone between positive and
negative scores west of the EAMs, stretching in the nearly perfect north-south direction (Figure 7b),
provides strong evidence for atmospheric forcing. In addition, the lowest values encountered west of
the EAMs, but not in the further upstream areas reflected a lee effect with respect to moisture transport
from the east and the west. The time series of loadings on this component exhibited less clear seasonal
patterns compared to those of PC3. High loadings on PC4 were restricted to single, relatively short
periods, especially at the end of January 2007 and in March 2013 (Figure 7a). Thus, this component
seems to reflect deviations from the usual spatial pattern of rainfall and subsequent ET during single
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periods. Since the focus of the study is on the prevailing effects or processes and not on single extreme
events, we will discuss the event at the end of January 2007 only briefly, as a major extreme event.

At the end of January 2007 the relatively high ET in the upstream and downstream areas is
ascribed to the preceding heavy rainfall in OND, 2006. The OND, 2006 rainfall caused flooding in
most of eastern Tanzania. It was related to exceptionally high sea surface temperature in the western
Indian Ocean and Indo-Pacific El Nino effects [73]. That was the largest extreme rainfall event since
OND, 1997. The relatively lower ET in the midstream area could be caused by the lee effect of the
EAMs with respect to strong fluxes of humid easterlies and weak fluxes of low level humid westerlies
from the southern Congo basin [71,74], that differs due to different air humidity transport velocities.
The negative correlation for the scores of PC4 against elevations and slopes might be caused by
relatively low ET in the midstream region, where elevations and slopes are the highest in the EAMs.

4.6. Fifth Principal Component: Long-Term Trend of Land Use

Although PC5 explained less variance than any of the first four PCs, the loadings on PC5 exhibited
the strongest long-term trend, including a distinctive, almost stepwise increase in 2010. Because
neither rainfall nor temperature exhibited corresponding trends, land use change was considered the
most probable cause. In fact, often components of lower rank order are associated with long-term
changes [29,53]. Combining the trend of the loadings with the spatial pattern of the component scores,
the results pointed to deteriorating land cover in the west and north of the EAMs. The visible satellite
imageries also evinced diminishing forest cover in the north of the river basin and along the EAMs as
compared to other areas. Positive scores further downstream, in the lowlands east of the EAMs and in
the south of the river basin can be interpreted as reflecting areas that did not exhibit any trend at all.
This part might have been intensively used already before the start of the MODIS ET dataset.

Schaafsma et al. [41] found that commercial charcoal production is still practiced in the lower
woodland areas of the EAMs (with some production centres within the boundaries of the EAM blocks),
thus causing degradation of woodland in the EAMs. FBD [75] also reported that the EAMs exhibit
rapid land cover change, having lost 11% of their primary forests and 41% of their woodland vegetation
since 1975. This conversion is driven by clearance for farmland, as well as by increasing demand for
timber and fuel wood [40]. This supports the argument that land cover change was caused by the
deforestation of woodland vegetation.

Despite being in the same area, some natural forests did not exhibit deteriorating land cover
because they are within the conservation areas [42,76,77], thus they were not affected by anthropogenic
activities. Currently, the vast majority of natural forests in the EAMs are under different forms of
legal protection, with most falling within the category of “National Forest Reserves” managed for
protection of water resources, soil erosion prevention, and biodiversity conservation [78–80]. However,
Tabor et al. [81] argued that forest loss was still happening in the protected areas, though to a far lower
extent than outside protected areas.

Correlation of scores of PC5 with elevations and slopes were significant, but rather weak, thus
will not be discussed in more detail. The similarity of scores of PC5 between cropland and grassland
may be caused by the growth of grass in areas that were initially cultivated, but later abandoned by
local farmers for various reasons including loss of soil fertility after being used for some time.

4.7. Implications for Water Resources Management and Distributed Hydrological Models

A lot of information is required for setting up and calibrating distributed hydrological models.
Although some of the calibration parameters are closely related to land surface conditions, the spatial
variability of these parameters in a large river basin such as the Wami River basin is very difficult to
assess. We hypothesized that much can be learned about hydrological behaviour and hydrologically
relevant structures by analysing time series of ET data determined by remote sensing. Findings gained
using this approach are summarized in the following paragraphs.
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About 63% of the spatio-temporal variance of the ET data was already captured by the mean
spatial pattern depicted by PC1. It significantly depended on elevations and slopes. The widest
distributions of ET shown by PC1 in loam, sandy-clay-loam, cropland, and bushland areas suggest
that the roles of these soil texture and land use classes are very crucial in determining the mean
behaviour of ET in the river basin. In contrast, the narrowest distributions of ET in clay, clay-loam,
irrigation, and ranch areas demonstrate their little effects on the mean behaviour of ET in the river
basin. However, PC1 also informed that the effects of different soil textures are significantly different,
thus all soil texture classes are absolutely crucial for the hydrological model of the river basin. Likewise,
most of the different land use classes are significantly different, except for woodland and irrigation
areas, and bushland and ranch areas. Therefore, from the perspective of modelling the mean behaviour
of ET, the land use classes of irrigation and ranch areas can be replaced with woodland and bushland
respectively, without any loss of information.

However, PC1 did not explicitly capture the effects of irrigation. This was not consistent with our
expectations prior to the analysis. It cannot be explained by insufficient spatial resolution of the ET data.
In fact, irrigation areas are known to extend more than 15 km2 in the eastern part of the river basin,
thus they should have been discernible. In contrast, it has to be concluded that the current irrigation
density is relatively low and does not affect the hydrologic cycle in the river basin to the extent we
presumed. Similar to PC1, the irrigation areas did not stand out in the spatial pattern depicted by PC2.
This is presumably due to the fact that harvest occurs in the dry season. Thus, there is hardly any
need for extended irrigation during this season. However, information provided by PC2 helped to
better understand the reason for enhanced ET in other parts of the river basin. Sustained high ET in
the western and north-western parts at the end of the dry season pointed to shallow groundwater that
would be available for plant root uptake. Conducting sufficient spatially distributed measurements of
the shallow groundwater or aquifer in the large river basins is not economically feasible. Therefore,
the shallow aquifer boundary condition from PC2 can be used to emulate spatially distributed critical
depths of water in shallow aquifer routines in hydrological models. In many distributed hydrological
models this information is used to control the movement of water from the aquifers to the root zones.

In contrast, shallow groundwater cannot explain the outstanding high ET of natural forests with
clear-cut boundaries to adjacent land cover classes. This feature was dominant for PC1, PC2, PC3,
and PC5. It sheds some light on the effects of land cover changes around the natural forest areas.
In terms of ET, even intensively cultivated areas cannot compensate for high water availability of
natural forests as long as the former is not irrigated. Apparently this is due to interception of nightly
fog in the canopies of evergreen trees in the natural forest areas, thus ensuring high water availability
even during extended dry periods [72]. Thus, any conversion or impairment of the natural forests
obviously would have major effects on the hydrologic cycle in the river basin. The most important
difference between natural forests and other land cover classes seems to be their ability to maintain
high physiological activity even under dry conditions, pointing to better adaptation to local climatic
conditions. On the other hand, PC5 provided some evidence that the protection of the natural forests
seems to have been highly effective during recent years. However, close to the nature reserve regions,
land use change seemed to have had a major impact, especially in the northern part of the river basin
close to the EAMs. This land cover change, especially the step shift around 2010, should be considered
both for water resources management and in spatially distributed hydrological models of the Wami
River basin.

The loadings on PC3 clearly reflected the unimodal seasonal rainfall in the upstream area and the
bimodal rainfall in the downstream area. The spatial pattern of ET depicted by PC3 shows that the
effects of January–Februry rainfall during ONDJFMA is substantial in the upstream areas as compared
to the downstream areas. This is the minimum spatial differentiation of rainfall that a distributed
hydrological model in the Wami River basin should account for. The pattern of PC4 reflected the lee
effect during strong easterly rainfall periods and the weak westerly rainfall effects from the southern
Congo basin [71,74], however, the pattern is more pronounced during extreme rainfall events.
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It is remarkable that remote sensing ET data (i.e., PCs) gave information about prevailing and
peculiar patterns of rainfall as well. In the short-term, ET was likely to decrease during single
rainstorms due to high air humidity and low irradiation and temperature. However, given the limited
temporal resolution of the MODIS ET data, this effect seemed to be negligible. In contrast, in the
mid-term after heavy rainfall more water was available for plant uptake and thus, likely boosted ET,
especially in regions with antecedent limited water supply. This plant response might be delayed
due to the time needed for budding of perennial plants or for germinating and growth of annual
plants, thus depending on the vegetation type and thus reflecting its spatial patterns. The summary of
findings of principal components and their inferences for water resources management and distributed
hydrological modelling in the Wami River basin is shown in Table 4.

Table 4. Findings and inferences for water resources management and distributed hydrological modelling.

PC Main Features Inferences for Hydrological Behaviour

1
Spatial pattern of long-term
average ET (mean
behaviour of ET).

Clear dichotomy between the upstream (low evapotranspiration (ET)) and
downstream (high ET) parts of the river basin, partly due to a heavier March-May
(MAM) rainy season in the latter. ET was exceptionally high in natural forests and
loam soil, and very low in bushland and sandy-loam soil. No significant differences
between ET of bushland and ranch areas. Irrigation of rice and sugar cane
plantations obviously resulted in ET as high as in woodland. Loam,
sandy-clay-loam, bushland and cropland areas have widespread effects on average
ET across the river basin. Clay, clay-loam, current irrigation and ranch areas have
localized effects on average ET in the river basin.

2 Regions of extended high ET
at the end of the dry season.

Regions of shallow groundwater, accessible by plant roots in the dry season.
Outstanding role of fog interception in regions of natural cloud forests. Effect of
irrigation not visible during the dry season due to earlier harvest. No significant
differences between loam and sandy-clay-loam during the dry season.
High importance of this dry season pattern in the June–September periods
in the years 2002, 2006, and 2007.

3 Spatial effect of
rainfall seasons.

Unimodal (October-April (ONDJFMA)) and bimodal (October-December (OND)
and MAM) rainfall distributions in the upstream and downstream parts of the river
basin respectively. ONDJFMA rainfall during the January–February periods
increases ET in the upstream part of the river basin, at high elevations and steep
slopes.

4
Lee effect of strong humid
easterlies and effects of
weak humid westerlies.

Effect on the spatial pattern of ET in the river basin due to strong rainfall from the
east and weak rainfall from the west of the Eastern Arc Mountains (EAMs).

5 Long-term change of
land use.

Long-term and spatially almost homogeneous reduction of ET due to massive
deforestation of woodland vegetation northwest of the EAMs, except for the forest
nature reserves.

5. Conclusions

Planning and managing water resources, and modelling to support the former requires a sound
understanding of the hydrologic cycle of the river basin. However, many regions of the world lack
extensive monitoring networks of river gauges and groundwater observation wells required for
hydrologists to base their advice and their models upon. On the other hand, high-quality remote
sensing products are now globally available. We recommend using these products for water resources
management and planning, for hydrological system analysis prior to setting up the models and testing
them. In this study, inferences regarding hydrological behaviour were derived from a PCA of MODIS
ET data.

We showed how a time series of MODIS ET data could be used to assess hydrological behaviour
in the data-scarce region of the Wami River basin in Sub-Saharan Africa. A PCA was applied to
extract prevailing and peculiar spatial patterns for different seasons and possible long-term trends.
The main results elucidated the mean behaviour of ET, illustrated the distinctive behaviour of natural
forests, helped to identify regions of shallow groundwater, and clearly pointed to long-term shifts in
degrading vegetation cover in parts of the river basin. In addition, the results allowed reduction of the
number of land use classes to be considered in the distributed hydrological model of the river basin.
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We conclude that these findings will highly improve the task of setting up and calibrating or validating
the subsequent distributed hydrological model in the Wami River basin.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/5/333/s1.
Video S1: The time series of maps of MODIS ET in the Wami River basin between 1 January 2000 and
27 December 2013. The curves of MODIS ET show the minimum, mean and maximum ET in the entire river basin.
Video S2: The loadings and scores of PC1 in the Wami River basin between 1 January 2000 and 27 December 2013.
A peak of loadings on PC1 denotes a period where the respective spatial pattern is especially important. Video S3:
The loadings and scores of PC2 in the Wami River basin between 1 January 2000 and 27 December 2013. A peak
of loadings on PC2 denotes a period where the respective spatial pattern is especially important. Video S4:
The loadings and scores of PC3 in the Wami River basin between 1 January 2000 and 27 December 2013. A peak
of loadings on PC3 denotes a period where the respective spatial pattern is especially important. Video S5:
The loadings and scores of PC4 in the Wami River basin between 1 January 2000 and 27 December 2013. A peak
of loadings on PC4 denotes a period where the respective spatial pattern is especially important. Video S6:
The loadings and scores of PC5 in the Wami River basin between 1 January 2000 and 27 December 2013. A peak
of loadings on PC5 denotes a period where the respective spatial pattern is especially important.
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