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Abstract: This study investigates the sensitivity and uncertainty of hydrological droughts frequencies
and severity in the Weihe Basin, China during 1960–2012, by using six commonly used univariate
probability distributions and three Archimedean copulas to fit the marginal and joint distributions of
drought characteristics. The Anderson-Darling method is used for testing the goodness-of-fit of the
univariate model, and the Akaike information criterion (AIC) is applied to select the best distribution
and copula functions. The results demonstrate that there is a very strong correlation between drought
duration and drought severity in three stations. The drought return period varies depending on
the selected marginal distributions and copula functions and, with an increase of the return period,
the differences become larger. In addition, the estimated return periods (both co-occurrence and
joint) from the best-fitted copulas are the closet to those from empirical distribution. Therefore, it is
critical to select the appropriate marginal distribution and copula function to model the hydrological
drought frequency and severity. The results of this study can not only help drought investigation to
select a suitable probability distribution and copulas function, but are also useful for regional water
resource management. However, a few limitations remain in this study, such as the assumption of
stationary of runoff series.

Keywords: threshold level method; drought frequency analysis; copula; return period; sensitivity
and uncertainty

1. Introduction

Hydrological drought refers to a lack of water in the hydrological system and gives rise to negative
impacts on river ecosystems and human lives [1]. Hydrological droughts are typically defined as
periods when streamflow below a pre-defined threshold, called the threshold level method (TLM) [2].
Advantages of the TLM are (i) no a priori knowledge of probability distributions is required, and (ii) it
directly produces drought characteristics (e.g., duration, severity, frequency). When the variable of
interest (x) (i.e., soil moisture, groundwater storage, or discharge) is below a predefined threshold (τ),
a drought is assumed to have occurred. A constant or a threshold can be used, and because a variable
threshold level takes seasonal patterns into account, it has been widely used [3,4]. The threshold is
usually assumed to be equal to a given percentile of the flow duration curve between the 30 percentile
flow (Q30) and the 5percentile flow (Q5) [5], or the threshold can be obtained by fitting some kind
of statistical function through the data (normal, gamma, beta, etc.) [6]. The threshold is 25percentile
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(Q25), meaning that a drought occurs when the streamflow is below the 25th percentile flow from the
duration curve. The number of drought events obtained from the Q30, Q25, Q20, Q15, Q10, and Q5

were compared with a previous study [7]. Based on the yearbook of “the drought history in China
(1949–2000)”, which reported that the main drought years in the Weihe River are 1962, 1969, 1971–1972,
1977, 1982, 1986, 1994, 1995, and 1997, drought events defined by Q25 are the closest to the historical
drought conditions. Therefore, the threshold level in this study selected Q25 to define drought events
and examine hydrological drought characteristics in the Weihe River Basin.

Since hydrological droughts are complex events, one index cannot provide a comprehensive
evaluation. A bivariate distribution is derived for describing the correlated hydrology drought
characteristic variables. For instance, bivariate normal distribution [8], bivariate exponential
distribution [9], and bivariate gamma distribution [10] are often applied to study flood problems.
However, because the hydrology drought characteristic variables are highly correlated and may obey
different marginal distribution functions, one of the drawbacks for these bivariate distributions is that
the same family is needed for each marginal distribution [11].

Copulas are functions that join univariate distribution functions to form multivariate distribution
functions [12]. Sklar [13] introduced copulas, and they have been used in insurance and finance [14].
Because of the flexibility of copulas, they became popular in hydrological analysis [15]. Especially,
Archimedean copulas, such as Clayton, Frank, and Gumbel-Hougard copulas, are the most popular
family used in hydrology [16] and have been widely applied to model the dependence between
hydrological variables [17]. When using copula functions analysis of hydrological droughts, several
marginal distribution functions have been commonly used to fit drought duration and drought severity,
such as exponential (EXP), gamma (GAMA), lognormal (LOGN), general Pareto (GP), generalized
extreme value (GEV), and Weibull (WBL) [18] distributions. The inversion of Kendall’s method was
usually used to estimate the copula parameter [19], and the goodness of fit was usually tested by
the least root mean square error (RMES), Kolmogorov-Smirnov (KS) test, Anderson-Darling (AD)
test, Akaike information criterion (AIC), ordinary least squares (OLS), and Bayesian information
criterion (BIC) [20].

However, the selection of a threshold directly influences the duration and severity of drought
events, and it is an uncertainty factor in modeling the bivariate distribution of hydrological droughts.
Due to the changing environment and the impact from human activities, the variability of hydrological
drought properties is also an important uncertainty factor. Since there are some goodness of fit test
methods for choosing appropriate margin probability distributions and copula functions, the final
selections may be different depending on the different candidate margins distributions and copulas.
Therefore, it is necessary to investigate the uncertainty and sensitivity in modeling the joint distribution
of hydrological droughts. In this paper, we choose six commonly-used univariate probability
distributions as the candidate margins for drought duration and severity, and three Archimedean
copulas are employed to match the joint distributions.

The remaining parts of this paper are organized as follows: Section 2 introduces the case study
and the data from three hydrometric stations, the methodologies for defining the hydrological drought,
six univariate models, and the theory of copulas and the formula of the return period; Section 3
shows the primary results, including the univariate and bivariate drought frequency analysis and the
calculation of return periods; Section 4 discusses the sensitive and uncertainty of drought frequency
analysis.; and, finally, the main conclusions are given in Section 5.

2. Materials and Methods

2.1. Weihe River Basin and Data

The Weihe River Basin, with a drainage area of 134,800 km2, is the largest tributary of the Yellow
River in North China (Figure 1) (between 104◦–110◦ E and 34◦–38◦ N). This basin originates from
the north of Niaoshu Mountain with an altitude of 3485 m above sea level. The most important
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topographic feature of the Weihe River Basin is the Loess Plateau in the north, which is the main source
of sediments in the river [21]. The annual average temperature ranges between 9.3 ◦C and 14.4 ◦C,
the annual mean precipitation amounts are in the range of 558–750 mm with a general increasing trend
from north to south, and the annual mean runoff amounts are 10.37 billion m3. The runoff from July to
September accounts for about 60–70% of the annual discharge [22]. Agricultural losses due to local
drought disasters occupy over 50% of the total losses [23].
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Figure 1. The study basin map.

The hydrological stations of Linjiacun (LJC), Xianyang (XY) and Huaxian (HX) are located in the
upper, middle, and lower streams for the main river channel (Figure 1).

The data of three stations are provided by the Institute of Soil and Water Conservation (http:
//loess.geodata.cn/), Chinese Academy of Sciences and Ministry of Water Resources. The monthly
streamflow covers the period between 1960 and 2012 years. Linjiacun and Xianyang station lack
data in 2004.

2.2. Defining Drought Duration and Severity

A drought event starts when the variable (x) is below the threshold level (onset; t = 1) and the
event continues until the threshold is exceeded again (recovery; t = T). Each drought event (i) can be
characterized by its duration and by some measure of the severity of the event (Figure 2).

Water 2017, 9, 334  3 of 14 

 

topographic feature of the Weihe River Basin is the Loess Plateau in the north, which is the main 
source of sediments in the river [21]. The annual average temperature ranges between 9.3 °C and 14.4 
°C, the annual mean precipitation amounts are in the range of 558–750 mm with a general increasing 
trend from north to south, and the annual mean runoff amounts are 10.37 billion m3. The runoff from 
July to September accounts for about 60–70% of the annual discharge [22]. Agricultural losses due to 
local drought disasters occupy over 50% of the total losses [23]. 

 
Figure 1. The study basin map. 

The hydrological stations of Linjiacun (LJC), Xianyang (XY) and Huaxian (HX) are located in the 
upper, middle, and lower streams for the main river channel (Figure 1). 

The data of three stations are provided by the Institute of Soil and Water Conservation 
(http://loess.geodata.cn/), Chinese Academy of Sciences and Ministry of Water Resources. The 
monthly streamflow covers the period between 1960 and 2012 years. Linjiacun and Xianyang station 
lack data in 2004. 

2.2. Defining Drought Duration and Severity 

A drought event starts when the variable ( x ) is below the threshold level (onset; 1t = ) and the 
event continues until the threshold is exceeded again (recovery; t T= ). Each drought event ( i ) can be 
characterized by its duration and by some measure of the severity of the event (Figure 2). 

 
Figure 2. Threshold level method with a variable threshold to define the drought duration and 
drought severity. 

Figure 2. Threshold level method with a variable threshold to define the drought duration and
drought severity.

http://loess.geodata.cn/
http://loess.geodata.cn/


Water 2017, 9, 334 4 of 15

The duration of a drought event is calculated by [24]:

δ(t) =

{
1 if x(t) < τ(t)
0 if x(t) ≥ τ(t)

(1)

Di =
T

∑
t=1

δ(t)·∆t (2)

where δ(t) is a binary variable indicating a drought situation with respect to time t, x(t) is the
hydrological variable on time t, τ(t) is the threshold level of that hydrological variable with respect to
time t, Di is the duration of drought event i, and ∆t is the time step of t.

For fluxes the most commonly-used severity measure is the deficit volume, calculated; by summing
up the differences between the actual flux and the threshold level over the drought period [25].
The equation is:

s(t) =

{
τ(t)− x(t) if x(t) < τ(t)
0 if x(t) ≥ τ(t)

(3)

Si =
T

∑
t=1

s(t)·∆t (4)

where s(t) is the deviation with respect to time t, and Si is the deficit of drought event i.
The streamflow (m3/s) is converted into runoff depth (mm) by:

R =
Q× t

1000× A
(5)

where R is the runoff depth in mm; Q is the streamflow in m3/s, t is the monthly time in seconds,
and A is the drainage area in km2.

2.3. Marginal Distribution Model and Copula-Based Models

Six commonly-used univariate probability distributions are selected as the candidate margins for
drought duration and drought severity. They are the exponential (EXP), gamma (GAM), log-normal
(LOGN), generalized Pareto (GP), generalized extreme value (GEV), and Weibull (WBL) distributions.
The cumulative distribution functions (CDF) of six univariate distributions are given in Table 1.
The maximum likelihood method is used to estimate the parameters. Akaike information criterion
(AIC) [26] and the Anderson Darling (AD) [27] test are used to select the best univariate distribution.

Developed by Sklar [13], copulas are functions that link univariate distribution functions to form
multivariate distribution functions, in which the domain is [0, 1]. In terms of two random variables,
Sklar’s theorem, states that if FX,Y(x, y) is a two-dimensional joint cumulative distribution function,
FX(x) and FY(y) are marginal distribution functions of variables X, Y, then there exists a copula C
such that:

FX,Y(x, y) = C(FX(x), FY(y)) (6)

In which c is the density function of C, defined as:

c(u, v) =
∂2C(u, v)

∂u∂v
(7)

In this study, we choose widely-used three mono-parameter Archimedean copulas (Clayton,
Frank, and Gumbel-Hougard) as the candidates for modeling the joint distribution of hydrological
drought properties. Three copulas are defined as shown in Table 2. The inference function for margins
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(IFM), suggested by Joe [28], is employed to estimate the parameter in copulas. The ordinary least
squares (OLS) and Akaike information criterion (AIC) are used for testing the goodness of fit.

Table 1. Univariate cumulative distribution functions.

Distribution CDF Parameters

Exponential (EXP) F(x) = 1− e−x/µ µ: scale

Gamma (GAM) F(x) = β−α

Γ(α)

∫ x
0 tα−1e−t/βdt

α: shape
β: scale

Log-normal (LOGN) F(x) = 1
σ
√

2π

∫ x
0

e−(ln(t)−µ)2/2σ2

t dt
µ: mean

σ: standard deviation

Generalized Pareto (GP) F(x) = 1− exp
(

κ−1 ln
(

1− κ(x−ξ)
α

)) κ: shape
α: scale

ξ: location

Generalized extreme value (GEV) F(x) = exp
(
− exp

(
κ−1 ln

(
1− κ(x−ξ)

α

))) κ: shape
α: scale

ξ: location

Weibull (WBL) F(x) = 1− e−(x/a)b
I(0,∞)(x)

a: scale
b: shape

Table 2. Copula functions.

Copulas CDF Parameters

Clayton C(u, v) =
(

u−θ + v−θ − 1
)− 1

θ θ ≥ 0

Frank C(u, v) = − 1
θ ln
[

1 +
(
(e−θu−1)(e−θv−1)

e−θ−1

)]
θ 6= 0

Gumel C(u, v) = exp
{
−
[
(− ln u)θ + (− ln v)θ

] 1
2
}

θ ≥ 1

2.4. Return Period of Droughts

The return period of a variable, defined as the average elapsed time between occurrences of an
event with a certain magnitude, or greater [29]. In this study, the return period of droughts can be
defined by drought duration or drought severity as [30]:

TD =
N

n(1− FD(d))
(8)

TS =
N

n(1− FS(s))
(9)

where TD is the return period of drought duration, TS is the return period of drought severity; N is
the length of data series; n is the numbers of drought events, and FD(d) and FS(s) are cumulative
distribution function of drought duration and severity, respectively

There are two cases of bivariate return periods; one is the drought duration exceeding a specific
value and the drought severity exceeding another specific value (D ≥ d and S ≥ s), called co-occurrence
return period (T0). Another case is the drought duration exceeding a specific value or the drought
severity exceeding another specific value (D ≥ d or S ≥ s), called the joint return period (Tα). Both
return periods, in terms of the copula-based bivariate drought distribution, are described below [31]:

T0 =
N

nP(D ≥ d ∩ S ≥ s)
=

N
n(1− FD(d)− FS(s) + FDS(d, s))

=
N

n(1− FD(d)− FS(s) + C(FD(d), FS(s)))
(10)

Tα =
N

nP(D ≥ d ∪ S ≥ s)
=

N
n(1− FDS(d, s))

=
N

n(1− C(FD(d), FS(s)))
(11)
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3. Results

3.1. Drought Duration and Severity Characteristics

Based on the Q25 threshold level of monthly runoff, there are a total of 46, 51, and 68 drought
events, respectively, in three stations (Linjiacun, Xianyang, Huaxian) during 1960–2012 (Figure 3).
Figure 4 shows the number of drought events of different drought duration and severity at three
stations. The main statistical characteristic values of drought duration and drought severity are listed in
Table 3. The most severe drought lasted for 17 months in Linjiacun and Xianyang stations. The average
drought durations are 3.391, 3.059, and 2.382 months, respectively, at the three stations. This is why the
number of drought events of LJC station (46) and XY station (51) are less than those of HX station (68).
The skewness coefficient (which is a measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean) of drought severity is also larger than the drought
duration. In view of the drought duration, the dispersion degree of Linjiacun station is the smallest.
In view of the drought severity, the dispersion degree of Xianyang station is the smallest.

Table 3. Hydrological drought index of single-feature statistical characteristic values.

Mean Std.dev. Max Min Cv SK

Drought duration (month)
LJC 3.391 3.363 17 1 0.992 2.172
XY 3.059 3.343 17 1 1.093 2.316
HX 2.382 2.273 11 1 0.954 1.879

Drought Severity (mm)
LJC 3.009 5.081 30.436 0.019 1.689 3.964
XY 3.726 5.387 23.946 0.002 1.446 2.513
HX 2.175 2.959 15.169 0.001 1.360 2.074

Note: “Std.dev” indicates standard deviation. “Cv” indicates the coefficient of variation, and “SK” indicates
skewness coefficient. LJC indicates Linjiacun station, XY indicates Xianyang station, HX indicates Huaxian station.Water 2017, 9, 334  7 of 14 
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Figure 4. The number events of different drought (a) durations and (b) severities at three stations.

The relationship between drought duration and drought severity is very good (Table 4); they
reflect that there is very strong correlation between drought duration and drought severity in three
stations. The Pearson linearly-dependent coefficients in the three stations are over 0.88. The Spearman
rank correlation coefficient exceeded 0.77. For the Kendall rank correlation coefficient, its surpass 0.63.
For example, the Pearson linearly-dependent coefficient ρ is 0.883, 0.916, and 0.885, respectively, in
the three stations, which suggests the importance of using copulas based on the drought frequency
analysis method.

Table 4. Correlation between the hydrological drought characteristics’ indices.

Correlation Coefficient LJC ( D ∼ S) XY ( D ∼ S) HX ( D ∼ S)

ρ 0.883 0.916 0.885
τ 0.705 0.644 0.639
ρs 0.827 0.803 0.776

Note: ρ indicates the Pearson linearly-dependent coefficient, τ indicates the Kendall rank correlation coefficient; ρs
indicates the Spearman rank correlation coefficient.

3.2. Marginal Distributions and Copula Functions

3.2.1. Selected Marginal Distributions

Table 5 lists the estimated parameters for six theoretical distribution models, and the results of
AIC and AD test at the 99% (α = 0.01) significant level have shown in Table 6. According to AIC and
the AD test, the best fitted marginal distributions are WBL and GEV, WBL and WBL, and WBL and
GAM, at the three stations, for drought duration and severity, respectively. Even though the GP model
has relatively low AIC, the existence of “outliers” resulting in the GP distribution is not acceptable by
the AD test for drought duration and drought severity, the EXP model is also not acceptable by the
AD test for the fit of drought severity at Huaxin station. Figure 5 compares the six fitted distributions
with empirical distributions of the identified drought characteristic variables in the three stations.
The estimated theoretical cumulative probabilities for the best-fitting distribution are quite close to
the empirical ones, which denotes that these probability distributions perform fairly well. Due to
the existence of a few very small value (drought severity are 0.000761 mm, 0.03164 mm, 0.04114 mm,
and 0.082 mm, respectively) of drought severity at HX station, the cumulative distribution function of
LOGN only goes up to 0.7.
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Table 5. The estimated parameters by the maximum likelihood method.

Margin Parameter LJC XY HX

Duration

EXP µ 3.391 3.059 2.382

GAM
α 1.612 1.399 1.743
β 2.103 2.186 1.366

LOGN
µ 0.880 0.720 0.555
σ 0.789 0.838 0.731

GP
κ −0.017 0.072 −0.056
α 3.449 2.838 2.515

GEV
κ 5.062 3.783 4.958
α 0.330 0.011 0.159
ξ 1.065 1.003 1.032

WBL
a 3.637 3.197 2.580
b 1.196 1.105 1.234

Severity

EXP µ 35.600 67.316 89.357

GAM
α 0.691 0.594 0.287
β 51.513 113.247 311.259

LOGN
µ 2.696 3.169 2.073
σ 1.510 1.805 7.138

GP
κ 0.381 0.529 0.747
α 21.939 36.178 38.080

GEV
κ 0.706 1.042 1.239
α 12.958 21.278 25.334
ξ 11.151 15.605 16.587

WBL
a 29.791 53.411 51.179
b 0.768 0.706 0.417

Table 6. The goodness of fit of the marginal distribution.

LJC XY HX

AIC
AD

AIC
AD

AIC
AD

p-Value p-Value p-Value

Duration

EXP −76.856 0.243 −76.856 0.243 −39.335 0.393
GAM −98.198 0.945 −98.198 0.945 −50.448 0.962

LOGN −88.137 0.635 −88.137 0.635 −46.052 0.857
GP −90.31 0.000 −90.31 0.000 −52.657 0.000

GEV −93.289 0.873 −93.289 0.873 −53.595 0.982
WBL −100.749 0.975 −100.749 0.975 −59.937 0.986

Severity

EXP −207.934 0.0295 −230.471 0.021 −307.066 0.0068
GAM −263.939 0.3543 −291.92 0.3002 −425.32 0.479

LOGN −232.344 0.1144 −256.857 0.0866 −339.99 0.0348
GP −427.811 0 −475.892 0 −676.391 0

GEV −282.934 0.6941 −312.324 0.4499 −386.761 0.174
WBL −281.932 0.5106 −315.351 0.6396 −415.183 0.2938
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3.2.2. Selected Copula Functions

The results of the parameters and goodness of fit of the candidate bivariate copula functions are
shown in Table 7. According to OLS and AIC, the Frank copula is found to be the best-fitted one for
Xianyang and Huaxian stations, and the Gumbel copula is the best-fitted for Linjiacun station. Figure 6
shows the probability-probability (PP) plot. It turns out that the estimated cumulative probabilities
agree well with the empirical ones.

Table 7. Parameters and the goodness of fit of the bivariate distributions based on copulas.

Copula Parameters and Goodness of Fit Index LJC XY HX

Clayton
θ 2.098 7.132 0.050

OLS 0.071 0.057 0.181
AIC −86.783 −94.304 −34.542

Frank
θ 9.829 40.229 28.017

OLS 0.054 0.047 0.077
AIC −96.422 −100.643 −53.330

Gumbel
θ 2.887 4.299 2.687

OLS 0.050 0.063 0.104
AIC −98.522 −90.740 −46.728

Best Function Gumbel Frank Frank
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3.3. Return Period of Droughts

According to Equations (8) and (9), return periods of 2, 5, 10, 20, 50, and 100 years, defined by
separate drought duration and drought severity, are summarized in Table 8. For drought duration,
the return period at Xianyag station is the largest, however, for drought severity, the return period
of larger than 20 years for duration and severity at Linjiacun station is the largest. Considering
two parameters, using joint probability distributions and copulas to calculate the co-occurrence return
period and joint return period (in Figure 7), it is clear that the co-occurrence return period is greater
than both of the return periods defined by the drought duration and drought severity separately, while
the joint return period is less than both of the return periods. Under the same increasing range in
univariate models, the increasing range of the co-occurrence return period is larger than the joint
return period. This shows that these two kinds of combination return periods can be regarded as two
extreme conditions of marginal distribution return periods. It is possible to estimate the interval of the
actual return period according to the co-occurrence return period and the joint return period.
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Table 8. Return periods defined by drought duration and severity in three stations.

Drought Duration (month) Drought Severity (mm)

LJC XY HX LJC XY HX

Return period (year)

2 7.452 8.152 6.551 1.156 1.690 1.041
5 12.500 12.962 9.272 3.449 5.702 4.357

10 15.370 15.759 10.903 6.327 9.520 7.711
20 17.841 18.184 12.329 10.954 13.859 11.483
50 20.718 21.021 14.001 21.752 20.269 16.877

100 22.685 22.966 15.149 36.024 25.564 21.168

4. Sensitivity and Uncertainty of the Drought Frequency

4.1. Effects of the Selection of Margin Distributions to the Return Period

The significance level of 99% (α = 0.01) is used to determine where the marginal distribution is
to be rejected or accepted based on the AD test. The return periods of drought duration and severity
are calculated based on six marginal distributions at three stations. Figure 8 shows their variability
compared with the empirical return period. There are significant differences in the return period based
on different marginal distributions. Considering drought duration, the return period of GP, GEV,
and WBL models are best-fitted to the empirical value, the GEV and WBL models are fully accepted
by the AD test, the AIC value are minimal and, additionally, the GP model is rejected by the AD test.
Considering drought severity, the return period of WBL at Xianyang station and GAM at Huaxian
station are nearest to the empirical values, they are perfectly acceptable by AD test and, especially,
the AIC values are minimal. The results indicate that the drought return period is sensitive to the
selection of the margins.
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4.2. Effects of the Selection of Copula Functions to the Return Period

In order to analyze the difference between three copula functions, there are three drought samples
(with a duration of 6.55 months and a severity of 1.04 mm (denoted by drought event 1), a duration of
9.27 months and a severity of 4.36 mm (denoted by drought event 2), and a duration of 10.90 months
and a severity of 7.71 mm (denoted by drought event 3)) at Huaxian station. The co-occurrence return
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period and the joint return period based on 36 possible joint distributions of duration and severity,
and with different Copula functions, are calculated for the three selected drought events at Huaxian
station. Figure 9 are the boxplots and show their variability compared with the empirical values.
For hydrological drought event 2, the co-occurrence return period ranges from 6.56 to 31.49 years for
the Clayton copula, 5.71 to 11.41 years for the Frank copula, and 5.45 to 32.07 years for the Gumbel
copula. There are large differences for the three copula functions. At Huaxian station, the best-fitted
copula selected by marginal distributions GEV and GAM is the Frank copula, the co-occurrence return
period of the best marginal distribution and best copula is 7.15 years, and the co-occurrence return
period of the empirical value is 7.67 years. This indicates that the value of Frank, which is selected as
the best copula function at Huaxian station, is nearest to the empirical values. In addition, the mean
value of the Frank copula for 36 possible joint distributions are also near the empirical values. The same
result is found in other two hydrological drought events, and the joint return period also shows the
same situations.

Water 2017, 9, 334  12 of 14 

 

drought events at Huaxian station. Figure 9 are the boxplots and show their variability compared 
with the empirical values. For hydrological drought event 2, the co-occurrence return period ranges 
from 6.56 to 31.49 years for the Clayton copula, 5.71 to 11.41 years for the Frank copula, and 5.45 to 
32.07 years for the Gumbel copula. There are large differences for the three copula functions. At 
Huaxian station, the best-fitted copula selected by marginal distributions GEV and GAM is the Frank 
copula, the co-occurrence return period of the best marginal distribution and best copula is 7.15 years, 
and the co-occurrence return period of the empirical value is 7.67 years. This indicates that the value 
of Frank, which is selected as the best copula function at Huaxian station, is nearest to the empirical 
values. In addition, the mean value of the Frank copula for 36 possible joint distributions are also 
near the empirical values. The same result is found in other two hydrological drought events, and 
the joint return period also shows the same situations. 

 
Figure 9. Sensitivity of the co-occurrence return period and joint return period of three drought events 
at Huaxian station and the selection of the univariate distribution and the copulas. (a): co-occurrence 
return period of drought event 1; (b): co-occurrence return period of drought event 2; (c): co-
occurrence return period of drought event 3; (d): joint return period of drought event 1; (e): joint 
return period of drought event 2; (f): joint return period of drought event 3. 

4.3. Effects of Human Activities on Drought Frequency 

The tendency of average annual runoff is decreasing at the three stations, especially, due to 
human activities, the observed runoff has significantly decreased in the period of 1991–2013 [7], 
which also shows that after 1991 human activities mainly resulted in the short-term drought 
fluctuation. In this study, because the main aim is to analyze the uncertainty of marginal distributions 
and copula functions on hydrological drought, we did not spilt the time series into two periods based 
on the turning point year. In addition, human activities affect the drought frequency in many ways. 
Irrigation area expansion means subtractions of water have greatly increased, which have resulted in 
the decrease of observed runoff [32]. The changing of land use has increased water demand, which 
has aggravated hydrological drought. 

In addition, there are other uncertain factors, such as the selected threshold level of streamflow, 
climate change, and the length of time series. The threshold usually varies from 30Q  to 5Q  of 
streamflow, and drought events of higher severity are “nested” inside drought events of lower 
severity, such as a 10Q  threshold drought implying the occurrence of 20Q  and 30Q  threshold 
drought events. Under the changing climate, the precipitation series and runoff series are non-
stationary; the surface runoff is not only sensitive to precipitation, but also sensitive to temperature 
[33]. The length of the times series determines the number of drought events. These uncertainty 

Figure 9. Sensitivity of the co-occurrence return period and joint return period of three drought events
at Huaxian station and the selection of the univariate distribution and the copulas. (a): co-occurrence
return period of drought event 1; (b): co-occurrence return period of drought event 2; (c): co-occurrence
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4.3. Effects of Human Activities on Drought Frequency

The tendency of average annual runoff is decreasing at the three stations, especially, due to
human activities, the observed runoff has significantly decreased in the period of 1991–2013 [7], which
also shows that after 1991 human activities mainly resulted in the short-term drought fluctuation.
In this study, because the main aim is to analyze the uncertainty of marginal distributions and copula
functions on hydrological drought, we did not spilt the time series into two periods based on the
turning point year. In addition, human activities affect the drought frequency in many ways. Irrigation
area expansion means subtractions of water have greatly increased, which have resulted in the decrease
of observed runoff [32]. The changing of land use has increased water demand, which has aggravated
hydrological drought.

In addition, there are other uncertain factors, such as the selected threshold level of streamflow,
climate change, and the length of time series. The threshold usually varies from Q30 to Q5 of streamflow,
and drought events of higher severity are “nested” inside drought events of lower severity, such as a
Q10 threshold drought implying the occurrence of Q20 and Q30 threshold drought events. Under the
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changing climate, the precipitation series and runoff series are non-stationary; the surface runoff is not
only sensitive to precipitation, but also sensitive to temperature [33]. The length of the times series
determines the number of drought events. These uncertainty factors are not key points in this study, as
we will discuss their effects on hydrological drought frequency in our next study.

5. Conclusions

This study investigated the regional drought frequency analysis in the Weihe River Basin
considering the spatio-temporal structure of drought with copula functions. The primary conclusions
are given as follows:

(1) There are more drought events at Huaxian station (lower basin) than at Linjiacun station (upper
basin), but there are longer drought durations and greater severity at Linjiacun station.

(2) Based on the AD test, five models (EXP, GAM, LOGN, GEV, WBL) are acceptable for the fit of the
drought duration and drought severity at LJC and XY stations. The GP model is not acceptable
for the goodness-of-fit of drought duration and drought severity at three stations, the EXP model
is rejected for the fit of drought severity at Huaxian station.

(3) Based on ordinary least squares (OLS) and Akaike information criterion (AIC), the Frank copula
is the best joint distribution function at Linjiacun and Huaxian stations, while the Clayton copula
is the best-fitted model at Huaxian station.

(4) The co-occurrence return period is greater than both the return periods defined by drought
duration and drought severity separately, while the joint return period is shorter than both of the
return periods. This shows that these two kinds of combination return periods can be regarded
as two extreme conditions of the marginal distribution return period. It is possible to estimate the
interval of the actual return period according to the co-occurrence return period and the joint
return period.

(5) The drought return period is sensitive to the selected marginal distribution and different copula
functions. Therefore, it is important to select proper marginal distributions and copula functions,
and the sensitivity and uncertainty of hydrological droughts should be paid more attention on
the modeling and designing of drought models with consideration to the condition of water
resources and the requirement of water management.
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