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Abstract: Different characteristics of wastewater have different effects on the diversity and abundance
of bacteria and archaea in rivers. There are many creeks around Taihu Lake, and they receive a large
volume of industrial wastewater and domestic sewage, which is discharged into these creeks, and
finally into Taihu Lake. The present study determined Illumina reads (16S rRNA gene amplicons)
to analyze the effects of industrial wastewater and domestic sewage on the bacterial and archaeal
communities at the different sampling sites along two creeks. The bacterial and archaeal diversity of
the creek receiving sewage was higher than that of the creek receiving industrial waste. Proteobacteria
dominated the microbial communities of all samples in both creeks. Betaproteobacteria dominated in
the sewage creek, and its abundance declined along the creek. Certain pollutant-resistant classes were
more abundant at the site near to the pollution source of the industry creek (e.g., Epsilonproteobacteria
and Flavobacteria). Halobacteria belonging to the phylum Euryarchaeota was the dominant archaea at all
sites in both creeks, while Methanobacteria was more abundant in the industry creek. The bacterial
community was more affected by the distance between the sampling site and the pollutant source
than the archaeal community, indicating that bacterial diversity and abundance could be a good
index to distinguish domestic and industrial pollution, especially when the main pollution sources
are difficult to identify.

Keywords: bacterial community; archaeal community; Illumina Miseq; sewage and industrial
effluents; creek

1. Introduction

Microbes are an important part of the ecological system, and the population structure of
microorganisms changes with variations in the environment. Previous studies of microbes in the
environment have mainly been conducted using culture-based technique, but most microorganisms
cannot be purified and separated in the laboratory, making it difficult to understand the differences
in the microbial population structure under different habitats [1]. With the rapid development of
molecular biotechnology, PLFA (phospholipid fatty acids), spectrogram analysis of phospholipid
fatty acids [2,3], the Biolog method [4], polymerase chain reaction denaturing gradient gel
electrophoresis(PCR-DGGE) [5,6], and high-throughput sequencing [7], have been widely applied
to investigate microbial communities. Because of its high efficiency and accuracy, as well as its
other characteristics [8], high-throughput sequencing has been widely used in the study of microbial
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communities in soil [9], freshwater ecosystems [10], and marine ecosystems [11]. Some studies have
shown that the microbial community changed in soil polluted by heavy metals [12]. Moreover, changes
in the microbial community were reported in tropical river sediment with the duration of pollution [13].
The river ecological system is an important component of the surface-water environment, however,
economic development has led to increased amounts of pollutants being discharged into rivers [14].
Such pollutants mainly originate from synthetic nitrogenous fertilizers, animal manure, sewage, and
industrial wastewater [15]. At present, constructed wetland systems are one of the main technologies
for pollution control along rivers, and many studies have focused on the microbial communities of
these systems [16–18]. Because of the high technical requirements and large areas that they require,
constructed wetland systems cannot be widely applied to controlling river pollution. Indeed, rivers are
fed by many small streams in their basins, and these are often impacted by large numbers of residents
and factories along their banks. The wastewater produced by these local residents and factories is
directly discharged into creeks, and the concentrations of contaminants decrease as they travel through
the creeks because of retention and self-purification. However, changes in the microbial population
structures of creeks receiving different pollutant sources are not well understood. Zhihugang River,
which is located in the Taihu Lake basin, has a total length of 20.1 km, an average width at the bottom of
30 to 40 m, an average velocity of 0.1 m/s, and an average flow rate of 10 m3/s. In 2007, the population
around Zhihugang River was 399,000, including an urban population of 151,000 people, and there were
a total of 2476 factories around the river [19] The industrial facilities around Zhihugang River primarily
include the chemical industry, printing and dyeing, electroplating, food, and paper factories. In recent
years, Chinese researchers have studied the pollution sources [20,21], nutrient inputs [22], and the
distribution of heavy metals in the sediments of rivers flowing into Taihu Lake [23]. Additionally,
some researchers have focused on the macrobenthos, phytoplankton [24], and zooplankton [25,26]
populations of Taihu Lake. However, no studies have investigated the microbial population structures
of the creeks around Zhihugang River, or changes in the microbial population structure of creeks
caused by different pollution sources.

To explore the differences in the microbial communities caused by the sewage and industrial
effluents, two creeks located around Zhihugang River were investigated in this study. Samples were
collected from 21 to 25 September, 2014, and the bacterial and archaeal community structures were
analyzed by Illumina Miseq.

2. Materials and Methods

2.1. Study Area

A creek located in Duangou and another in Jixian were investigated. The creek in the Duangou
village is mainly polluted by domestic sewage (hereafter referred to as the sewage creek), while the
one in Jixian is primarily polluted by industrial effluents (hereafter referred to as the industry creek)
from a machinery factory and a chemical fiber factory. The machinery factory is primarily engaged in
the production and processing of all kinds of mechanical parts. The chemical fiber factory is mainly
engaged in the production of high-emulation chemical fiber. The locations of the two creeks are shown
in Figure 1. Water with pollutants flows from each pollutant source to D1/J1, D2/J2, and then D3/J3.
The distances between the pollutant source of domestic sewage and D1, D2, and D3 were 10 m, 85 m,
and 160 m, respectively. The distances between the industrial pollution sources and J1, J2, and J3 were
10 m, 160 m, and 560 m, respectively. Hydrological data of the two creeks are shown in Table 1.
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Figure 1. Map of the creeks and sample sites. (a) Creek polluted by sewage (in blue rectangle); (b) 
creek polluted by industrial effluent (in green rectangle). 
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potassium permanganate method, while TP was measured using the potassium persulfate 
oxidation method. About 500 g of surface sediment samples were collected from all sites using a 
surface sediment sampler (Van Veen, HYDRO-BIOS, Kiel, Germany), and were then stored at −70 °C 
until use. The concentrations of Cr, Ni, Cu, Zn, As, Cd, and Pb in sediments were measured as 
previously described [27]. Water transparency (SD) was determined using a Secchi disk (diameter = 
20 cm). The Chla was determined using the standard methods [28]. Chloride (Cl−) was measured by 
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The DNA was extracted from 0.5 g samples of wet sediment using a Power soil DNA isolation 
kit according to the manufacturer’s protocols (Mo Bio, Carlsbad, CA, USA). The bacterial and 
archaeal 16S rRNA genes of all samples were amplified by barcoded primers to construct a 
community library by high-throughput pyrosequencing. The primers and amplification conditions 
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Figure 1. Map of the creeks and sample sites. (a) Creek polluted by sewage (in blue rectangle); (b) creek
polluted by industrial effluent (in green rectangle).

Table 1. Hydrological data of two creeks.

Creek Name Length (m) Width (m) Depth (m) Sediment (m) SD (m) Flow (m3/s)

Sewage creek 150 8.4 0.68 0.10 0.56 0.026
Industry creek 560 6.7 0.72 0.10 0.24 0.026

2.2. Sample Collection and Measurement

About 1 L of overlying water was collected using an organic glass hydrophore, and the
temperature (T), pH, and dissolved oxygen (DO) were determined directly in situ using a
multi-parameter water quality monitoring instrument (Mettler Toledo, SevenGo Duo pro, SG68, SC,
USA). All sensors were calibrated before taking measurements. Ammonium (NH4

+-N) was measured
with Nessler’s reagent, while nitrate nitrogen (NO3

−-N) and total nitrogen (TN) were determined by
ultraviolet spectrophotometry and the alkaline potassium persulfate oxidation-UV spectrophotometric
method, respectively. Total Organic Carbon (TOC) concentrations were determined using a TOC-V
Analyzer (Shimadzu-TNM-1, Kyoto, Japan), with an estimated detection limit of 0.05 µg/L. Chemical
oxygen demand (COD) was measured using the alkaline potassium permanganate method, while TP
was measured using the potassium persulfate oxidation method. About 500 g of surface sediment
samples were collected from all sites using a surface sediment sampler (Van Veen, HYDRO-BIOS,
Kiel, Germany), and were then stored at −70 ◦C until use. The concentrations of Cr, Ni, Cu, Zn, As,
Cd, and Pb in sediments were measured as previously described [27]. Water transparency (SD) was
determined using a Secchi disk (diameter = 20 cm). The Chla was determined using the standard
methods [28]. Chloride (Cl−) was measured by silver nitrate titration. Sulfate (SO4

−) was measured
using the spectrophotometric method [29].

2.3. DNA Extraction and Illumina MiSeq Sequencing

The DNA was extracted from 0.5 g samples of wet sediment using a Power soil DNA isolation kit
according to the manufacturer’s protocols (Mo Bio, Carlsbad, CA, USA). The bacterial and archaeal
16S rRNA genes of all samples were amplified by barcoded primers to construct a community library
by high-throughput pyrosequencing. The primers and amplification conditions are shown in Table 2.
PCR amplification was conducted using an ABI9700 thermocycler (ABI, Foster City, CA, USA) with
TransStart Fastpfu DNA polymerase (TransGen, Beijing, China). Technically triplicate positive PCR
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products were purified with an AxyPrep DNA Gel Extraction Kit (Axygen, Tewksbury, MA, USA).
DNA concentrations of the purified PCR products were measured using QuantiFluor™-ST (Promega,
Madison, WI, USA). The Illumina Miseq platform was used to sequence the 16S rRNA gene fragments
of the bacterial and archaeal communities at Personalbio (Beijing Haocheng Mingtai Technology Co.
LTD, Beijing, China).

Table 2. PCR primers and amplification conditions.

Target Gene Primer Sequence (5′-3′) Thermal Programme Reference

Archaeal 16S rRNA

Arch519F:
CAGCCGCCGCGGTAA

Arch 915R:
GTGCTCCCCCGCCAATTCCT

5 min at 98 ◦C, 28 cycles at 98 ◦C
for 30 s, 55 ◦C for 45 s, 72 ◦C for 1
min, and a final extension at 72 ◦C

for 5 min.

[30]

Bacterial 16S rRNA

338F:
ACTCCTACGGGAGGCAGCA

806R:
GGACTACHVGGGTWTCTAAT

5 min at 95 ◦C, 30 cycles of 95 ◦C
for 1 min, 55 ◦C for 1 min, 72 ◦C

for 1 min, and a final extension at
72 ◦C for 7 min

[31]

2.4. Sequencing Data Processing and Statistical Analysis

All raw paired-end reads of samples were merged using Fast length adjustment of short reads
FLASH [32], and the low quality reads were removed by Trimmomatic [33]. After strict filtration, the
remaining 16S rRNA sequences were clustered into operational taxonomic units (OTUs) by setting
97% similarity, after which classification of the taxonomic groups was assigned using the Ribosomal
Database Project (RDP) classifier Bayesian Algorithm via the Silva database with a confidence threshold
of 0.7 [34–36]. The diversity statistics, including library coverage, Chao 1 value, Shannon index, and
abundance-based coverage estimator (ace), were obtained for each sample after OTUs had been
clustered using Mothur [37]. Based on the Bray–Curtis distances, principal coordinate analysis (PCoA),
nonmetric multidimensional scaling (NMDS), and hierarchical clustering were determined and plotted
using the R program [38]. Hierarchical cluster analysis was performed using the squared Euclidean
distance with Ward’s method to evaluate the pollution intensity of nutrients and heavy metals in the
two creeks. Because the longest detrended correspondence analysis (DCA) eigenvalues of bacteria
and archaea (0.360 and 0.388), respectively were <3, the correlations between environmental factors
and microbial OTUs composition were analyzed by redundancy analysis (RDA) using CANOCO
4.5 [39]. Monte Carlo permutations were used to construct the models of the microbe-environment
relationships. All reads have been archived at the NCBI Sequence Read Archive (SRA) under accession
number SRR5246806 for bacteria and SRR5247037 for archaea.

3. Results

3.1. Water Quality and Sediment Heavy Metal

The water quality of the two creeks is shown in Table 3. The pH of the sewage creek and industry
creek ranged from 7.13 to 7.26 (mean 7.17) and from 7.35 to 7.65 (mean 7.48), respectively. The DO
of the sewage creek and industry creek ranged from 5.66 to 6.97 mg/L (mean 6.10 mg/L) and 7.27
to 8.06 mg/L (mean 7.26 mg/L), respectively. The concentrations of inorganic phosphorus (IP), total
phosphorus (TP), NH4

+-N, NO3
−-N, and total nitrogen (TN) declined by 86.8%, 69.3%, 41.7%, 41.1%,

and 64.7% in the sewage creek, and by 30.7%, 47.4%, 14.4%, 4.3%, and 3.6% in the industry creek,
respectively. These results indicate that the self-purification ability of the sewage creek was stronger
than that of the industry creek because the hydraulic staying time of the sewage creek was shorter
(Table 1).
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Table 3. Water quality of the creeks (mg/L).

Sample Site DO T pH Chla TP TOC COD NH4
+-N NO3

−-N TN SO4
2− Cl−

Sewage Creek

D1 5.66 19.6 7.13 0.075 0.49 22.2 22.3 2.28 3.36 7.14 66.7 166.1
D2 5.68 19.8 7.14 0.023 0.18 16.9 23.0 1.05 1.37 4.51 59.2 133.5
D3 6.97 20.2 7.26 0.020 0.15 17.4 21.7 0.68 1.21 2.52 55.6 123.7

Mean 6.10 19.9 7.17 0.039 0.27 18.8 22.3 1.33 1.98 4.72 60.5 141.1

Industry Creek

J1 7.27 19.8 7.44 0.003 0.19 14.7 6.33 0.83 1.60 3.36 176.8 131.2
J2 6.47 19.4 7.35 0.003 0.15 15.1 5.55 1.06 1.38 3.66 129.6 100.5
J3 8.06 19.6 7.65 0.006 0.10 14.6 4.79 0.71 1.53 3.24 66.5 60.7

Mean 7.26 19.6 7.48 0.004 0.15 14.8 5.56 0.86 1.50 3.42 124.3 97.4

The concentrations of heavy metals in the sediments of the two creeks are shown in Table 4.
The concentrations of Cr, Cu, As, Cd, and Pb in the sediments of the industry creek were higher than
those of the sewage creek and the background values of the rivers around Taihu Lake [40–42].

Table 4. Content of heavy metals in the creek sediments (mg/kg).

Sample Site Cr Ni Cu As Cd Zn Pb

Sewage Creek

D1 44.17 30.83 38.12 9.04 0.62 131.78 102.58
D2 41.46 24.78 29.51 8.22 1.06 116.21 53.13
D3 40.45 24.89 30.98 7.35 0.91 137.92 10.25

Mean 42.02 26.83 32.87 8.20 0.86 128.63 55.32

Industry Creek

J1 45.82 29.68 51.13 12.79 1.55 197.35 92.51
J2 45.47 25.82 47.82 10.46 0.38 115.14 89.32
J3 41.99 23.10 21.75 10.14 1.21 70.70 52.96

Mean 44.42 26.20 40.23 11.13 1.05 127.73 78.26

As shown in Table 3, a tropic state index (TSI) was used to evaluate the tropic state of the two
creeks. The TSI of each site was calculated based on the method described by Wang et al. [43]. TSI < 30
indicates an oligotrophic, 30 ≤ TLI ≤ 50 a mesotropher, TLI > 50 a eutropher, 50 < TLI ≤ 60 a light
eutropher, 60 < TLI ≤ 70 a middle eutropher, and TLI > 70 a Hyper eutropher. As shown in Table 4, the
potential ecological risk (RI) was used to evaluate the degree of heavy metal pollution in the sediment
of the two creeks. The RI of each site was calculated based on the method described by Hakanson [44].
RI < 150 indicates slight risk, 150 < RI < 300 a middle risk, 300 ≤ RI < 60 a high risk, and RI ≥ 600 an
extraordinary risk. The result of the TSI and RI values are shown in Table 5.

The order of the TSI of the two creeks was D1 > D2 > D3 > J1 > J2 > J3. The potential contribution
to eutrophication of Taihu Lake was higher for the sewage creek than for the industry creek. The order
of RI was J1 > J2 > J3 > D2 > D3 > D1, and the potential ecological risk of heavy metals in the sediment
of the industry creek was higher than that of the sewage creek. These findings indicated that the heavy
metals pollution of the sediment in the industry creek posed a greater ecological risk to Taihu Lake
than that of the sewage creek.

Table 5. Tropic state index and ecological risk of the two creeks.

Sample site TSI Level RI Level

Sewage Creek

D1 76 Hyper 189 Middle
D2 69 Middle 277 Middle
D3 68 Middle 234 Middle

Industry Creek

J1 67 Middle 409 High
J2 63 Middle 364 High
J3 57 Light 310 High
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3.2. Bacterial Diversity of the Creeks

Using Illumina MiSeq pyrosequencing, six libraries of bacterial 16S rRNA genes were constructed.
A total of 18,265–47,498 high quality reads for the six samples of the two creeks were obtained from
263,713 raw reads of bacteria after filtering the low quality reads. After trimming adaptor and barcode
primers, an average sequence length of 440–444 nt was obtained. The number of OTUs, ACE, Chao1,
Coverage, and Shannon indices were estimated for the six samples (Table 6). The Coverage of the
six samples ranged from 98 to 99%, indicating that the libraries of the six samples could cover the
diversity of the bacterial community well. The Shannon indices ranged from 5.12 to 5.96 for the six
samples from the two creeks, with the highest diversity being found at D3 of the sewage creek and J3
of the industry creek. Based on an independent T-test, the Shannon indices between D2 and D3 had
no significant difference, but there were significant differences between D1 and D2 (p < 0.05), and D1
and D3 (p < 0.05). The Shannon indices between J2 and J3 has no significant difference, but significant
differences were observed between J1 and J2 (p < 0.05) and between J1 and J3 (p < 0.05). Therefore, the
diversity of each creek was D3 ≈ D2 > D1 and J3 ≈ J2 > J1, respectively. Additionally, the diversity of
the two creeks was D3 ≈ D2 > J3 ≈ J2 > J1 > D1. The Shannon indices of sediment in the same creek
increased as the distance from the pollution source increased.

Table 6. Diversity indices of bacteria and archaea of the two creeks.

Sample Reads OTUs Ace Chao1 Coverage Shannon

Bacterial 16S rRNA

D1 34,091 1207 1302 1302 0.99 5.12
D2 21,115 1144 1248 1275 0.99 5.91
D3 34,233 1332 1382 1391 0.99 5.96
J1 47,498 1192 1301 1320 0.99 5.32
J2 31,031 1328 1402 1421 0.99 5.85
J3 18,265 1115 1256 1273 0.98 5.75

Archaeal 16S rRNA

D1 32,255 690 748 733 0.98 4.27
D2 61,300 652 735 750 0.99 3.79
D3 36,363 590 721 703 0.99 3.86
J1 46,435 585 614 608 0.99 3.54
J2 39,875 523 679 694 0.98 3.53
J3 52,445 547 619 615 0.99 3.63

There are 41 phyla in the filtered sequences across six samples in total, including 31 at D1, 34 at D2,
and 39 at D3 of the sewage creek, and 33 at J1, 39 at J2, and 37 at J3 of the industry creek. The relative
abundance of sequences could be classified into known groups, but those with a relative abundance
<1% were assigned to ‘others’. The bacterial phyla of the samples are shown in Figure 2a. The dominant
phyla of the two creeks were Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi, which were present
with average percentages of 39%, 24%, 13%, and 8.1% in the sewage creek and 42%, 20%, 13%, and
9.1% in the industry creek, respectively. The classes of each sample in the phylum Proteobacteria were
different. Betaproteobacteria in the Proteobacteria phylum was the dominant class in all samples of the
sewage creek, but the dominant classes of different samples from the industry creek were different.
The dominant class was Epsilonproteobacteria at J1, which was the site nearest to the industrial pollution
sources, while Betaproteobacteria and Deltaproteobacteria were dominant at J2 and J3, respectively, which
were farthest from the industrial pollution source. Nitrospira was found in all three samples of the
sewage creek, with a relative abundance of more than 1%, but at J1 and J2 of the industry creek, the
relative abundance of Nitrospira was less than 1%.

As shown in Figure 3, the number of detected bacterial genera was 381 at D1, 396 at D2, and 406
at D3 of the sewage creek, and 391 at J1, 414 at J2, and 391 at J3 of the industry creek. The bacterial
genera are shown in Figure 3 (with an abundance of more than 0.01%). The number of detected genera
with an abundance of more than 1% in the sewage creek was 19 at D1, 27 at D2, and 22 at D3, while
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it was 21 at J1, 22 at J2, and 29 at J3 of the industry creek, respectively. The dominant genera of sites
nearest to the sewage source were Bacillus, Rhodocyclaceae, and Ferribacterium, while Anaerolineaceae
was dominant at sites far away from the pollution source. The dominant genera of sites nearest to the
industrial source was Sulfuricurvum, but Bacillus, Desulfuromonas, and Pseudomonasat were dominant at
sites far away from the pollution source.
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Clustering of the samples from the two creeks is shown in Figure 4a. The result showed that
clusters reflecting sites nearest to the pollution source (D1 and J1) were farthest away from each other,
indicating that the different pollution sources had different effects on microbial diversity. The NMDS
(see Supplementary Materials, Figure S1a) illustrated that J1 was far from J2 and J3, indicating a lower
similarity of bacterial communities between these three sites and that the bacterial community was
determined by the distances from the pollution source.

The shared OTUs of the samples from the same creek were analyzed using a Venn diagram
(Figure 5a,b). Reads in the shared OTUs of genes among the three samples from the same creek are
summarized in Table S1 (see Supplementary Materials). Anaerolineae shared the most OTUs among
the six sites, and the reads of OTUs were more than 1%. The number of shared OTUs of the sewage
creek was 933, while that of the industry creek was 838, indicating that the similarity of the bacterial
community of the industry creek was lower among sites. The unique OTUs of each sample from the
same creek were analyzed using a Venn diagram. At D1 there were 36 OTUS, while there were 62 at
D2, 87 at D3, 46 at J1, 82 at J2, and 78 at J3. Sites further from the pollution source had more unique
OTUs, indicating that the microbial communities changed with the distance from a pollution source.
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3.3. Archaeal Diversity of the Creeks

Six libraries of archaeal 16S rRNA genes were constructed using Illumina MiSeq pyrosequencing.
A total of 32,255–61,300 high quality reads for the six samples of the two creeks were obtained from
334,439 raw reads of bacteria after filtering the low quality reads. After trimming the adaptor and
barcode primers, an average sequence length of 399–403 nt was obtained. The number of OTUs,
as well as the ACE, Chao1, Coverage, and Shannon indices were estimated for the six samples (Table 6).
The Coverage of the six samples ranged from 98 to 99%, indicating that the libraries of the six samples
could cover the diversity of the archaeal community well. As shown in Table 6, the Shannon indices
ranged from 3.54 to 4.27 for the six samples from the two creeks, and the bacterial diversity of the two
creeks was not significantly different. The highest level of diversity was found at D1 of the sewage
creek and J3 of the industry creek. Independent T-tests revealed that were no significant differences
in Shannon indices between D2 and D3, while those between D1 and D2 (p < 0.05) and D1 and D3
(p < 0.05) differed. The Shannon indices of J2 and J3, as well as those of J1 and J3 (p < 0.05) also differed
significantly (p < 0.05), while there was no significant difference between J1 and J2. These findings
indicated that the diversity was similar between D2 and D3, as well as between J1 and J2. The order of
diversity of each creek was D1 > D2 ≈ D3 and J3 > J2 ≈ J1, respectively, indicating that the Shannon
indices of the samples in the sewage creek decreased with increasing distance from the pollution
source, while they increased with distance from the pollution source in the industry creek. The results
of the independent T-test showed that the influence of sewage pollution on archaeal diversity was
higher than that of industrial pollution. The Shannon index between D1 and D3 was significantly
different, but no significant difference was observed between J1 and J2, and for the same distance
between J1 and J2 as D1 and D3 (160 m away from the pollution source).

There were three phyla including 19 classes in the filtered sequences across six samples in
total, including 17 at D1, 15 at D2, and 15 at D3 of the sewage creek, and 15 at J1, 15 at J2, and
15 at J3 of the industry creek. The relative abundance of sequences could be classified into known
groups, and those with a relative abundance <0.04% were assigned to ‘others’. The archaeal phyla
of the samples are shown in Figure 2b. The dominant phyla of the two creeks were Euryarchaeota,
Thaumarchaeota, and Crenarchaeota, which were present with average percentages of 70.4% and 1.9% in
the sewage creek, and 67.3%, 31.8%, and 0.77% in the industry creek, respectively. Halobacteria from the
Euryarchaeota phylum was dominant in all the samples. Additionally, Soil_Crenarchaeotic_GroupSCG
belonging to the Thaumarchaeot phylum was the second most abundant class at sites D1 and D2, which
were near the sewage source. Furthermore, Miscellaneous_Crenarchaeotic_Group in the Thaumarchaeot
phylum was the second most abundant class at site D3, which was far away from the pollution
source. In the industry creek, the Miscellaneous_Crenarchaeotic_Group belonging to the Thaumarchaeot
phylum was the second most abundant class at J1, which was closest to the pollution source, while
Soil_Crenarchaeotic_GroupSCG of Thaumarchaeot phylum was the second most abundant class at D3,
which was far away from the pollution source. Miscellaneous_Crenarchaeotic_Group was one of the most
abundant microbial groups in the environment, such as lakes [45] and terrestrial hot springs [46].

At the genus level, the number of detected archaeal genera was 42 at D1, 43 at D2, and 46
at D3 of the sewage creek and 48 at J1, 45 at J2, and 41 at J3 of the industry creek. The archaeal
genera are shown in Figure 6. The dominant genera in all the sites were significantly different.
The number of detected genera with an abundance >1% was 8 at D1, 10 at D2, and 14 at D3 in
the sewage creek, but 14 at J1, 13 at J2, and 9 at J3 in the industry creek. The dominant genus
was Halobacterium in all the samples. The main genera of sites nearest to the sewage source
were Candidatus_Nitrososphaera, Methanobacterium, and Methanobacteriaceae, while they were
Candidatus_Parvarchaeum and Methanobacterium at sites far away from the pollution source. The main
genera of sites nearest to the industrial source were Methanobacterium (at J1 and J2), while they were
Candidatus_Nitrososphaera and Candidatus_Nitrosoarchaeum at sites far away from the pollution source.

As shown in Figure 4b, clear clustering of the samples from the two creeks was observed.
The result showed that the sites (D1) nearest to the pollution source were far away from the other sites
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in the same creek, but the distance of the sites of the industry creek was closer than that of the sewage
creek, indicating that the sewage and industrial effluents had different effects on the archaeal diversity.
The MNDS analysis (see Supplementary Materials, Figure S1b) illustrated that the site of the same
creek located in different quadrants, indicating a lower similarity of the archaeal community among
three sites and the distances from a pollution source, determined the archaeal community.

The shared OTUs of the samples from the same creek were analyzed using a Venn diagram
(Figure 7). The reads in the shared OTUs of genes among the three samples of the same creek are
summarized in Table S2. Halobacteria shared the most OTUs among the six samples, and the reads of
the OTUs were more than 30% in the sewage creek and 40% in the industry creek. The number of
shared OTUs of the sewage creek was 278, while it was 249 for the industry creek, indicating that the
similarity of the archaeal community in the industry creek was lower than that of the sewage creek.
The unique OTUs of each sample from the same creek were analyzed via a Venn diagram. The unique
OTUs at D1 were 226, while they were 126 at D2, 109 at D3, 171 at J1, 81 at J2, and 155 at J3, respectively.
Sites further from the pollution sources had less unique OTUs, indicating that the distance from a
pollution source had an effect on the archaeal communities in the environment.
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4. Discussion

Human activities generally decrease environmental quality, diversity, and microbial abundance.
Because of the different physicochemical properties and toxicity of sewage and industrial effluents,
they have different impacts on microbial diversity and microbial abundance [47,48].

The six sampling sites were classified into four distinct clusters based on RI, TSI, SO4
2−, Cl−,

NH4
+-N, and NO3

−-N (Figure 8). Cluster 1 was formed by D2 and D3, cluster 2 by D1, and cluster 3
by J3, while J2 and J3 were included in cluster 4. The clusters were recognized to have hypereutrophic,
moderate eutrophic, light eutrophic, and high heavy metal pollution risk. The deterioration of water
quality in this basin mainly resulted from domestic sewage and industrial wastewater [49,50], which
was consistent with the results of the present study. Moreover, hierarchical cluster analysis showed
that the pollution types of the two creeks were significantly different. Previous studies indicated that
the nutrients and heavy metals might alter microbiological processes (e.g., decomposition of organic
matter) and lead to changes in the microbial density and composition [51,52].
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As shown in Table 6, the wastewater entering the creek in Duangou Village was mainly sewage,
and the primary pollutants were nitrogen and phosphorus. The wastewater discharging into the creek
in Jixian Village was mainly from a chemical fiber factory and iron foundry. The concentration of
nitrogen and phosphorus in the water in the industry creek was lower than that of the sewage creek.
As shown in Table 2, the concentration of heavy metals (Cr, Cu, As, Cd and Pb) in the sediment of
the industry creek was higher than that of the sewage creek. The microbial community of the sewage
creek was more abundant than that of the industry creek, and the abundance of the microbial diversity
increased with increased distance of the sampling sites from the pollutant source. It is interesting
that the order of bacterial diversity in both creeks was D3 ≈ D2 > D1, but D1 > D2 ≈ D3 for archaea,
which indicated that water quality was the main factor for determining the microbial community of
both creeks.

As shown in Figures 3 and 4, the microbial community composition of the two creeks between D2
and J3, as well as that of D3 and J2 were classified into the same cluster, which was inconsistent with
the result of the hierarchical cluster analysis (Figure 8). This may indicate that the heat map reflected
the classification of OTUs of the microbial communities, but could not accurately reflect the effects
of environmental factors on the microbial structure and relationship between microbial abundance
and environment factors. Moreover, the physiochemical properties of sediment could have had some
impact on the microbial community structure as indicated in the previous studies [53].

According to RDA, the environmental factors in the first two axes explained 60.3 and 23.8%
of the total variance in bacterial composition, as well as 59.8% and 30.2% of that of the archaeal
composition in the sediment of the two creeks. However, only SO4

2− (p = 0.009, F = 3.34, 999 Monte
Carlo permutations) significantly contributed to the bacterial assemblage-environment relationship,
while no other factors passed the Monte Carlo significance test. These findings indicate that the
archaeal population was less influenced by environmental factors.

Among bacteria, Proteobacteria was the main phylum in the sediment at all six sites in both
creeks, which was consistent with the results of previous studies of freshwater systems [10,22,54],
including Taihu Lake and the Yangtze River estuary [55,56]. As shown in Table S1, Betaproteobacteria
was dominant in the sediment of the sewage creek, and the abundance of Betaproteobacteria at the site D1
was higher than at sites D2 and D3. Betaproteobacteria was positively correlated with nitrogen nutrients
and TSI, which was consistent with the results of previous studies that found that the abundance
of Betaproteobacteria was correlated with nutrient concentrations and cellulose decomposition [57,58].
Epsilonproteobacteria and Deltaproteobacteria were dominant in the sediment at the site (J1), which was
close to the industrial effluents’ source, where the concentrations of heavy metals and sulfate ions were
higher than at other sites. Previous studies indicated that Epsilonproteobacteria was abundant in the
animals' digestive tracts and near undersea hydrothermal vents, and that it exhibited good resistance
to toxicity [59,60] and the ability to degrade some toxic substances [61]. However, Epsilonproteobacteria
has rarely been detected in the sediments in the Taihu Basin [62]. Previous studies indicated that
Deltaproteobacteria was ubiquitous in the environment, and closely related to the sulfur cycle between
the water and sediment [63]. According to the RDA, Epsilonproteobacteria and Deltaproteobacteria
were positively correlated with SO4

2− concentration and RI. Previous studies showed that some
Epsilonproteobacteria have the ability to oxidize sulfur and sulfide into sulfate, as well as the ability
to degrade some toxic substances [64,65]. Additionally, Deltaproteobacteria were shown to be closely
related to sulfate reduction in sediment [66]. Further analysis found that the main genera belonging to
Epsilonproteobacteria at J1 were Sulfurovum, Sulfurimonas, Sulfurospirillum, and Sulfuricurvum, which
was similar to the results of previous studies of a submarine hydrothermal spring [67], marine
surface sediment [68], and pond sediments [69]. Moreover, some researchers found that these
bacterial genera could utilize elemental sulfur, sulfite, arsenate, or nitrate as electron acceptors [70].
The main bacterial genera of Deltaproteobacteria at J1 were Desulforhabdus amnigena, Desulfobacterium,
and Desulfobacteraceae, which have been shown to use acetate as a substrate, as well as to strongly
degrade organic pollutants [71]. Flavobacteria belonging to Bacteroidetes was more abundant at sites
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near the pollution source than at other sites in the same creek, and was positively correlated with
Cl−, TSI, and nutrients (Figure 9a). These findings were consistent with the results reported by
Abell et al. [72]. Previous studies indicated that Flavobacteria was dominant in a coking wastewater
treatment system [73], alkaline environment system [74], and a highly saline environment [75].
Chloroflexia, which was found to be ubiquitous in Taihu Lake [76], was only detected in the sediment
of the sewage creek. Chloroflexia was positively correlated with Cl−, TSI, TOC, and nutrients, but
negatively correlated with RI (Figure 9a). Previous studies indicated that Chloroflexia is a photosynthetic
bacteria that cannot live without light [77]. The Secchi-depth of the industry creek was low (mean
(SD) = 0.24 m), indicating that light does not reach the bottom; therefore, the environment was
unfavorable for the survival of Chloroflexi. Previous studies indicated that Chloroflexia was suited to
live under brackish, nutrient-rich conditions [78]. Nitrospira, which was found to be more abundant
at sites far away from the pollution source (D2, D3, J2, and J3), has often been found in freshwater
ecosystems [79,80], sewage treatment systems [81], and anoxic environments as nitrite oxidizers [82].
Based on the results of RDA (Figure 9a), Nitrospira was positively correlated with NH4

+-N, NO3 Cl−-N,
TOC, and TSI, but negatively correlated with RI. Previous studies indicated that heavy metals might
lead to a decline in the population of Nitrospira [83,84], but an increase in the population of Nitrospira
with a low concentration of NH4

+ (10 mg/L) in water [85].
Fewer phyla of archaea than bacteria were found in all samples of both creeks. Moreover, the

effects of water quality of different pollution sources on archaeal diversity were not as obvious as those
on bacterial diversity. Most archaeal sequences from the sediment of both creeks were affiliated with
Euryarchaeota, which was consistent with the results reported by Liu et al. [86]. Halobacteria belonging to
the phylum Euryarchaeota was dominant at all sites of both creeks, and showed no significant positive
correlation with the environmental factors. However, previous studies indicated that Halobacteria exists
in highly saline aquatic environments [87,88]. The second most abundant archaea in the sediment of
the two creeks belonged to Thaumarchaeota. These previous studies indicated that Thaumarchaeota have
been linked to methanogenic activities and ammonia oxidation in the environment [89,90]. The relative
abundance of Methanobacteria was slightly higher in the sediment of the industry creek than that of the
sewage creek. RDA analysis showed that Methanobacteria was positively correlated with TSI, NH4

+-N,
NO3

−, Cl−-N, TOC, Cl−, and SO4
2+, but not with RI. Previous studies have shown that Methanobacteria

was often found in sewage treatment facilities and some freshwater environments [91,92], and exhibited
good resistance to toxicity [93].
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5. Conclusions

The analysis of the diversity of bacteria and archaea in creeks influenced by sewage and industrial
waste revealed that domestic and industrial pollution had different effects on the diversity and
microbial abundance of the creeks. The influence of domestic and industrial pollution on the diversity
and microbial abundance was dependent on the distances between the sampling sites and their
pollution sources. A higher diversity and similarity among the sites was observed for bacteria in the
sewage impacted creek than for that in the industrial waste impacted creek. Additionally, the water
quality and diversity and abundance of both bacteria increased with the distance from the pollutant
source in both creeks. The diversity and abundance of bacteria were more heavily influenced by
the distance between the sampling sites and the pollutant source than those of archaea; therefore,
the bacterial diversity and abundance could be a better index of ecological changes in creeks affected
by domestic and industrial pollution than the archaeal diversity and abundance.
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