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Abstract: Accurate and reliable streamflow forecasting plays an important role in various aspects
of water resources management such as reservoir scheduling and water supply. This paper shows
the development of a novel hybrid model for streamflow forecasting and demonstrates its efficiency.
In the proposed hybrid model for streamflow forecasting, the empirical wavelet transform (EWT)
is firstly employed to eliminate the redundant noises from the original streamflow series. Secondly,
the partial autocorrelation function (PACF) values are explored to identify the inputs for the artificial
neural network (ANN) models. Thirdly, the weights and biases of the ANN architecture are tuned
and optimized by the multi-verse optimizer (MVO) algorithm. Finally, the simulated streamflow is
obtained using the well-trained MVO-ANN model. The proposed hybrid model has been applied to
annual streamflow observations from four hydrological stations in the upper reaches of the Yangtze
River, China. Parallel experiments using non-denoising models, the back propagation neural network
(BPNN) and the ANN optimized by the particle swarm optimization algorithm (PSO-ANN) have
been designed and conducted to compare with the proposed model. Results obtained from this study
indicate that the proposed hybrid model can capture the nonlinear characteristics of the streamflow
time series and thus provides more accurate forecasting results.

Keywords: empirical wavelet transform; multi-verse optimizer; artificial neural networks; annual
streamflow forecasting; data-driven modeling

1. Introduction

Assessing and estimating water available in a basin over long periods (from months to years) is an
important precondition for efficient reservoir scheduling and water supply. For this reason, constructing
a forecasting model for long-term streamflow time series is essential [1]. At present, methods for
long-term streamflow forecasting can be mainly grouped into two categories: physically-based models
and data-driven models. Technically, physical-based models usually consider multi-factors including
rainfall, runoff, evaporation, soil moisture, infiltration, snow cover and melt, etc., while data-driven
models usually take advantage of the implicit information contained in the historical streamflow time
series to forecast the future streamflow [2]. Physically-based models can suffer from the drawbacks
that physical relationships between different hydrological features are complex, and sometimes the
lack of hydrological data makes it difficult to complete physical modeling [3].

In the last few decades, numerous data-driven models for hydrological time series forecasting have
been proposed to increase forecasting accuracy. The autoregressive moving average (ARMA) approach,
since first being proposed by Box and Jenkins [4] and then popularized by Carlson et al. [5], has been
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one of the most widely-used methods for hydrological forecasting [6–8]. The ARMA technique assumes
the time series to be stationary and to follow the normal distribution [4]. However, streamflow time
series is usually characterized by features of both nonlinearity and unstableness; thus, linear-related
time series forecasting techniques are not sufficient to capture the characteristics of hydrological
time series [9]. In this case, artificial neural networks (ANNs) have been put forward and widely
exploited for hydrological forecasting to deal with the nonlinearity and instability of hydrological
time series. Hornik et al. [10] have demonstrated that ANN can approximate any measurable function
to a certain degree. One of the most obvious advantages of the ANN technique is that one does
not need to have a well-defined process for algorithmically converting inputs into outputs [11].
The advantages and disadvantages of ANN in the application of hydrologic research have been
discussed in a comprehensive review by Govindaraju [12,13].

Although there have been many achievements in the application of the ANN technique using
single ANN, there is still much room to improve. One traditional method is to optimize the weights
and biases of ANN. In the training process of ANN, the target is to find the optimal weights and biases
to minimize the learning error. Since the behavior of ANN is highly dependent on the initial values
of weights and biases, employing different heuristic searching algorithms becomes popular in the
training process [14–18]. Mirjalili et al. [14] employed the gravitational search algorithm (GSA) and
PSOGSA (particle swarm optimization, gravitational search algorithm) as training methods to train
the neural networks. Khan and Sahai [15] demonstrated the superiority of the new metaheuristic bat
algorithm (BA) over the genetic algorithm (GA), particle swarm optimization (PSO), the “standard”
back propagation (BP) algorithm and the Levenberg-Marquardt algorithm. In Ref. [16], the GA was
exploited to search for the optimal weights and biases of the back propagation neural network (BPNN).
Cheng et al. [17] proposed an ANN model based on quantum-behaved PSO (ANN-QPSO) for daily
runoff forecasting. In Ref. [18], a gravitational search algorithm (GSA)-based radial basis function
(RBF) approach (GSA-RBF) was exploited for predicting debris flow velocity.

Another new trend to improve the performance of the single ANN model is to take advantage of data
pre-analysis methodologies such as eliminating stochastic volatilities from the original time series [19,
20], using decomposed subseries as inputs [21,22] and employing a decompose-predict-ensemble
framework [23,24]. Wu et al. [19] combined moving average (MA), singular spectrum analysis (SSA),
wavelet multi-resolution analysis (WMRA) and ANNs to improve the forecasting accuracy of daily
flows. In Ref. [20], the MA method, principle component analysis (PCA) and SSA were coupled
with ANNs to predict rainfall time series. Besides these aforementioned data preprocessing-based
techniques, wavelet and empirical mode decomposition (EMD) have been the most commonly-used
data pre-analysis techniques in recent years. Kisi et al. [21] developed a wavelet-support vector
regression (WSVR) model in which the discrete wavelet transform (DWT) was employed as a data
preprocessing tool. The discrete wavelet transform has been proven to have improved the forecasting
accuracy. Budu et al. [22] decomposed the observed reservoir inflow time series into subseries using
DWT with different mother wavelet functions. Then appropriate subseries were used as inputs for
constructing ANN models. Fu et al. (2014) developed a hybrid EMD-RBFNN model for predicting
regional groundwater depth time series [23]. Zhao et al. [24] combined chaotic least squares support
vector machine (CLSSVM) with EMD for annual runoff forecasting. The EMD-CLSSVM model has
been proven to have attained significant improvement compared with the single CLSSVM model in
long-term runoff time series forecasting. Nourani et al. [25] provided a comprehensive introduction to
the application of the wavelet artificial intelligence (AI) conjunction model in simulating important
processes at the hydrologic cycle.

Although wavelet transform (WT) and EMD have been used widely in recent years, the behavior
of different WT-based forecasting models depends highly on the selection of mother wavelets, and
EMD suffers from the drawbacks of a lack of mathematical theory and sensitivity to both noise and
sampling. In this case, Gilles [26] proposed a new adaptive data analysis method, empirical wavelet
transform (EWT), to overcome the drawbacks of these decomposition techniques. The efficiency of
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EWT has been demonstrated by a few benchmarks in Ref. [26]. Additionally, EWT has been applied to
several forecasting models successfully since being proposed in 2013. Hu and Wang [27] combined
the EWT with Gaussian process regression (GPR) for forecasting short-term wind speed. Wang and
Hu [28] proposed a GPR model combined with autoregressive integrated moving average (ARIMA),
extreme learning machine (ELM), SVM and LSSVM for short-term wind speed forecasting. In both
Ref. [27] and Ref. [28], EWT was employed as a data pre-analysis technique to filter the noises of the
original time series.

Multi-verse optimizer (MVO) is a novel nature-inspired optimization algorithm, which was
originally introduced by Mirjalili et al. [29]. In Ref. [29], the efficiency of MVO has been demonstrated
by 19 benchmark functions and five real engineering optimization problems. Results have proven that
the MVO algorithm outperforms the best algorithms proposed in the literature on the majority of the
test beds. Additionally, the MVO algorithm has exhibited good performance in optimizing the weights
and biases of a feedforward multilayer perceptron neural network [30], as well as the parameters of
SVM [31].

In consideration of the good performance of EWT and MVO, a hybrid EWT-MVO-ANN model is
proposed for more accurate annual streamflow forecasting results in which the EWT is employed to
decompose the streamflow time series into subseries and eliminate the noises; the MVO algorithm
is adopted to optimize the parameters of ANN; and ANN trained with MVO is employed for time
series forecasting. Before constructing MVO-ANN models, the input variables are selected according
to the PACF (partial autocorrelation function) values. Parallel experiments as BPNN, PSO-ANN and
MVO-ANN with and without the EWT denoising process have been designed and conducted to apply
to annual streamflow data of four hydrological stations in China to highlight the superiority of the
proposed EWT-MVO-ANN model. The results of the experiments of this study have demonstrated
that EWT is an effective way to filter the noises of annual streamflow series and thus improving
prediction accuracy, and also, the MVO algorithm exhibits better performance compared with the
Levenberg–Marquart (LM) and PSO algorithms in the training of ANN models for annual streamflow
forecasting. It has been demonstrated by the results of this study that the proposed hybrid model can
provide an effective modeling approach to capture the nonlinear characteristics of annual streamflow
series, thus providing more satisfactory forecasting results.

2. Methodology

2.1. Empirical Wavelet Transform

The empirical wavelet transform (EWT) was first introduced by Jerome Gilles [26] in 2013.
The main idea of this method is to extract the amplitude modulated-frequency modulated (AM-FM)
signals of the given signal by designing an appropriate wavelet filter bank adaptively. EWT produces
intrinsic mode functions (IMFs) according to the information contained in the spectrum of the signal.
The decomposition process of signal x(t) using EWT can be described as follows:

Step 1 Compute the Fourier spectrum F(ω) of the original time series x(t) using the fast Fourier
transform algorithm (FFT).

Step 2 Extract different modes by proper segmentation of the Fourier spectrum and determine
the boundaries.

Step 3 After the boundaries are determined by appropriate segmentation, calculate the approximation
and detail coefficients by applying the scaling function and empirical wavelets that correspond
to each detected segment.

Equipped with the obtained set of local maxima plus 0 and π, the boundaries ωi of each
segment are defined as the center between two consecutive maxima. Let { f0, f1, f2, ..., fN} be the
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set of frequencies corresponding to the set of local maxima and f0 = 0, fN = π. The boundaries ωi can
be given as:

ωi =
fi + fi+1

2
f or 1 ≤ i ≤ N − 1 (1)

then the Fourier segments will be [0, ω1], [ω1, ω2], ..., [ωN−1, π]. A transition phase Tn of width 2τn is
defined centered around each ωn [26].

After determining the set of boundaries, a bank of N wavelet filters, comprised of one low-pass
filter and N − 1 band-pass filters, is defined for each segment based on the detected boundaries.
The expressions for empirical wavelets ψi(ω) and scaling function ϕi(ω) are given by Gilles [26], as
shown in Equations (3) and (4), respectively:

ψi(ω) =


1 , i f (1 + γ)ωi ≤ |ω| ≤ (1− γ)ωi+1

cos
[

π
2 β
(

1
2γωi+1

(|ω| − (1− γ)ωi+1)
)]

, i f (1− γ)ωi+1 ≤ |ω| ≤ (1 + γ)ωi+1

sin
[

π
2 β
(

1
2γωi

(|ω| − (1− γ)ωi)
)]

, i f (1− γ)ωi ≤ |ω| ≤ (1 + γ)ωi

0 , otherwise

(2)

ϕ1(ω) =


1 , i f |ω| ≤ (1− γ)ω1

cos
[

π
2 β
(

1
2γω1

(|ω| − (1− γ)ω1)
)]

, i f (1− γ)ω1 ≤ |ω| ≤ (1 + γ)ω1

0 , otherwise

(3)

where β(x) is an arbitrary function such that:

β(x) =


0 , i f x ≤ 0

and β(x) + β(1− x) = 1 ∀x ∈ [0, 1]
1 , i f x ≥ 1

(4)

The widely-used function β(x) according to Ref. [32] is:

β(x) = x4
(

35− 84x + 70x2 − 20x3
)

(5)

Additionally, τn = γωn, 0 < γ < 1, γ can be selected using the below expression:

γ < mini

(
ωi+1 −ωi
ωi+1 + ωi

)
(6)

The detail coefficients are given by the inner products with the empirical wavelets:

Wx(i, t) = 〈x(t), ψi(t)〉 =
∫

x(τ)ψi(τ − t)dτ = F−1[x(ω)ψ(ω)] (7)

while the approximation coefficient by the inner products with the scaling function:

Wx(1, t) = 〈x(t), ϕ1(t)〉 =
∫

x(τ)ϕ1(τ − t)dτ = F−1[x(ω)ϕ1(ω)] (8)

where F−1 denotes the inverse Fourier transform.
Finally, the reconstruction of the original signal is obtained according to:

x(t) = Wx(1, t) ∗ ϕ1(t) +
N

∑
i=2

Wx(i, t) ∗ ψi(t) (9)

where ∗means convolution.



Water 2017, 9, 406 5 of 20

2.2. The Proposed MVO-ANN Model

2.2.1. Multi-Verse Optimizer

The multi-verse optimizer (MVO) algorithm, proposed by Mirjalili et al. [29], is inspired by the
theory of the multi-verse in physics. Multi-verse theory believes that there is more than one big bang,
and each big bang causes the birth of a universe [29]. It builds a mathematical model of the white/black
holes (wormholes) tunnels that connect two universes and exchange the objects of universes using
the wheel mechanism. At every iteration, the universes are sorted according to their inflation rates,
and the one with the highest inflation rate is chosen by the roulette wheel to have a white hole. MVO
is mathematically modeled as follows:

Assume that:

U =


x1

1 x2
1 · · · xd

1
x1

2 x2
2 · · · xd

2
...

...
...

...
x1

n x2
n · · · xd

n

 (10)

where d is the number of parameters (variables) and n is the number of universes (candidate solutions):

xj
k =

{
xj

k r1 < NI(Ui)
xj

i r1 ≥ NI(Ui)
(11)

where xj
i denotes the j-th parameter of the i-th universe, Ui denotes the i-th universe, NI(Ui) is the

normalized inflation rate of the i-th universe and r1 ranges from 0 to 1.
Assuming that there is a wormhole tunnel between one universe and the best universe,

the transportation can be described as follows:

xj
i =


{

Xj + TDR× ((ubj − lbj)× r4 + lbj) r3 < 0.5
Xj − TDR× ((ubj − lbj)× r4 + lbj) r3 ≥ 0.5

r2 < WEP

xj
i r2 ≥WEP

(12)

where Xj denotes the j-th parameter of the best universe, WEP and TDR are worm existence probability
and travelling distance rate, respectively, lbj and ubj denote the lower and upper bound of the j-th
variable, respectively, and r2, r3, r4 are random numbers in [0, 1]. The formulae for WEP and TDR are
defined as follows:

WEP = min + l ×
(

max−min
L

)
(13)

TDR = 1− l1/p

L1/p (14)

where min and max are the minimum and maximum, which are defined as 0.2 and 1, respectively,
l denotes the current iteration, L denotes the maximum iterations and p is the exploitation accuracy
over the iterations and is defined as 6. The number of universes is defined as 30, and the maximum
number of iterations is 500 in this study.

2.2.2. Artificial Neural Network

As a typical intelligent learning paradigm, the artificial neural network has been widely used
in many areas of science and engineering such as daily water level forecasting [33], rainfall-runoff
simulation [34] and wind speed forecasting [35]. As can be seen in Figure 1, a typical three-layer
feed-forward ANN usually consists of three layers including input, hidden and output layers [36].
Each layer contains nodes that are connected to nodes of the other layer(s). Additionally, the connection
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is associated with a weight. Assume a simplified neural network with three layers. The output of the
j-th hidden node can be obtained as given in Equation (15):

Hj = f

(
n

∑
i=1

wijxi − aj

)
j = 1, 2, ..., l (15)

where f (x) = 1/(1 + exp(−x)) and is the transfer function of the hidden layer; n denotes the number
of nodes in the input layer; l denotes the number of nodes in the hidden layer; wij represents the
connection weight from the i-th input node to the j-th hidden node; and aj represents the bias of the
j-th hidden node.
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After calculating the outputs of the hidden layer, the final output can be given as follows:

Ok =
l

∑
j=1

Hjwjk − bk k = 1, 2, ..., m (16)

where m denotes the number of nodes in the output layer, wjk denotes the connection weight from the
j-th hidden node to the k-th output node and bk is the bias of the k-th output node.

2.2.3. ANN Trained with MVO

Training of neural networks is a form of supervised learning in which the weights and thresholds
of the network are updated for the purpose of reducing the function error whenever the error of
the training outputs does not match the expected accuracy. Unlike traditional local optimization
training algorithms, such as the gradient descent method and Levenberg–Marquart (LM) algorithm,
the global optimization algorithms can overcome the drawbacks of local minima and obtain more
efficient solutions. The MVO algorithm is exploited to find an optimal combination of connection
weights and biases to minimize the fitness error. In the MVO algorithm, the iteration begins with
creating a set of random universes. When training the neural network, the weights and thresholds
of the network are represented by the parameters of the MVO algorithm. In each iteration of MVO,
the weights and thresholds are optimized.

In the MVO-ANN model, the ANN model is trained with MVO. In order to evaluate the
performance of the MVO-ANN model, root mean square error (RMSE) is adopted as the fitness
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function. Define the number of training samples as q, then the fitness function can be described
as follows:

Ei =
m

∑
k=1

(Yk
i −Ok

i)
2

(17)

f itness =

√√√√1
q

q

∑
i=1

Ei (18)

where Yk
i and Ok

i denote the predicted and observed values of the k-th output node in the i-th training
sample, respectively.

2.3. Partial Autocorrelation Function

Selecting appropriate input variables for ANN models is an essential precondition for ANN
modeling. The relationship between inputs and outputs has a significant impact on the forecasting
accuracy of ANN models. To address this matter, PACF values of the streamflow time series are adopted
to identify the input variables. Assume xt(t = 1, 2, ..., n) to be the target variable. If PACF values at
lags greater than k are inside the 95% confidence interval, [−1.96/

√
n, 1.96/

√
n], xt−1, xt−2, ..., xt−k

are employed as input variables. If all PACF values are in the 95% confidence interval, the input
variables are chosen according to a trial and error method by systematically increasing the number of
sequential data from the latest year to the sixth year. The calculation steps of the PACF values of the
target variable xt(t = 1, 2, ..., n) can be briefly described as follows [37]:

Firstly, let γk denote the covariance at lag k (γ0 represents the variance), γk can be calculated
as follows:

γk =
1
n

n−k

∑
i=1

(xi − x)(xi+k − x), k = 0, 1, ..., M (19)

Secondly, the autocorrelation coefficient at lag k, denoted by ρk, is calculated:

ρk =
γk
γ0

(20)

Finally, the partial autocorrelation coefficient at lag k, denoted as αkk, is obtained as follows:

α11 = ρ1

αk+1,k+1 =
ρk+1 −∑k

k=1 ρk+1−jαkj

1−∑k
j=1 ρjαkj

αk+1,j = αkj − αk+1,k+1.αk,k−j+1 (j = 1, 2, ..., k)

 (21)

where k = 1, 2, ..., M.

2.4. The Hybrid EWT-MVO-ANN Model

The overall structure of the proposed hybrid EWT-MVO-ANN model is shown in Figure 2. As can
be seen in Figure 2, the detailed procedure of the proposed hybrid EWT-MVO-ANN model can be
described in four steps:

Firstly, the EWT is exploited to decompose the original streamflow series into several detailed
components and an approximated component. The approximated component corresponds to the
general trend of the original series while the detailed components are high-frequency IMFs that belong
to different frequency bands of the streamflow series. Secondly, the residual series is thrown away
to eliminate the noises and smooth the original streamflow series. The sum of the remaining modes
produces the reconstructed series. Thirdly, the PACF values are calculated to determine the best
combination of input variables. Fourthly, the MVO algorithm is exploited to find the optimal weights
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and biases of the ANN architecture to minimize the fitness error. Finally, the forecasting results of the
streamflow series are obtained according to the well-trained MVO-ANN model.Water 2017, 9, 406 8 of 20 
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2.5. Model Performance Evaluation

It is important to apply multiple error measures when evaluating the forecasting ability of the
developed models. This paper considers four statistical measures including RMSE, mean absolute
error (MAE), mean absolute percent error (MAPE) and the coefficient of correlation (R). Among the
four statistical measures, RMSE is sensitive to extremely large or small values of a time series and
reflects the degree of variation; MAE reflects the actual forecasting error in a more balanced perspective;
and MAPE is a measure of accuracy with no units. The RMSE, MAE and MAPE are defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
qp(i)− qo(i)

)2 (22)

MAE =
1
N

N

∑
i=1

∣∣qp(i)− qo(i)
∣∣ (23)

MAPE =
1
N

N

∑
i=1

∣∣qp(i)− qo(i)
∣∣

qo(i)
× 100% (24)

where qp(i) and qo(i) denote the predicted and observed annual streamflow series, respectively, and N
denotes the length of data.

R shows the degree to which two datasets are related to each other and ranges from −1 to 1.
The larger the absolute value of R, the more the predicted and observed data are related. The coefficient
of correlation (R) is defined as:
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R =
∑N

i=1

(
qp(i)− qp

)
(qo(i)− qo)√

∑N
i=1

(
qp(i)− qp

)2
×
√

∑N
i=1(qo(i)− qo)

2
(25)

where qp and qo denote the average values of the predicted and observed runoffs, respectively.

3. Model Construction and Development

3.1. Study Area and Data Collection

Annual streamflow time series of four hydraulic gauging stations located in two river basins
in the upper reach of the Yangtze River in China, i.e., Xiangjiaba, Panzhihua, Luoxidu and Sanleiba,
are researched in this study.

The first river basin is referred to as the Jinsha River Basin. It flows through the provinces of
Qinghai, Sichuan and Yunnan in western China. Originating in the uppermost of the Yangtze River, the
Jinsha River has a length of 3486 km, accounting for 77% of the total length of the upper Yangtze River,
and has a drainage area of 480,000 km2, accounting for 50% of the total area of the upper Yangtze River.
The observed annual streamflow data of Xiangjiaba and Panzhihua stations, which lie on the lower
reaches of the Jinsha River basin, are selected as the first two study areas. For Xiangjiaba station,
annual streamflow data from 1959 to 2012 (54 observations) are studied. The training dataset is from
1959 to 2000 (42 observations), whilst the validation data set is from 2001 to 2012 (12 observations).
For Panzhihua station, streamflow data from 1953 to 2012 (60 observations) are studied. The training
dataset is from 1953 to 1998 (46 observations), whilst the validation dataset is from 1999 to 2012
(14 observations).

The second river basin is referred to as the Jialing River Basin. Jialing River is a major tributary of
the Yangtze River in the Sichuan Basin. The Jialing River Basin has a main stream length of 1120 km
and a drainage area of 160,000 km2, accounting for about 17% of the drainage area of the Yangtze River
Basin. Two hydraulic gauging stations, which are called Luoduxi and Sanleiba, are selected in this
study. Annual streamflow data from 1954 to 2008 (55 observations) for both Luoduxi and Sanleiba
are studied. Data from 1954 to 1996 (43 observations) are for training, whilst those from 1997 to 2008
(12 observations) are for validation.

Figure 3 provides a schematic of the Jinsha River Basin and the Jialing River Basin, as well as
the four hydrological gauging stations researched in this study. Annual streamflow data of the four
stations are presented in Figure 4. Basic statistical information, such as the mean value, standard
deviation (SD), minimum (Min.), maximum (Max.), skewness (Skew.) and kurtosis (Kurt.), of these
datasets is illustrated in Table 1.

Table 1. The statistical information of the streamflow data of the four stations. Skew., skewness;
Kurt., kurtosis.

Station Catchment
Area (km2)

Statistics Information Time Range

Mean
(m3/s)

SD
(m3/s)

Min.
(m3/s)

Max.
(m3/s) Skew. Kurt. Training Validation

Xiangjiaba 458,800 4593 730 3245 6286 0.39 2.31 1959–2000 2001–2012
Panzhihua 259,177 1830 298 1211 2423 0.13 2.03 1953–1998 1999–2012
Luoduxi 38,064 686 229 300 1400 0.40 2.94 1954–1996 1997–2008
Sanleiba 28,896 308 73 188 496 0.58 2.72 1954–1996 1997–2008
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3.2. Decomposing and Reconstruction Using EWT

Since EWT borrows the framework of classic WT in the decomposition and reconstruction
processes [27], and three-level decompositions have been considered as the most appropriate in
various studies, such as wind speed forecasting [27,28], drought index prediction [38] and daily
river flow forecasting [39]; the decomposition level is determined as three in this study. Graphical
representations of the decomposed subseries using EWT for four study stations are illustrated in
Figure 5. As can be seen in Figure 5, the original annual streamflow series is decomposed into three
independent modes and a residual for the four stations, respectively.
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Among these modes, Mode 1 is a trend term that describes the general tendency of the original
annual streamflow series. The modes present changing frequencies, amplitudes and wavelengths.
For all stations, Mode 1 has the lowest frequency, the longest wavelength and contributes the most to
the original time series. For the following subseries, the frequency is increased, while the wavelength
and contribution are decreased. After decomposing the original streamflow series, the residue is thrown
away because it mainly contains noisy information, and the remaining modes are reconstructed in
a new series. The graphical representations of the reconstructed series are shown in Figure 6. As can
be seen in Figure 6, the reconstructed series tends to be smoother after the denoising processes.
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3.3. Input Determination

To obtain the input variables for each model, the PACF values between each streamflow series
and their antecedent values at lag k are calculated using the method described in Section 2.3, as well as
the PACF values between the reconstructed streamflow series and their antecedent values. Graphical
representations of the PACF values are shown in Figure 7 for the four stations.
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According to the input variable selection method described in Section 2.3, the input variables of
the models for the original and the reconstructed series of the four stations are finally determined as
described in Table 2.

Table 2. Input determination for the original and reconstructed series.

Stations
Inputs Combination

Original Reconstructed

Xiangjiaba xt−1, xt−2 xt−1, xt−2
Panzhihua xt−1, xt−2 xt−1, xt−2, xt−3, xt−4
Luoduxi xt−1, xt−2 xt−1, xt−2, xt−3, xt−4
Sanleiba xt−1, xt−2 xt−1, xt−2, xt−3

3.4. Parameter Settings

To verify the efficiency of the proposed MVO-ANN model, the back propagation neural network
(BPNN) trained with the LM algorithm and ANN trained with the PSO algorithm (PSO-ANN) have
been constructed for annual streamflow forecasting.
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After determining the optimal combination of input variables using the method described in
Section 2.3, the streamflow data are normalized to [0, 1]. In most cases, the sigmoid function is used
as the transfer function in the hidden layer, while the linear activation function is used in the output
layer for ANNs [40]. In this study, all of the ANN models exploit the tan-sigmoid function and purelin
function as the activation function for the hidden layer and output layer, respectively. For the single
BPNN models, the LM training function (TrainLM) is exploited to speed up the training process.
For the MVO-ANN models, the number of universes is defined as 30, and the maximum number of
iterations is 500 according to Ref. [29]. A value of 1000 for the maximum iteration number has also
been tried for the MVO-ANN model in the experimental process. Results have shown that there is no
significant improvement in accuracy, but the experiment time is much longer. The WEP is increased
linearly from 0.2 to 1, while TDR is decreased from 0.6 down to zero according to Equations (13)
and (14), respectively. For the PSO-ANN models, the population size is set as 30 and the maximum
number of iteration is set as 500 to compare with the MVO-ANN model. The optimal numbers of
hidden nodes for all ANN models including BPNN, PSO-ANN and MVO-ANN with and without
EWT are determined using grid search (GS) algorithm. In the GS algorithm, the searching range is set
as Ref. [2,29] and the grid step is set as one [35]. Each experiment is repeated 10 times, and results with
the best accuracy are presented.

4. Results and Analysis

To evaluate the performance of these models, RMSE, MAE, MAPE and R of the BPNN, PSO-ANN
and MVO-ANN models with and without the denoising process are analyzed and compared.
The computations related to all of the models including BPNN, PSO-ANN, MVO-ANN, EWT-BPNN,
EWT-PSO-ANN and EWT-MVO-ANN are implemented in the MATLAB environment in a computer
with Intel core i5, 2.6-GHz CPU and 4 GB of RAM. The performance indices of the four stations in the
training and validation periods are given in Tables 3–6, respectively.

Table 3. Forecasting performance of the models for Xiangjiaba Station.

Models
Training Validation

RMSE
(m3/s)

MAE
(m3/s)

MAPE
(%) R RMSE

(m3/s)
MAE
(m3/s)

MAPE
(%) R

BPNN 660.37 534.91 11.5 0.525 721.17 602.00 14.7 0.223
PSO-ANN 603.42 480.81 10.4 0.629 725.10 590.04 14.0 0.227

MVO-ANN 576.73 447.18 9.5 0.672 774.46 655.93 15.3 0.514
EWT-BPNN 578.23 387.91 8.9 0.708 577.72 500.92 11.2 0.649

EWT-PSO-ANN 482.79 363.97 8.1 0.786 543.31 465.48 10.6 0.665
EWT-MVO-ANN 431.27 316.94 7.2 0.838 513.98 448.51 10.3 0.724

Table 4. Forecasting performance of the models for Panzhihua Station.

Models
Training Validation

RMSE
(m3/s)

MAE
(m3/s)

MAPE
(%) R RMSE

(m3/s)
MAE
(m3/s)

MAPE
(%) R

BPNN 285.79 224.09 12.3 0.443 226.40 191.85 10.0 0.494
PSO-ANN 264.85 214.35 12.2 0.453 212.22 176.76 9.6 0.496

MVO-ANN 251.34 202.00 11.4 0.537 217.47 177.89 9.7 0.538
EWT-BPNN 193.35 140.15 8.1 0.766 208.66 187.40 9.7 0.632

EWT-PSO-ANN 180.35 144.71 8.2 0.800 209.13 169.76 9.3 0.612
EWT-MVO-ANN 159.39 124.89 7.2 0.844 181.19 158.20 8.0 0.727
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Table 5. Forecasting performance of the models for Luoduxi Station.

Models
Training Validation

RMSE
(m3/s)

MAE
(m3/s)

MAPE
(%) R RMSE

(m3/s)
MAE
(m3/s)

MAPE
(%) R

BPNN 209.72 164.64 24.5 0.526 398.13 356.80 57.2 0.406
PSO-ANN 196.87 161.81 25.5 0.540 327.48 286.82 50.2 0.380

MVO-ANN 177.94 136.75 21.8 0.648 284.38 257.35 44.4 0.532
EWT-BPNN 184.41 137.98 20.6 0.790 271.71 216.21 40.6 0.571

EWT-PSO-ANN 122.40 85.17 13.6 0.854 241.08 208.13 33.6 0.623
EWT-MVO-ANN 118.85 91.11 13.8 0.863 184.66 157.95 27.3 0.611

Table 6. Forecasting performance of the models for Sanleiba Station.

Models
Training Validation

RMSE
(m3/s)

MAE
(m3/s)

MAPE
(%) R RMSE

(m3/s)
MAE
(m3/s)

MAPE
(%) R

BPNN 66.88 45.62 16.2 0.614 53.33 41.28 17.1 0.496
PSO-ANN 65.88 50.16 16.8 0.601 38.62 33.59 13.2 0.489

MVO-ANN 60.32 49.81 16.3 0.618 36.01 30.07 12.0 0.521
EWT-BPNN 49.12 37.56 12.2 0.766 35.98 31.13 11.8 0.697

EWT-PSO-ANN 45.02 36.05 11.6 0.813 31.37 25.06 9.6 0.720
EWT-MVO-ANN 38.87 26.86 8.4 0.861 35.24 29.68 11.9 0.752

It is clear from Tables 3–6 that the proposed EWT-MVO-ANN model obtains the smallest RMSE,
MAE and MAPE and the biggest R compared with the other five models. Comparison between the
models with and without the EWT algorithm reveals that combining EWT with the ANN model is
an effective way to increase the forecasting accuracy. Though the proposed EWT-MVO-ANN model
exhibits much better performance than the other models, the configuration is more complex on account
of data pre-processing and parameter optimization. Thus, the computation time required is much more
than the single BPNN model without the denoising and optimization processes. Detailed analyses are
submitted to further evaluate the performance of these models.

Table 3 displays the forecasting results of the six models in terms of RMSE, MAE, MAPE and R for
Xiangjiaba Station. For models without denoising process, the MVO-ANN model outperforms the other
models in the training period in terms of the four indices. However, the RMSE, MAE and MAPE are a
little bigger than the other models in the validation period. The comparison between BPNN, PSO-ANN
and MVO-ANN demonstrates that the simple LM algorithm may be more suitable for forecasting in
some occasions. For models with EWT, the EWT-MVO-ANN model outperforms the other models
both in the training and validation periods in terms of the four indices. Overall, the EWT-MVO-ANN
method outperforms the other models. For example, the R of the EWT-MVO-ANN model is 0.724
while those of the BPNN, PSO-ANN, MVO-ANN, EWT-ANN and EWT-PSO-ANN are 0.223, 0.227,
0.514, 0.649 and 0.665 in the validation period, respectively.

Table 4 displays the forecasting performance of the six models in terms of RMSE, MAE, MAPE
and R for Panzhihua Station. For the four indices, the MVO-ANN model improved the BPNN model
by 3.94% decreasing in RMSE, 7.28% decreasing in MAE, 3% decreasing in MAPE and 8.91% increasing
in R in the validation period while the improvement of the EWT-MVO-ANN model to the BPNN
model is 19.97%, 17.54% and 20% decreasing in RMSE, MAE and MAPE and 47.17% increasing in
R, respectively.
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Table 5 displays the forecasting performance of the six models in terms of RMSE, MAE, MAPE
and R for Luoduxi Station. For the four indices, the MVO-ANN improved the BPNN model by 28.57%
decreasing in RMSE, 27.87% decreasing in MAE, 22.38% decreasing in MAPE and 31.03% increasing
in R in the validation period, while the improvement of the EWT-MVO-ANN model to the BPNN
model is 53.61%, 55.73% and 52.27% decreasing in RMSE, MAE and MAPE and 50.49% increasing in R,
respectively. These results demonstrate that the MVO algorithm outperforms the simple LM algorithm
in the training of ANN models, and the use of EWT contributes greatly to the forecasting accuracy of
streamflow time series.

Similarly, Table 6 displays the forecasting performance of the six models in terms of RMSE, MAE,
MAPE and R for Sanleiba Station. For the four indices, the MVO-ANN improved the BPNN model
by 32.48% decreasing in RMSE, 27.16% decreasing in MAE, 29.82% decreasing in MAPE and 0.05%
increasing in R in the validation period while the improvement of the EWT-MVO-ANN model to
the BPNN model is 33.92%, 28.10% and 30.41% decreasing in RMSE, MAE and MAPE and 51.61%
increasing in R, respectively.

Table 7 illustrates the comparisons of the forecasting performance between EWT-PSO-ANN
and EWT-MVO-ANN models. It can be concluded from Table 7 that the EWT-MVO-ANN models
outperform the EWT-PSO-ANN models in RMSE, MAE, MAPE and R for the four stations in
both training and validation periods, which demonstrate the superiority of MVO algorithm in
training ANNs.

Table 7. The comparison between the EWT-PSO-ANN and EWT-MVO-ANN models for the four stations.

Stations Models
Training Validation

RMSE
(m3/s)

MAE
(m3/s)

MAPE
(%) R RMSE

(m3/s)
MAE
(m3/s)

MAPE
(%) R

Xiangjiaba EWT-PSO-ANN 482.79 363.97 8.1 0.786 543.31 465.48 10.6 0.665
EWT-MVO-ANN 431.27 316.94 7.2 0.838 513.98 448.51 10.3 0.724

Panzhihua
EWT-PSO-ANN 181.40 143.40 8.3 0.793 223.91 198.04 10.0 0.612

EWT-MVO-ANN 159.39 124.89 7.2 0.844 181.19 158.2 8.0 0.727

Luoduxi
EWT-PSO-ANN 147.36 117.73 18.5 0.783 211.60 173.32 29.3 0.582

EWT-MVO-ANN 118.85 91.11 13.8 0.863 184.66 157.95 27.3 0.611

Sanleiba
EWT-PSO-ANN 48.10 37.42 12.4 0.788 34.59 29.13 11.2 0.705

EWT-MVO-ANN 38.87 26.86 8.4 0.861 35.24 29.68 11.9 0.752

To further describe the effectiveness of EWT algorithm in enhancing the accuracy of ANN models
in streamflow forecasting, forecasting results of the MVO-ANN and EWT-MVO-ANN models for the
four stations are illustrated in Figure 8, where line charts with markers on the left side represent the
forecasted and observed values of streamflow, and scatter plots with a linear fitting line of the predicted
and observed values are exhibited on the right side of Figure 8. Subgraphs on the right side of Figure 8
are drawn using the “Fit linear” tool in the OriginPro environment. The intercepts of the linear fitting
lines of all subgraphs have been fixed as zero to better display the differences between two different
models. From the left side of Figure 8, it is obvious that the prediction lines of the EWT-MVO-ANN
models approximate the observed values better than the MVO-ANN models. From the right side of
Figure 8, it can be seen that the scatters of the EWT-MVO-ANN models distribute a little more tightly
around the linear fitting line compared with the MVO-ANN models. From the description above,
the effectiveness of EWT in the forecasting of annual streamflow time series is demonstrated.
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Figure 8. Forecasting results of the MVO-ANN and the EWT-MVO-ANN models for the four stations
(left, forecasted streamflow and observed streamflow with a dotted line dividing the training and
validation stages; right, scatter plot with a linear fitting line).

Generally, it can be concluded from the forecasting results of the experiments of this study that
the ANN model trained by LM cannot give a satisfactory performance in the forecasting of annual
streamflow series. Additionally, the MVO method can achieve better performance in the training of
ANN models compared with the LM and PSO algorithms. Compared with the MVO-ANN model,
the EWT-MVO-ANN model leads to a much better performance in terms of the four evaluation indices,
which demonstrates that EWT is an effective alternative decomposition technique in improving the
forecasting accuracy of annual streamflow time series.
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5. Conclusions

This paper develops a hybrid EWT-MVO-ANN model for streamflow time series forecasting.
EWT is exploited to extract useful information and eliminate stochastic volatility from the original
streamflow series. The ANN architecture trained with MVO method is employed as a predictor.
To fully demonstrate the effectiveness of the proposed model, data from four hydrological stations
with different levels of discharge and different volatilities in the upper reaches of the Yangtze River,
China, are studied. Among the six models, including BPNN, PSO-ANN, MVO-ANN, EWT-BPNN,
EWT-PSO-ANN and EWT-MVO-ANN, the EWT-MVO-ANN model performs the best according to
four statistical indices (RMSE, MAE, MAPE and R). The following results have been concluded:

1 Compared with the BPNN model, the ANN models trained by intelligent algorithms obtain better
forecasting results. The performance of the MVO algorithm is better than the PSO algorithm.

2 By discarding the residue of the subseries, the forecasting ability of the EWT-MVO-ANN model
has been improved, which demonstrated that EWT is suitable for data pre-analysis for streamflow
time series.

3 The proposed model is appropriate for annual streamflow series forecasting for streamflow data
with different magnitudes and fluctuations in the four hydraulic gauging stations in China.

This study proposes a novel evolutionary algorithm to optimize the weights and biases of a traditional
ANN, but the performances of ANNs with different network structures, such as the radial basis function
network, the general regression neural network and the ELM, have not been studied. More attention
will be paid to the performances of different ANNs for forecasting in the future study.
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