
water

Article

Stability Analysis of Hydrodynamic Pressure
Landslides with Different Permeability Coefficients
Affected by Reservoir Water Level Fluctuations
and Rainstorms

Faming Huang 1, Xiaoyan Luo 2 and Weiping Liu 1,*
1 School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China;

huang1503518@sina.cn
2 School of Civil Engineering and Architecture, Jiangxi Science and Technology Normal University,

Nanchang 330013, China; luoxiaoyan2@126.com
* Correspondence: liuweiping@ncu.edu.cn; Tel.: +86-138-7910-1369

Received: 8 May 2017; Accepted: 16 June 2017; Published: 22 June 2017

Abstract: It is significant to study the variations in the stability coefficients of hydrodynamic pressure
landslides with different permeability coefficients affected by reservoir water level fluctuations and
rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability
coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis.
The operating conditions of stability coefficients calculation are reservoir water level variations
between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day
continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure
landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate
leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s
to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water
level increases, and a rapid increase in the water level leads to a high stability coefficient when the
permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability
coefficient initially decreases and then increases as the reservoir water level declines when the
permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same
landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water
level drawdown when the permeability coefficient increases from 1.16× 10−6 m/s to 1.16× 10−4 m/s.
Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient
increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and
the rate of decrease in the stability coefficient initially increases and then decreases as the permeability
coefficient increases.

Keywords: hydrodynamic pressure landslide; finite element analysis; stability coefficient;
permeability coefficient; reservoir water level; rainstorm

1. Introduction

The saturation level and other material properties of reservoir landslides have changed constantly
since the impoundment of Three Gorges Reservoir in 2003. Additionally, the hydraulic uplift pressure,
hydrostatic pressure and hydrodynamic pressure on the reservoir landslide change periodically due to
heavy rainfall and reservoir water level fluctuations [1–5]. Potential landslide instabilities threaten
the safety of local residents and property [6–8]. Therefore, it is necessary to explore the change
characteristics of landslide stability coefficients under the influences of heavy rainfall and reservoir
water level fluctuations.
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The landslide permeability coefficients and the mechanism of landslide instability associated with
reservoir water level fluctuations are different. Hence, the reservoir landslides in the Three Gorges
Reservoir area (TGRA) can be divided into three categories: hydrodynamic pressure landslides,
hydraulic uplift pressure landslides and composite landslides [9]. Most of the reservoir landslides in
the area are hydrodynamic pressure landslides. The hydrodynamic pressure formed by the water head
difference between the landslide groundwater level and the reservoir water level alters the landslide
stability coefficient [10]. Additionally, rainfall infiltration increases the landslide groundwater level and
decreases the landslide stability coefficient [11,12]. As a result, the seepage field and stability coefficient
of a hydrodynamic pressure landslide change significantly due to changes in the reservoir water level,
rainfall rate and permeability coefficients [13]. Therefore, it is important to study the seepage fields
and characteristics of changes in the stability coefficients of hydrodynamic pressure landslides.

In recent years, many studies of landslide seepage fields and stability coefficients have been
performed in the context of reservoir water level fluctuations and heavy rainfall. The groundwater
levels and pore water pressures in landslides are affected by the rates of variations in reservoir water
levels [14] and by saturated permeability coefficients [15]. As a result, the landslide stability coefficient
varies based on changes in the reservoir water level and saturated permeability coefficient [13,16–19].
Notably, some studies have shown that the seepage fields and stability coefficients of reservoir
landslides in the TGRA are affected by fluctuations in the reservoir water level [20–24]. Furthermore,
Xiang, et al. [25] studied the stability coefficient of a hydrodynamic pressure landslide affected by
reservoir water level fluctuations; Chen and Liu [26] studied the seepage field and stability coefficient
variations of a reservoir landslide in the TGRA based on different permeability coefficients; and
Hsu and Chien [27] studied the landslide stability coefficient under extreme climates. Moreover,
Rahimi, et al. [28] found that the saturated permeability coefficient plays an important role in
rainfall-induced landslides. However, there is a lack of knowledge regarding the rate of decrease of
the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients
under the conditions of heavy rainfall and a rapid decline in the reservoir water level.

The saturated-unsaturated seepage theory and finite element analysis have been widely used
to analyze changes in the landslide seepage field and stability coefficient. Hu, et al. [29] studied the
effects of reservoir water level fluctuations in Three Gorges Reservoir on the stability of Huangtupo
Riverside Slumping Mass #II using saturated-unsaturated seepage theory and finite element analysis.
Jian, et al. [30] analyzed the seepage field of the Qianjiangping landslide in TGRA at various
rainfall rates and reservoir water levels. Song, Yan, Zhang, Lu and Yi [20] studied the effects of
the hydraulic properties of the soil and the fluctuation velocity of reservoir water on landslide stability.
Chien, et al. [31] used a finite element model to determine the stability coefficients of regional shallow
landslides induced by extreme rainfall. In this study, the Sifangbei landslide in the TGRA is used as an
example. The seepage field, stability coefficient, and rate of decrease of the stability coefficient of the
Sifangbei landslide are studied under different operating conditions based on saturated-unsaturated
seepage theory and finite element analysis.

2. Materials

2.1. Engineering Geology

The Sifangbei landslide [32] faces the Yangtze River and exhibits a planar, bush-shaped structure.
The landslide has a maximum length of 850 m and maximum width of 400 m and encompasses an
area of 34 × 104 m2. The elevation of the frontal part of the landslide is approximately 125 m, and
the elevation of the upper part is approximately 325 m. The mean depth of the sliding surface is
approximately 23 m. Hence, the Sifangbei landslide has an estimated volume of 782 × 104 m3. The left
and right boundaries of the landslide are defined by bedrock and a gully, respectively. The upper
boundary is defined by the interface between the bedrock and the soil. A topographical map of the
landslide is shown in Figure 1.
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Figure 1. Topographical map of the Sifangbei landslide with the locations of monitoring points. 

The geological section A-A′ of the Sifangbei landslide is shown in Figure 2. The landslide is 
mainly composed of silty clay and fragmented rubble included in a quaternary deposit. The 
engineering structure is loose and disordered. The formation lithology of the landslide is thick and 
bedded in Jurassic sandstone, silty mudstones and muddy siltstones. The thickness of the slip zone 
is approximately 1 m, and it is composed of silty clay and fragmented rubble. The groundwater 
types of the landslide area are primarily loose debris pore water and bedrock fissure water. In 
addition, the groundwater levels are mainly affected by the reservoir water level and rainfall. 

Figure 2 shows that the morphology of the landslide is characterized by a fold line. The 
landslide can be divided into an anti-slide section and slide section according to the morphological 
characteristics of the profile. The slope of the slide surface in the anti-slide section is conservative or 
adverse; as a result, the resisting sliding force is greater than the driving force in the anti-slide 
section. However, the slope of slide surface in the slide section is steep; hence, the driving force is 
greater than the resisting sliding force. The slide mass of the Sifangbei landslide between elevations 
of 125 m and 145 m is mainly affected by the resisting sliding force, while the slide mass between 145 
m and 175 m is mainly affected by the slide force. 

 
Figure 2. Geological cross-section of the Sifangbei landslide. 

Figure 1. Topographical map of the Sifangbei landslide with the locations of monitoring points.

The geological section A-A′ of the Sifangbei landslide is shown in Figure 2. The landslide is mainly
composed of silty clay and fragmented rubble included in a quaternary deposit. The engineering
structure is loose and disordered. The formation lithology of the landslide is thick and bedded
in Jurassic sandstone, silty mudstones and muddy siltstones. The thickness of the slip zone is
approximately 1 m, and it is composed of silty clay and fragmented rubble. The groundwater types of
the landslide area are primarily loose debris pore water and bedrock fissure water. In addition, the
groundwater levels are mainly affected by the reservoir water level and rainfall.

Figure 2 shows that the morphology of the landslide is characterized by a fold line. The landslide
can be divided into an anti-slide section and slide section according to the morphological characteristics
of the profile. The slope of the slide surface in the anti-slide section is conservative or adverse; as a
result, the resisting sliding force is greater than the driving force in the anti-slide section. However, the
slope of slide surface in the slide section is steep; hence, the driving force is greater than the resisting
sliding force. The slide mass of the Sifangbei landslide between elevations of 125 m and 145 m is
mainly affected by the resisting sliding force, while the slide mass between 145 m and 175 m is mainly
affected by the slide force.
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2.2. Landslide Deformation Characteristics and Stability Analysis

The Sifangbei landslide has undergone surface deformation since the impoundment of Three
Gorges Reservoir. Field investigation shows that surface cracks have mainly occurred at the frontal
part of the landslide. These cracks threaten the lives and property of local residents. To monitor
the landslide deformation, three groundwater stage gauges, two global positioning system (GPS)
points [33,34] and one rain gauge were installed. Point GPS-1 was located on the upper part of the
landslide, and point GPS-2 was located on the frontal part of the landslide. Figure 3 shows that
the cumulative displacement of GPS-1 was very low at approximately 30 mm, while the cumulative
displacement of GPS-2 was very high at approximately 375 mm from April 2007 to December 2009.

Additionally, Figure 3 illustrates that GPS-2 moved relatively slowly from October 2007 to
February 2009 but exhibited a high rate of movement from April 2007 to September 2007 and from
April 2009 to July 2009. The monitoring values indicated that notable deformation mainly occurred
when the reservoir water level declined from 175 m to 145 m, and the displacement rate decreased
when the reservoir water level rose from 145 m to 175 m. Hence, the Sifangbei landslide can be
considered a hydrodynamic pressure landslide. Moreover, point GPS-2 moved fast during the rainy
season each year, indicating that landslide deformation was affected by heavy rainfall. Furthermore,
the cumulative displacement of the landslide has increased slowly since October 2009; hence, the
landslide has been relatively stable in recent years.
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3. Methods

3.1. Saturated-Unsaturated Seepage Theory

Changes in the landslide seepage field are significantly influenced by reservoir water level
fluctuations and rainfall infiltration. Additionally, saturated and unsaturated zones form through
changes in the seepage field. Assuming that pressure head h is the dependent variable in the governing
equation, the two-dimensional seepage governing equation can be obtained according to the mass
conservation equation and Darcy’s law:

∂
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∂h
∂x

)
+

∂

∂y
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∂h
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)
+ Q = mwρwg

∂h
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(1)

where t is time; kx and ky are the permeability coefficients in the horizontal and vertical directions,
respectively; ρw is the density of water; g is gravitational acceleration; Q is the boundary discharge;
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and mw is the saturated bulk weight. The variable mw can be defined as the negative value of the
partial derivative of the moisture volume percentage θw of matrix suction (u∂ − uw):

mw = − ∂θw

∂(u∂ − uw)
(2)

where u∂ and uw are the pore water pressure and pore air pressure, respectively. In addition, mw

can be regarded as the absolute value of the slope of the soil-water characteristic curve (SWCC).
The combined seepage governing equation, boundary conditions and initial conditions were used as
inputs in the SEEP/W module of Geo-studio 2007 software (Company of GEO-SLOPE, Calgary, AB,
Canada) [35] to calculate the seepage field. Then, the SWCC and permeability function curve were
obtained. Additionally, the transient seepage field of the landslide can be obtained, and the associated
initial condition is defined as follows.

h(x, y, 0) = h0(x, y, 0) (3)

The head boundary condition is as follows.

k
∂h
∂n

= h(x, y, t) (4)

The flux boundary condition is given by the following expression.

k
∂h
∂n
|γ2 = q(x, y, t) (5)

In Equations (3)–(5), k is the tensor of the permeability coefficient and n is the unit normal vector
of the boundary plane.

3.2. Calculation Theory of the Stability Coefficient

The shear strength theory of unsaturated soil considering a negative pore water pressure is used
to calculate the stability coefficient:

τ = c′ + (σ− u∂) tan ϕ′ + (u∂ − uw) tan ϕb (6)

where c′ and ϕ′ are the parameters of the effective stress strength, σ is the total normal stress, u∂ is the
pore air pressure, uw is the void water pressure, (u∂ − uw) is the matrix suction, and ϕb is the increased
angle of the strength curve induced by the increase in matrix suction (set as a constant in this study).

The current methods used to calculate the landslide stability coefficient considering the matrix
suction generally include strength reduction methods and limiting equilibrium methods [36].
Limiting equilibrium methods are widely used and mainly include the Swedish circle method [37],
Bishop method [38], Residual thrust method [39] and the Morgenstern-Price (M-P) method [40].
However, the first three stability coefficient calculation methods simplify the interaction force between
soil sections; as a result, it is difficult to reflect the actual stress conditions of each soil section.
Additionally, the M-P method can determine the stability coefficient of a landslide with any slide
surface and reflect the interaction force between the soil sections of the landslide, even for the most
dangerous slide surfaces. Therefore, the M-P method is used to calculate the stability coefficient of the
Sifangbei landslide.

3.3. Geomechanical Model of the Sifangbei Landslide

The most dangerous geological section is determined according to the engineering geological
characteristics of the Sifangbei landslide. In addition, the most dangerous geological section is used to
calculate the seepage field and stability coefficient [41]. Two different materials mainly comprise the



Water 2017, 9, 450 6 of 16

geomechanical model: silty clay and fragmented rubble contained in the slide mass and interbedded
sandstone and mudstone contained in the ledge rock. The silty clay and fragmented rubble are
shown in faint yellow in Figure 4, and the inter-bedded sandstone and mudstone are shown in gray.
The anti-slide section in the frontal part of the landslide is submerged at a reservoir water level of
145 m. Therefore, reservoir water level fluctuations mainly affect the slide section in the frontal part of
the landslide and have little effect on the anti-slide section.

The slide mass should be divided into many meshes before using 2-dimensional finite element
analysis. The mesh size has some impact on the computational precision of the stability coefficient.
Some studies show that the computational precision of stability coefficient has an upward tendency
and then become stable with the gradually decrease of the mesh size. And also shows that the
computational precision and efficiency of stability coefficient will decline when the mesh size is set to a
very small value [42]. In this study, the experiment shows that the computational precision of stability
coefficient is 0.01 when the mesh size is set to 5 m. Therefore, a mesh size of 5 m is suitable for the
finite element analysis of Sifangbei landslide. As shown in Figure 4, 4526 grid cells and 4418 nodes are
created using the mesh division method.

To determine the initial groundwater level when the reservoir water level declines from 175 m to
145 m, groundwater levels are measured in the hydrological wells. The average groundwater level
depth in STK1 wellis approximately 1.2 m, and the average depth in STK2 well is approximately 2.6 m
when the reservoir water level is 175 m without rainfall. In addition, the elevation of the tapping point
in the frontal part of the landslide is set at 175 m. Hence, the initial saturation line of the Sifangbei
landslide is established as the blue line in Figure 4. Furthermore, to explore the seepage field when the
reservoir water level increases from 145 m to 175 m, the stable landslide saturation line of the 145 m
reservoir water level is regarded as the initial saturation line.
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Figure 4. Main sliding section of the landslide.

The mechanical parameters of the slide mass and slide bed are determined as shown in Table 1
based on geological prospecting and laboratory experiments. The material of the slide mass is assumed
to have the characteristics of unsaturated soil, and the volumetric water content of the soil and
permeability coefficient of the slide mass are functions of the matrix suction when the seepage field is
simulated using the SEEP/W module [43].

The soil–water characteristic curve (SWCC) can be used to estimate various parameters used to
describe unsaturated soil behavior. It is a relationship between soil suction and some measure of the
water content. The volumetric water content and permeability coefficient are constant when the slide
mass is in a saturated state. However, they should be determined through laboratory experiments
when the slide mass is in an unsaturated state [44]. It is difficult and time-consuming to measure the
SWCC for the unsaturated soil using laboratory tests. Therefore, the soil volumetric water content
and permeability coefficient are set as empirical model [45]. There are many empirical models used
to fit the SWCC, such as the Brooks-Corey model [46], the Gardner model [47], the Van-Genuchten
model [48] and the Gardner-Russo model [49]. Among these empirical models, the Van-Genuchten
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model is able to obtain a good agreement with the experimental results, and it is applicable for the
SWCC measurement of silty clay. Therefore, when simulating the seepage field of Sifangbei landslide,
the Van-Genuchten empirical curve in the SEEP/W module and the parameters in the saturated state
are used to determine the SWCC of the slide mass as shown in Figure 5.

Table 1. Parameters of the Sifangbei landslide.

Landslide Density
(KN/m3)

Cohesion
Force (kPa)

Internal Friction
Angle (◦)

Saturated Moisture
Content (m3/m3)

Saturated Permeability
Coefficient (m/s)

Slide mass 19.8 21.5 14.9 0.4 1.16 × 10−5

Slide bed 22.5 2000 40 0.15 1.16 × 10−8
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3.4. Operating Conditions and Boundary Conditions

The rates of increases in the reservoir water level are set to Vr1 = 0.6 m/d, Vr2 = 0.9 m/d and
Vr3 = 1.2 m/d, and the corresponding durations are 50 days, 33 days and 25 days, respectively,
from 145 m to 175 m. The rates of decreases in the reservoir water level are set to Vd1 = 0.6 m/d,
Vd2 = 0.9 m/d and Vd3 = 1.2 m/d. Additionally, the landslide stability coefficients are calculated under
the combined operating conditions of a decrease in the reservoir water level of 1.2 m/d and a three-day,
heavy rainstorm in the fifty-year return period. The heavy rainstorm occurs when the reservoir water
level declines from 161 m to 159 m. The adopted operating conditions are shown in Table 2. In addition,
the boundary conditions [20] of all operating conditions are as follows.

(1) The water head boundary condition in the frontal part of the landslide is determined according
to the reservoir water level. The landslide surface above the reservoir water level is set as the rainfall
infiltration boundary. The elevation of the initial water head is set as 175 m. The reservoir water level
between 145 m and 175 m is set as the variable water head boundary condition when the reservoir
water level declines from 175 m to 145 m. The bedrock surface is set as the confining flux boundary.

(2) A statistical analysis of daily rainfall data in Wanzhou district from 1960 to 2013 was conducted.
The results show that the daily rainfall is R = 90 mm for the three-day heavy rainstorm in the fifty year
return period.
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Table 2. Different combinations of operating conditions for landslide stability calculations.

Number of
Conditions Continuous Combined Load Fluctuation Rate of the

Reservoir Water Level (m/d) Rainstorm

1-1
Self-weight+loads on the ground

surface+ reservoir water level
decline from 175 m to 145 m

0.6 m/d

None
1-2 0.9 m/d

1-3 1.2 m/d

2-1 Self-weight+loads on the ground
surface+ reservoir water level rise

from 145 m to 175 m

0.6 m/d

2-2 0.9 m/d

2-3 1.2 m/d

3-1
Self-weight+loads on the ground

surface+ reservoir water level
decline from 175 m to 145 m

1.2 m/d Three-day heavy
rainstorm

4. Results and Discussion

4.1. Seepage Field and Stability Coefficient Calculations for the Sifangbei Landslide

4.1.1. Seepage Field Analysis of the Sifangbei Landslide

The seepage fields of the Sifangbei landslide under different operating conditions are calculated.
Figure 6 shows that the saturation lines of the landslide decline with the reservoir water level.
Additionally, the saturation lines exhibit convex phenomena under the conditions of reservoir water
level drawdown, and a hydraulic head difference exists between the landslide groundwater level and
the reservoir water level. Moreover, an obvious convex phenomenon can be observed when the rate of
decline in the reservoir water level increases.

Figure 7 shows that the landslide saturation lines increase with increasing the reservoir water level.
Additionally, a concave phenomenon occurs as the reservoir water level increases, and a more obvious
concave phenomenon can be observed when the rate of increase in the reservoir water level increases.
Moreover, Figure 8 illustrates that the landslide saturation lines increase quickly when the three-day
heavy rainstorm occurs. Then, the saturation lines decrease gradually after the rainstorm stops.
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4.1.2. Stability Coefficient Analysis of the Sifangbei Landslide

The stability coefficients of the Sifangbei landslide under different reservoir water levels of 145 m
and 175 m are calculated as shown in Table 3. Table 3 shows that the maximum stability coefficient is
1.254 when the reservoir water level rises to 175 m at a rate of 1.2 m/d. Additionally, the minimum
stability coefficient is 1.072 when the reservoir water level declines to 145 m at a rate of 1.2 m/d.

The stability coefficients of the Sifangbei landslide under different operating conditions are shown
in Figure 9. Notably, hydrodynamic pressure landslides have some specific response characteristics
due to reservoir water level fluctuations. Figure 9(1) shows that the stability coefficient decreases
when the reservoir water level declines from 175 m to 145 m. This is because that the decrease in the
reservoir water level increases the reverse hydrodynamic pressure on the slide section of the landslide.
Meanwhile, the drawdown of the reservoir water level decreases the hydrostatic pressure and the
hydraulic uplift pressure on the slide section of the landslide. A large rate of decline in the reservoir
water level results in a small landslide stability coefficient because the permeability coefficient of the
hydrodynamic pressure landslide is small. As a result, a greater rate of decline in the reservoir water
level increases the reverse hydrodynamic pressure and decreases the hydraulic uplift pressure on
the landslide.
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Figure 9(2) illustrates that the stability coefficient of the Sifangbei landslide increases markedly
when the reservoir water level increases. This is because that the increase in the reservoir water level
increases the hydrodynamic pressure, the hydrostatic pressure and the hydraulic uplift pressure on
the slide section of the landslide. A large rate of increase in the reservoir water level results in a large
landslide stability coefficient because it generates a large hydrostatic pressure on the slide section of
the landslide. Moreover, Figure 9(3) shows that the stability coefficient decreases markedly in the
first few days of the rainstorm. Then, the decrease in the stability coefficient is almost the same as the
decrease in the stability coefficient under a reservoir water level drawdown.

Table 3. Stability coefficient at water levels of 145 m and 175 m under different conditions.

Conditions 1-1 1-2 1-3 2-1 2-2 2-3 3

Water level of 145 m 1.094 1.089 1.085 1.187 1.187 1.187 1.072
Water level of 175 m 1.173 1.173 1.173 1.251 1.254 1.261 1.173
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4.2. Stability Coefficient of the Hydrodynamic Pressure Landslide with Different Permeability Coefficients

The variations in the stability coefficient of the hydrodynamic pressure landslide are explored
based on different permeability coefficients and the same geological conditions.

4.2.1. Stability Coefficient Analysis under the Same Rate of Decline in the Reservoir Water Level

First, the permeability coefficients of the Sifangbei landslide are changed to 1.16 × 10−6 m/s
(0.1 m/d), 5.8 × 10−5 m/s (0.5 m/d), 1.16 × 10−5 m/s (1 m/d), 2.32 × 10−5 m/s (2 m/d),
3.48 × 10−5 m/s (3 m/d), 4.64× 10−5 m/s (4 m/d), 5.79× 10−5 m/s (5 m/d), 8.12× 10−5 m/s (7 m/d)
and 1.16 × 10−4 m/s (10 m/d). Additionally, the rate of decline in the reservoir water level is set to
0.6 m/d. The variations in the stability coefficient of the landslide are shown in Figure 10 for different
permeability coefficients. Figure 10 shows that the stability coefficient decreases gradually with the
drawdown of the reservoir water level. Additionally, a small permeability coefficient results in a small
stability coefficient because the hydrodynamic pressure on the landslide increases as the landslide
permeability coefficient decreases when the permeability coefficient ranges from 1.16 × 10−6 m/s
to 4.64 × 10−5 m/s. Moreover, Figure 10 illustrates that the landslide stability coefficient initially
decreases and then increases with the drawdown of the reservoir water level when the landslide
permeability coefficient ranges from 4.64 × 10−5 m/s to 1.16 × 10−4 m/s. These variations occur
because the hydrodynamic pressure on the slide section of the landslide decreases rapidly as the
reservoir water level declines when the permeability coefficient is large; as result, the slide section is
mainly affected by the hydrostatic pressure and the hydraulic uplift pressure. Therefore, although the
hydrostatic pressure and the hydraulic uplift pressure decrease when the reservoir water level declines
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from 175 m to 145 m, the slide section of the landslide is always affected by the hydrostatic pressure
and the hydraulic uplift pressure and not the quickly weakening hydrodynamic pressure.Water 2017, 9, 450  11 of 16 
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4.2.2. Stability Coefficient Analysis When the Rate of Decline in the Reservoir Water Level Increases

First, the permeability coefficients of the Sifangbei landslide are changed to 1.16 × 10−6 m/s
(0.1 m/d), 5.79 × 10−5 m/s (5 m/d) and 1.16 × 10−4 m/s (10 m/d), and the rates of decline in the
reservoir water level are changed to Vd1 = 0.6 m/d, Vd2 = 0.9 m/d and Vd3 = 1.2 m/d. Then, the
stability coefficients of the landslide are calculated, as shown in Figure 11. Figure 11(1) shows that
the stability coefficient decreases considerably with the drawdown of the reservoir water level when
the permeability coefficient is 1.16 × 10−6 m/s. However, the ranges of variations in the stability
coefficient are small for various rates of decline in the reservoir water level because the permeability
coefficient of the landslide is small; as a result, although the hydrodynamic pressure on the slide
section increases with the drawdown of the reservoir water level, the hydraulic uplift pressure on the
slide section slowly decreases.

The landslide stability coefficient for a permeability coefficient of 5.79 × 10−5 m/s is shown in
Figure 11(2). Figure 11(2) illustrates that the landslide stability coefficient initially decreases. Then, the
coefficient increases when the rate of decline in the reservoir water level is 0.6 m/d. This is because
the landslide permeability coefficient is relatively large; thus, the hydrodynamic pressure caused by
the drawdown of the reservoir water level is small. However, the hydrodynamic pressure is still
greater than the hydrostatic pressure and the hydraulic uplift pressure when the reservoir water level
declines from 175 m to 165 m. Moreover, the hydrostatic pressure and the hydraulic uplift pressure are
greater than the hydrodynamic pressure when the reservoir water level declines from 165 m to 145 m.
In addition, the landslide is affected by a larger hydrodynamic pressure when the rate of decline in
the reservoir water level is 0.9 m/d; as a result, the landslide stability coefficient decreases when the
reservoir water level declines from 175 m to 155 m. Then, the landslide stability coefficient increases
when the reservoir water level declines from 155 m to 145 m. Furthermore, the landslide stability
coefficient is small and declines gradually when the rate of decline in the reservoir water level is
1.2 m/d. Figure 11(2) illustrates that the landslide stability coefficient markedly changes with different
rates of decline in the reservoir water level when the permeability coefficient is 5.79 × 10−5 m/s.
Additionally, Figure 11(3) shows that the landslide stability coefficient decreases in the initial stage
and then rapidly increases when the permeability coefficient is 1.16 × 10−4 m/s.
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permeability coefficients.

It is important to study the variations in the stability coefficient of the hydrodynamic pressure
landslide for different permeability coefficients and increases in the rate of decline in the reservoir water
level. In this study, the rate of decrease of the stability coefficient (RDSC) is used [20]. RDSC donates
the rate of decrease in the stability coefficient of a hydrodynamic pressure landslide for a certain
permeability coefficient when the rate of drawdown of the reservoir water level changes from 0.6 m/d
to 1.2 m/d. A large RDSC value suggests that the RDSC increases the rate of drawdown of the reservoir
water level increases. RDSC can be expressed as follows:

RDSC =
F(P, Vd = 0.6 m/d, H = 145 m)− F(P, Vd = 1.2 m/d, H = 145 m)

F(P, Vd = 0.6 m/d, H = 145 m)
(7)

where P is the permeability coefficient, H is the reservoir water level, and F() is the landslide stability
coefficient based on different permeability coefficients and rates of reservoir water level decline and a
reservoir water level of 145 m.

The RDSC of the Sifangbei landslide is calculated for permeability coefficients of 1.16 × 10−6 m/s
(0.1 m/d), 5.79 × 10−6 m/s (0.5 m/d), 1.16 × 10−5 m/s (1 m/d), . . . , and 1.16 × 10−4 m/s (10 m/d).
The calculated RDSC values are shown in Figure 12. For the hydrodynamic pressure landslide under
the condition of reservoir water level drawdown, a large permeability coefficient is associated with a
large RDSC value when the rate of reservoir water level drawdown changes from 0.6 m/d to 1.2 m/d.
A large RDSC value is observed because the landslide seepage field is affected by the increase in the
rate of reservoir water level decline when the landslide permeability coefficient is relatively large.
Moreover, the landslide seepage field is slightly affected by increasing the rate of decline in the reservoir
water level when the landslide permeability coefficient is relatively small.
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4.2.3. Stability Coefficient Variations under Rainstorm Conditions

In this section, the RDSC is used to explore the variations in the stability coefficient of the
hydrodynamic pressure landslide based on different permeability coefficients when the landslide is
affected by a heavy rainstorm. A large RDSC value suggests that the decrease in the landslide stability
coefficient is large under heavy rainstorm conditions. This relationship can be expressed as follows:

RDSC =
F(P, Vd = 1.2 m/d, H = 158.2 m, R)− F(P, Vd = 1.2 m/d, H = 158.2 m)

F(P, Vd = 1.2 m/d, H = 158.2 m)
(8)

where R is the three-day rainstorm. The permeability coefficients of the Sifangbei landslide are set
to 1.16 × 10−6 m/s, 5.79 × 10−6 m/s, . . . , and 1.16 × 10−4 m/s. The calculated RDSC values are
shown in Figure 13. For the hydrodynamic pressure landslide influenced by reservoir water level
drawdown, the RDSC values increase as the permeability coefficient increases from 1.16 × 10−6 m/s to
3.48 × 10−5 m/s when the landslide is affected by the rainstorm. This increase occurs because rainfall
infiltration increases with the landslide permeability coefficient, which ranges from 1.16 × 10−6 m/s
to 3.48 × 10−5 m/s when the landslide is affected by the rainstorm; as a result, the hydrodynamic
pressure on the landslide increases. Additionally, Figure 13 shows that the RDSC decreases with
the permeability coefficient ranging from 3.48 × 10−5 m/s to 1.16 × 10−4 m/s when the landslide is
affected by the rainstorm. This decrease occurs because the infiltrated rainfall quickly flows through
the landslide when the permeability coefficient varies between 3.48 × 10−5 m/s and 1.16 × 10−4 m/s;
as a result, the hydrodynamic pressure on the landslide is small, although the landslide is affected by
the rainstorm.
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5. Conclusions

1) For landslide permeability coefficients ranging from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s, the
landslide stability coefficient decreases significantly with the drawdown of the reservoir water
level. Additionally, a large rate of decline in the reservoir water level results in a small landslide
stability coefficient. Moreover, the landslide stability coefficient significantly increases with the
reservoir water level, and a large rate of increase in the reservoir water level results in a large
landslide stability coefficient.

2) When the landslide permeability coefficient is greater than the 4.64× 10−5 m/s, the hydrodynamic
pressure on the landslide decreases and the hydraulic uplift pressure increases; as a result, the
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stability coefficient initially decreases and then increases with the drawdown of the reservoir
water level. Thus, a large rate of decline in the reservoir water level results in a small landslide
stability coefficient.

3) For the hydrodynamic pressure landslide with different permeability coefficients, the rate of
decline in the reservoir water level varies from 0.6 m/d to 1.2 m/d. As a result, the RDSC of the
landslide increases gradually as the landslide permeability coefficient increases. In addition, when
the landslide is influenced by reservoir water level drawdown and a three-day rainstorm, the
RDSC increases as the permeability coefficient increases from 1.16× 10−6 m/s to 3.48× 10−5 m/s.
Then, the RDSC decreases as the permeability coefficient increases from 3.48 × 10−5 m/s to
1.16 × 10−4 m/s.
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