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Abstract: Accurate mean areal precipitation (MAP) estimates are essential input forcings for
hydrologic models. However, the selection of the most accurate method to estimate MAP can
be daunting because there are numerous methods to choose from (e.g., proximate gauge, direct
weighted average, surface-fitting, and remotely sensed methods). Multiple methods (n = 19) were
used to estimate MAP with precipitation data from 11 distributed monitoring sites, and 4 remotely
sensed data sets. Each method was validated against the hydrologic model simulated stream flow
using the Soil and Water Assessment Tool (SWAT). SWAT was validated using a split-site method and
the observed stream flow data from five nested-scale gauging sites in a mixed-land-use watershed
of the central USA. Cross-validation results showed the error associated with surface-fitting and
remotely sensed methods ranging from −4.5% to −5.1%, and −9.8% to −14.7%, respectively. Split-site
validation results showed the percent bias (PBIAS) values that ranged from −4.5% to −160%. Second
order polynomial functions especially overestimated precipitation and subsequent stream flow
simulations (PBIAS = −160) in the headwaters. The results indicated that using an inverse-distance
weighted, linear polynomial interpolation or multiquadric function method to estimate MAP may
improve SWAT model simulations. Collectively, the results highlight the importance of spatially
distributed observed hydroclimate data for precipitation and subsequent steam flow estimations.
The MAP methods demonstrated in the current work can be used to reduce hydrologic model
uncertainty caused by watershed physiographic differences.
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1. Introduction

Accurate mean areal precipitation (MAP) estimates are essential forcing data for hydrologic
models [1,2]. However, quantifying MAP can be confounding, particularly when metrological
conditions, topography, and/or land use influence the spatiotemporal variability of precipitation [3].
There are multiple techniques that have been used to estimate MAP including (but not limited to)
nearest neighbor (or proximate gauge), direct weighted average, surface-fitting, and remote sensing
(e.g., radar and satellite-based) methods. Selecting the most suitable method to estimate MAP can be
daunting, in part, because there are so many methods to choose from, each with distinct strengths
and weaknesses.

Studies have shown a correlation between gauge density and the accuracy of MAP estimates [4].
In regions without observed data, MAP can be simulated using statistical weather generators. However,
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remotely sensed data may be more accurate in ungauged watersheds [5]. In minimally gauged regions,
where at least one gauge is available, the proximate gauge method can be used to estimate MAP.
Using this method, MAP is assumed to be equal to the total rainfall from the gauge nearest to the
centroid of a given sub-basin [6]. However, uncertainty increases with the distance from the point of
measurement making this approach problematic for many applications [4]. Model uncertainty can
be reduced by increasing the gauge density [4]. In regions with more than one gauge, precipitation
data can be interpolated to estimate MAP using direct weighted averaging methods, or surface-fitting
methods. Some examples of direct weighted averaging methods include arithmetic average, Thiessen
polygons [7], and the two-axis method [8]. Popular surface-fitting methods include polynomial
surface [9], spline surface [9], inverse-distance interpolation (IDW) [10], multiquadric interpolation [9],
optimal interpolation/kriging [11], artificial neural networks [12–14], and hypsometric methods [15].

While there are many MAP methods, choosing the appropriate method for a given application is
critical. For example, a relatively simple arithmetic average may be appropriate for a spatially lumped
hydrologic modeling application in a small watershed of relatively homogenous topography and land
use, but a more computationally complex hypsometric method (for example: The Parameter-elevation
Regression on Independent Slopes Model (PRISM)) may be well-suited for a spatially distributed
hydrologic modeling application in a mountainous region [15,16]. Furthermore, an inverse-distance
interpolation method may be a more appropriate approach for a physically-based semi-distributed
model such as the Soil and Water Assessment Tool (SWAT) [17].

Similar to the MAP method selection, it is also important to select the most appropriate hydrologic
simulation model for the application. While there are multiple hydrologic models to choose from, SWAT
is currently one of the most popular hydrologic models world-wide with over 2500 publications in print
in over 400 different scientific journals [18]. The SWAT model is used internationally for applications
including water resource management, pollutant loading estimates, receiving water quality, source load
allocation determinations, and conservation practice efficacy [5,19]. A complete description of the SWAT
model can be found in the Soil and Water Assessment Tool Theoretical Documentation [6], and literature
reviews highlight various strengths and weaknesses of the model [5,19,20]. A SWAT Literature Database
can be accessed via the internet at (http://swat.tamu.edu/publications/swat-literature-database).

While there are numerous SWAT modeling publications, there are relatively few publications on
the topic of precipitation input effects on the SWAT model output. However, the effects of different
precipitation inputs on the SWAT model output have been tested using remotely sensed data [21–25]
and the centroid method currently used to estimate MAP in SWAT [4,17,21–24,26,27]. For example,
Tuo et al. [26] tested the influence of the centroid method, IDW, and two satellite-based data sets
(the Tropical Rainfall Measuring Mission (TRMM), and Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS)) on SWAT simulated stream flow in the alpine Aldige river basin of
north-eastern Italy. Results showed that the IDW method was the most accurate method tested for
SWAT model precipitation input, and the CHIRPS satellite-based data set produced ‘satisfactory’
simulations of stream flow. Szczesniak and Pinieski [17] used four methods including the nearest
neighbor technique, Thiessen polygons, IDW, and ordinary kriging (OK) in the Sulejów Reservoir
Catchment located in Poland. The results showed the OK method as the most accurate interpolation
method for the SWAT model. Additionally, the OK, IDW, and Thiessen methods were more accurate
than the centroid method, currently the default method, used in SWAT with median differences in
Nash-Sutcliffe values ranging from 0.05 to 0.15. Masih et al. [4] tested the IDW method versus the
default method used in SWAT in mountainous semiarid catchments in the Karkheh River basin, Iran.
The IDW method resulted in an improved SWAT model output particularly in smaller watersheds with
drainage areas ranging from 600 to 1600 km2. Ultimately, the results from the literature consistently
show that the centroid method currently used in SWAT is unsatisfactory for most applications.

Many methods used to estimate MAP have been reviewed in cross-validation studies [28–31].
Generally, the results showed that more complicated surface-fitting methods generate better results
relative to direct weighted averaging methods. However, the computational demands of the more

http://swat.tamu.edu/publications/swat-literature-database


Water 2017, 9, 459 3 of 20

complex surface-fitting methods can be a disadvantage. A less frequently applied alternative approach
to cross-validation analysis of MAP models is to validate the models against a hydrologic model
simulated stream flow [17]. There remains a great need for a hydrologic model validation of multiple
MAP methods across the array of contemporary MAP modeling techniques (i.e., proximate gauge,
direct weighted average, surface-fitting, and remotely sensed methods). In addition, Masih et al. [4]
and Ly et al. [27] concluded that there is a need for further testing of the effects of precipitation input
on the SWAT model output.

In response to the call for further investigation, a novel split-site validation of multiple MAP
techniques (e.g., proximate gauge, direct weighted average, surface-fitting, and remotely sensed
methods) is presented using observed precipitation and stream flow data collected at nested-scales in
a mixed-land-use catchment. The overarching purpose of the current work was to show which MAP
method(s) are best-suited for hydrologic simulation modeling efforts so that managers can more readily
focus on viable efforts in other developing watersheds with similar physiographic characteristics as
the study catchment. The objectives of the current work were to: (i) quantify the effects of 19 different
MAP methods on uncalibrated SWAT model performance for stream flow, and (ii) perform a split-site
validation of SWAT model simulated stream flow using multiple years of observed stream flow data
collected at nested-scales from a mixed-land-use watershed of the central USA.

2. Materials and Methods

2.1. Site Description

The study catchment, Hinkson Creek Watershed (HCW), is a rapidly urbanizing mixed-land-use
(forest, agriculture, and urban) watershed located in Boone County, Missouri, USA (Figure 1). HCW has
a total drainage area of approximately 230 km2. Elevation ranges from 274 m above mean sea level
(AMSL) in the headwaters to 177 m AMSL near the watershed outlet. The climate in HCW is dominated
by continental polar air masses in the winter and maritime and continental tropical air masses in the
summer [32]. The wet season occurs primarily during March through June [33]. A 16-year climate
record (2000–2015) obtained from the Sanborn Field climate station located on the University of
Missouri campus showed that the mean annual total precipitation was 1036 mm, and the mean annual
air temperature was 13.3 ◦C, respectively. Daily minimum and maximum air temperatures ranged
from −23.1 ◦C in the winter to 41.3 ◦C in the summer.

The HCW was instrumented with hydroclimate (n = 5) and meteorological (n = 6) monitoring
sites in 2009. Precipitation was sensed using TE525WS tipping bucket rain gauges with an accuracy
of +1% at 2.5 cm/h rainfall rate to −3.5% at 5.1 to 7.6 cm/h rainfall rate during the study period
[water year’s (WY’s) 2009 to 2015]. A total of eleven precipitation monitoring sites were used for
the current work including five Hinkson Creek hydroclimate sites (noted above), and six additional
meteorological sites (The Columbia Regional Airport, and the five Missouri Agricultural Experimental
sites) located in Boone County, Missouri, USA (Table 1, Figure 1). Site #1 was the sub-basin with the
lowest precipitation gauge density. However, the precipitation gauge at the outlet was less than 14 km
from the furthest ridge of the sub-basin at Site #1, thus resulting in a relatively high-resolution spatial
sampling design. The five HCW hydroclimate sites were positioned to partition the study catchment
into five sub-basins using a nested-scale experimental watershed study design each with different
dominate land use types [32,34]. At the time of this research, agricultural land use decreased by 18.4%
and urban land use increased by 21.6% with the downstream distance from Site #1 located in the
headwaters to Site #5 located near the watershed outlet.

The stage was measured at each Hinkson Creek gauging site using Sutron Accubar® constant
flow bubblers with an accuracy of 0.02% at 0–7.6 m to 0.05% at 7.6–15.4 m [35–38]. Precipitation and
stage data were stored on Campbell Scientific CR-1000 data loggers. Methods used to estimate the
discharge met the U.S. Geological Survey (USGS) standards [39]. The stream flow was measured using
FLO-MATE™ Marsh McBirney flow meters and wading rods when the stage was less than 1-m deep.
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Storm flows were measured using a U.S. Geological Survey Bridge Board™. Stage-discharge rating
curves were generated using the incremental cross section method [40].

Table 1. Geographic position and date range of the observed data recorded at eleven precipitation
monitoring sites during water years 2009 to 2015 in Boone County, Missouri, USA. Distance to Cent. is
the distance in kilometers to the centroid of the Hinkson Creek watershed.

Monitoring Site Latitude Longitude Distance to Cent. (km) Start Date End Date

Site #1 39.022652◦ −92.246678◦ 3.803 1 February 2009 26 July 2015
Site #2 38.981900◦ −92.278671◦ 1.644 6 February 2009 26 July 2015
Site #3 38.947583◦ −92.307016◦ 6.053 8 February 2009 10 August 2015
Site #4 38.927767◦ −92.341505◦ 9.615 1 March 2009 30 September 2015
Site #5 38.916072◦ −92.399946◦ 14.34 13 February 2009 17 August 2015

Sanborn Field † 38.942301◦ −92.320395◦ 7.256 1 October 2008 30 September 2015
Capen Park 38.929237◦ −92.321297◦ 8.470 1 January 2011 30 September 2015

South Farm † 38.912626◦ −92.282326◦ 8.993 1 October 2008 30 September 2015
Jefferson Farm † 38.906992◦ −92.269976◦ 9.524 1 October 2008 30 September 2015
Bradford Center 38.897236◦ −92.218070◦ 11.42 25 April 2009 30 September 2015

Columbia Airport 38.818127◦ −92.219672◦ 19.82 1 October 2008 30 September 2015
† Validation sites included Sanborn Field, South Farm, and Jefferson Farm.
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Figure 1. Location of precipitation monitoring sites, stream flow gauging sites, and respective
sub-basins of the Hinkson Creek Watershed, Missouri, USA. A cross shows the centroid of the Hinkson
Creek Watershed located upstream of the stream flow gauging Site #2. Precipitation was estimated at
precipitation monitoring sites and stream flow gauging sites.
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2.2. MAP Modeling

Errors in precipitation estimates occur at the point measurement of precipitation (e.g., precipitation
gauge), and during conversion of the point measurements to MAP. Error in precipitation measurement
at a gauge may be caused by various factors including, but not limited to, wind, splash, evaporation,
mechanical failure, improper instrument calibration, a plugged gauge orifice, isolated objects (e.g., trees,
buildings, and fences), observation errors, and other factors [41,42]. Because point measurement
is fraught with complications, it is important to examine the quality of precipitation data before
undertaking hydrologic analyses [41,42]. Therefore, double-mass plots were created to check for
undercatch due to obstructions at each gauging site where the precipitation was measured [43].
The results from the double-mass curve analyses indicated undercatch precipitation at Site #1
presumably attributable to a tree line induced fetch issue. The precipitation gauge at Site #1 was
moved away from the tree line to approximately 250 meters south east of Site #1 on 16 June 2011.
The undercatch issue was corrected as per methods used by Wagner et al. [44], where a calculated
percentage was added to the time series recorded at Site #1 before the site was moved (Site #1 was
installed on 1 February 2009). Additionally, any missing precipitation data (i.e., data gaps) were
estimated using inverse distance weighting methods [45].

After rainfall data post-processing, 19 different methods were used to estimate MAP for each
sub-basin in HCW including two proximate gauge methods, three direct weighted average methods,
ten surface-fitting methods, and three satellite-based methods (Table 2). The MAP methods chosen for
this assessment ranged from simplistic to complex in order to address the needed balance between
computational complexity and the ease of use. Nineteen MAP methods were included in the analysis
to avoid erroneous selection of the most convenient method while at the same time providing
a comprehensive overview (and validation) of many of the different types of methods available.

Table 2. List of different mean areal precipitation (MAP) methods and associated abbreviations used in
the study.

Technique MAP Method

Proximate gauge (PG) Nearest centroid (Centoid)
Sub-basin outlet (Outlet)

Direct-weighted average (AVE)
Arithmetic average (Average)
Thiessen polygons (Thiessen)

Two-axis

Surface-fitted (SF)

1st order global polynomial interpolation (GPI_1)
2nd order global polynomial interpolation (GPI_2)

1st order local polynomial interpolation (LPI_1)
2nd order local polynomial interpolation (LPI_2)

1st order inverse distance weighted (IDW_1)
2nd order inverse distance weighted (IDW_2)

Spline tension (Spline)
Multiquadric formula (MQF)

Ordinary kriging (OK)
Universal kriging (UK)

Remotely sensed (RS)

Parameter-elevation Regressions on Independent
Slopes Model (PRISM)

Tropical Rainfall Measuring Mission (TRMM)
Climate Hazards Group InfraRed Precipitation with

Station data (CHIRPS)
Next Generation Radar Data (NEXRAD)



Water 2017, 9, 459 6 of 20

2.2.1. Proximate Gauge MAP Methods

The proximate gauge MAP models (i.e., Centroid and Outlet) were the simplest methods and
were dependent on the fewest number of precipitation gauges. For example, the centroid method used
data from three precipitation gauges (Sites #1, #2, and #4), and the outlet method used data from five
precipitation gauges. For the centroid method, MAP was estimated as the precipitation measured at
the precipitation gauge nearest the centroid of a sub-basin. For the outlet method, MAP was estimated
as the precipitation measured at the outlet of each sub-basin (Sites #1, #2, #3, #4, and #5).

2.2.2. Direct-Weighted Average Methods

Direct weighted averages are computationally simplistic methods used to generate estimates of
MAP with the following general equation [31]:

MAP =
G

∑
g=1

wg ∗ pg (1)

where MAP is mean areal precipitation for G gauges termed g = 1, g = 2, . . . , G, pg is the precipitation
measured at each gauge, and wg are the weights based on the sub-basin area that satisfy:

G

∑
g=1

wg = 1, 0 ≤ wg ≤ 1 (2)

The coefficients for each of the direct weighted averaging models were fit using ArcGIS.
The arithmetic average is the simplest direct weighted averaging method. Each gauge has an equal

weight in the computation of a single arithmetic average for the entire watershed. The equation used
to calculate the arithmetic average follows [31]:

MAP =
1
G

G

∑
g=1

pg (3)

The arithmetic average method is useful in estimating missing precipitation data using data
collected from nearby gauging stations. However, this method does not represent the spatial variability
observed in the precipitation data.

The Thiessen method is a direct weighted average method performed by dividing a region into
sub-regions centered on each monitoring site [7]. Each sub-basin does not line up with the Thiessen
sub-region. However, the fraction of each Thiessen sub-region contributing to each sub-basin can be
computed, and weighted averages can be used to estimate MAP for each sub-basin. The equations
used to compute the spatial average follow:

MAP =
1
A

G

∑
g=1

ag ∗ pg (4)

G

∑
g=1

ag = A (5)

where ag is the area of each sub-region.
Bethlahmy [8] developed the two-axis method where weights are derived using basic geometry.

The two-axes include a major axis and a minor axis. First, three lines are drawn, (1) the longest line that
can be drawn in the region, (2) its perpendicular bisector (the minor axis), and (3) is the perpendicular
bisector of the minor axis (the major axis). Then, two lines are drawn from each gauge to the furthest
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end of each axis, and the angle of the two lines is recorded. Finally, the equations used to calculate
MAP are as follows:

MAP =
1
Å

G

∑
g=1

αg ∗ pg (6)

Å =
G

∑
g=1

αg (7)

where Å is the sum of all of the angles αg.

2.2.3. Surface-Fitting MAP Methods

Surface-fitting algorithms were also used to generate MAP from point gauges using the ArcGIS
software. The general equations used to calculate the weighted averages for each cell are as follows [42]:

pj =
G

∑
g=1

wjg ∗ pg (8)

G

∑
g=1

wjg = 1 (9)

MAP =
1
J

J

∑
j=1

pj (10)

where wjg are weights for each cell, pj is precipitation value for each cell, and J is the total number of all
cells. The difference between various surface-fitting methods used is how the weights are calculated.

Surface fitting algorithms can be classified as deterministic or statistical methods. Global
polynomial surface (GPS) and local polynomial surface (LPS) functions are deterministic methods
commonly used to interpolate rainfall [9]. All point measurements are considered when using the
GPS method. Conversely, only point measurements within a defined radius are considered with the
LPS method. For both GPS and LPS methods, the order of the polynomial function must be defined
by the end user. A linear plane results from a 1st order polynomial, one turning point (i.e., curve)
results in a surface generated by a 2nd order polynomial, two curves are present for the 3rd order
polynomial, and so on. Unlike the GPI and LPI methods, Radial Basis Functions (RBFs) are an exact
interpolator. Some examples of RBFs include spline and multiquadric interpolation. RBFs generate
a smooth surface and the degree of smoothness is dependent on the kernel parameter [9]. Conversely,
IDW is an inexact interpolator. Thus, unlike RBFs, IDW fitted-surfaces may not be exactly equal to
the point measurements used to generate the surface. The assumption behind the method of IDW is
that each unknown point in the surface is more alike its closest neighboring point measurement [10].
The equations used to calculate IDW is [31]:

MAP =
∑J

j=1 pj ∗ d−m
pj

∑J
j=1 d−m

pj

(11)

where dpj is distance from point j to the gauge, and −m was an exponent assigned by the end user.
Kriging is a statistical surface-fitting method where the weights to each cell minimize the variance

of the interpolation error [11]. Empirical semivarience is computed using input data and a curve is fit
to develop a semivariogram. Then, predictions are made for each cell using kriging weights generated
from the semivariogram [31]. Some examples of kriging methods include ordinary kriging (OK) and
universal kriging (UK). The OK method generates a smooth surface, minimizes the standard error,
but no spatial trend in precipitation is accounted for. Conversely, the UK method can be used to
account for the presence of a spatial trend or drift.
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The surface-fitting methods were applied using the ArcGIS ‘model builder’ to efficiently
interpolate observed point measured precipitation data into MAP for each HCW sub-basin (n = 5). A
split-site method was used to calibrate and validate the surface-fitting models and remotely sensed data
against point gauge measured precipitation. Sites #1–5, Capen Park, Bradford Center, and Columbia
Regional Airport were used for calibration. Sanborn Field, South Farm, and Jefferson Farm monitoring
sites were used for validation. Three model performance criteria were used to evaluate the model
performance including percent bias (PBIAS), root mean square error (RMSE), and mean absolute error
(MAE) [35,46,47].

2.2.4. Remotely-Sensed MAP Methods

MAP was also estimated using three satellite-based datasets. The three satellite-based precipitation
data included PRISM, TRMM, and CHIRPS data. The PRISM data were downloaded from an Oregon State
University website [48]. Daily precipitation data grids (4 km raster images) corresponding to the ‘AN81d’
data set were downloaded one year at a time in the .bil format. Area-averaged TRMM Multi-Satellite
Precipitation Analysis (3b42) data were downloaded at a daily time step from the Giovanni website [49].
Area-averaged CHIRPS data were downloaded at a daily time step from the ClimateServ website for
this research [50]. Additionally, MAP was estimated using a level III daily precipitation product of Next
Generation Radar Data (NEXRAD) which were bulk downloaded from a National Weather Service File
Transfer Protocol server [51].

Models were created in ArcGIS using the ‘model builder’ to extract precipitation data from each
surface raster file to each precipitation monitoring site (n = 11) for validation. Three model performance
criteria were used to evaluate the model performance including PBIAS, RMSE, and MAE [35,46,47].
Sanborn Field, South Farm, and Jefferson Farm monitoring sites were used for validation.

2.3. SWAT Modeling

After MAP was generated and the MAP models were validated, the model output was formatted
for input into SWAT (SWAT 2012 (Revision 627 packaged with ArcSWAT 2012.10_2.16)) to test the
effects of the 19 different MAP methods on the uncalibrated SWAT model output of the stream
flow. An uncalibrated model performance assessment was appropriate in the current work. This is
justifiable considering that the SWAT model was designed to generate reliable predictions in ungauged
basins [6]. These results are important for end users who rely on remotely-sensed precipitation data.
A 30 m digital elevation model, SSURGO soils, and the 2011 National Land Cover Data sets were
used for the spatial input data required to create a SWAT project. The SCS curve number method,
the Muskingum method, and the Penman-Monteith method were selected to simulate rainfall-runoff,
channel routing, and evapotranspiration processes, respectively. Channel degradation, stream water
quality, and algae-biochemical oxygen demand-dissolved oxygen simulations were all set to ‘active’.
Calibration parameters were set to reflect physically realistic values for the watershed [52]. Agricultural
HRU’s were set to a corn-soybean rotation with three fertilization operations (anhydrous ammonia,
elemental nitrogen, and elemental phosphorus) and tandem disk tillage in the spring. Grazing pasture
HRU’s were set to hay growing operations, fertilizer operations (elemental nitrogen, and elemental
phosphorus), and grazing operations realistic for HCW. Urban HRU’s were set to a tall fescue
growing operation with lawn fertilization and street sweeping operations. Water abstractions were not
implemented in the SWAT model.

For each SWAT project (n = 19, one for every MAP method tested), the precipitation text files
were updated from the “txt in out” folder under the “default” scenario. The uncalibrated SWAT model
output was tested to isolate only the effects of the precipitation input on SWAT simulated stream
flow. Additionally, the SWAT model was calibrated using the auto-calibration software SWAT-cup
and validated using a split-site method for stream flow at daily, monthly, and annual time steps [5,52].
Site #4 (the HCW USGS operated gauge) was used for calibration. Sites #1, #2, #3, and #5 were reserved
for validation.
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In the current work, one global sensitivity analysis was applied using SWAT-cup as per methods
used by Szczesniak and Pinieski [4] and Masih et al. [17]. A global sensitivity analysis was run using
SWAT’s default method for precipitation input (centroid method) and the top six most sensitive
calibration parameters were selected for the calibration of all MAP models. The six calibration
parameters selected included the Soil Conservation Service (SCS) curve number (CN2), surface
runoff lag time (SURLAG), available water capacity of the soil (SOL_AWC), manning’s n value
for overland flow (OV_N), base flow alpha factor (ALPHA_BF), and groundwater delay (GW_DELAY).
User-specified physically meaningful minimum and maximum bounds were set for CN2 (absolute −5
to 5), SURLAG (replace 1 to 7), SOL_AWC (absolute −0.05 to 0.05), OV_N (absolute −0.09 to 0.25),
ALPHA_BF (replace 0.3 to 0.8), and GW_DELAY (replace 10 to 200), where ‘absolute’ indicates the
addition of the given value to the existing value and ‘replace’ indicates the replacement of the existing
value with the given value. Four iterations of 250 simulations (i.e., a total of 1000 simulations) each
were run for each of the 19 different MAP methods. The model was calibrated at a daily time step.
Seven years of stream flow data were simulated (January 2008 to December 2014) with an additional
seven years to warm-up the model (2001 to 2008). Model outputs were reduced by averaging to the
monthly and annual time steps for analysis because daily simulations are typically poorer than monthly
and annual simulations [47,53]. Uncalibrated and calibrated model performances were assessed using
three model evaluation criteria for NSE, R2, and PBIAS, shown in Table 3 [52]. Each MAP method
was ranked by model performance values (PBIAS, NSE, and R2) at each time interval (daily, monthly,
and annual) for easy comparison. Then, a relative overall model performance rank was quantified by
summing the ranks of the individual model performance values across all time intervals.

Table 3. Model performance ratings used to assess the SWAT model performance of stream flow.

Performance Rating NSE PBIAS (%) R2

Very good x > 0.8 |x| < 5 x > 0.85
Good 0.7 < x ≤ 0.8 5 ≤ |x| < 10 0.75 < x ≤ 0.85

Satisfactory 0.50 < x ≤ 0.7 10 ≤ |x| < 15 0.60 < x ≤ 0.75
Unsatisfactory x ≤ 0.50 |x| ≥ 15 x ≥ 0.60

3. Results and Discussion

3.1. MAP Modeling

When the observed precipitation from all eleven monitoring sites were averaged, the results
showed that the average annual total precipitation ranged from 743 mm during water year (WY) 2012
to 1543 mm during WY 2010 (Table 4). The observed precipitation at Sanborn Field and South Farm
was within 6 mm of the all-site mean, but the precipitation at Jefferson Farm was 67 mm less than the
seven-year mean. Double-mass curve analyses did not indicate precipitation undercatch due to gauge
obstructions at the validation sites, thus the differences in annual total precipitation were presumably
due to spatial variability of precipitation during the study period.

The results from the one-way ANOVA tests showed no significant differences (p > 0.05)
in the seven-year average precipitation between sites in agreement with a recent publication by
Hubbart et al. [33]. Hubbart et al. [33] showed that the differences in precipitation between urban and
rural sites were not significant at the 95% confidence level in the HCW. However, precipitation was shown
to be slightly greater by 3.3% in the urban area of the watershed indicating a slight influence of urban
land use on total annual precipitation in the rapidly urbanizing lower elevations of HCW [38].

The results showed that the seven-year average annual total MAP estimates ranged from 1019 mm
(Thiessen) to 1192 mm (NEXRAD) (Table 5). There were significant differences (p < 0.001) in the five-site
average MAP between years. This was expected considering the occurrence of extremely wet and dry
years during the study (Table 5). Conversely, there were no significant differences (p > 0.05) in the
seven-year average MAP between sites.
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Table 4. Annual total precipitation (mm) directly measured at 11 monitoring sites during the water
years from 2009 to 2015 located in Boone County, Missouri, USA.

Monitoring Site 2009 2010 2011 2012 2013 2014 2015

Site#1 992 1646 794 660 1055 890 1236
Site#2 958 1624 757 703 1077 946 1159
Site#3 1118 1610 796 784 1034 917 1156
Site#4 1042 1584 811 746 1054 915 1100
Site#5 1067 1602 770 755 996 930 1091

Sanborn Field † 1088 1651 762 739 960 867 1053
Capen Park 1052 1463 795 738 976 891 1045

South Farm † 1157 1550 755 752 947 917 1093
Jefferson Farm † 1062 1371 640 697 914 906 1076

Bradford 1036 1412 689 733 916 883 1093
Columbia Airport 1018 1453 891 868 1047 926 1189
All-Site Average 1054 1542 769 743 998 908 1117

† Sites reserved for model validation were not included in interpolation calculations.

Table 5. Five-site average annual mean areal precipitation (mm) estimated using 19 methods during
the water years from 2009 to 2015 in Boone County, Missouri, USA.

Technique Method 2009 2010 2011 2012 2013 2014 2015

Proximate Gauge Centroid 1035 1613 786 730 1043 920 1149
Outlet 988 1625 783 694 1064 917 1178

Direct- weighted Average
Average † 1053 1543 769 743 998 908 1117
Thiessen 1025 1614 782 713 1044 914 1170
Two-axis 1050 1525 778 757 998 910 1123

Surface-fitted

GPI_1 1031 1615 775 702 1042 918 1172
GPI_2 1161 1767 802 738 1044 932 1193
LPI_1 1041 1646 784 709 1048 915 1186
LPI_2 1173 1791 812 747 1045 914 1200

IDW_1 1042 1587 780 734 1028 917 1148
IDW_2 1033 1604 780 723 1039 917 1158
Spline 1010 1655 781 708 1044 924 1180
MQF 1038 1662 783 717 1035 920 1184
OK 1022 1612 781 719 1038 923 1162
UK 1031 1616 775 702 1043 918 1172

Remotely sensed

PRISM 1197 1720 918 853 1140 1073 1319
TRMM 1162 1593 968 940 1149 942 1203

CHIRPS 1051 1595 911 828 1105 1034 1252
NEXRAD 1236 1759 1027 892 1100 1068 1260

† Arithmetic average off all sites resulted in only one annual total precipitation value for the entire watershed.

When surface-fitting methods and remote sensing methods were validated, the results showed
that the models consistently overestimated the annual total precipitation (Table 6). Results from
one-way ANOVA tests showed that the seven-year average MAP was significantly (p < 0.01) greater
by a range of 5.9% to 15.7% for all four remotely sensed methods relative to all other methods tested.
This was an important finding from the current work with implications for end-users that need to use
remotely-sensed precipitation data for hydrologic modeling efforts. However, there were no significant
differences (p > 0.05) in the seven-year average MAP between proximate gauge, direct-weighted
average, and surface-fitting methods.

The lack of significant differences between annual average MAP estimated by proximate
gauge, direct-weighted average, and surface fitting methods was surprising in the current work,
and unanticipated. It was further surprising considering that the findings from other studies showed
improvements in hydrological output with computational complexity and gauge density [4,17].
For example, there were differences in the equations for each MAP method (n = 19 methods) ranging
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across a simple-complex gradient of computational rigor. Also notable were the marked differences in
gauge density between the centroid method (n = 3 gauges), the outlet method (n = 5 gauges), and direct
weighted averaging and surface-fitting methods (n = 11 gauges). The lack of statistical differences
was counter to the literature, and thus should be of interest, considering differences in climate and
physiography between the study sites.

Validation results showed variable results for maximum daily MAP estimates. For example,
maximum daily MAP was underestimated by greater than 50% for two remote sensing methods
(i.e., CHIRPS and PRISM), and two direct weighted average methods (i.e., Average and Two-Axis).
Conversely, maximum daily MAP was overestimated by more than 160% for the 2nd order polynomial
functions (i.e., GPI_2 and LPI_2). The 2nd order polynomial functions generated unrealistic estimates
of the daily maximum MAP because the model output increased with the distance upslope of Site #1.
Conversely, the 1st order polynomial functions were within 16% of the observed maximum daily MAP.
Thus, in the current work, the linear polynomial functions were more accurate than the nonlinear
order polynomial functions. Polynomial functions of cubic or greater order that result in a surface with
multiple turning points (i.e., a rippled or wavy surface) were not tested.

Table 6. Validation results showing the error associated with surface-fitted and remotely sensed annual
total precipitation in the Hinkson Creek Watershed, Missouri, USA.

Technique Method RMSE MAE PBIAS

Surface-fitted

GPI_1 68.2 55.5 −4.6
GPI_2 69.2 57.0 −5.1
LPI_1 63.2 51.8 −4.5
LPI_2 68.1 55.8 −5.1

IDW_1 66.9 54.2 −4.7
IDW_2 67.7 54.7 −5.1
MQF 65.5 53.3 −5.0
Spline 64.6 53.4 −5.0

OK 63.5 52.2 −4.6
UK 68.2 55.4 −4.6

Remotely
sensed

PRISM 148.3 139.2 −13.8
TRMM 148.7 121.9 −11.4

CHIRPS 123.5 107.7 −9.8
NEXRAD 166.8 152.5 −14.7

3.2. SWAT Modeling

3.2.1. Uncalibrated Model Performance

In comparison to previous work, this study is the first to show the effects of MAP input on
uncalibrated SWAT stream flow at daily, monthly, and annual time steps. Considering that the model
calibration influences the model output, the uncalibrated results completely isolated the effects of
precipitation input on the SWAT model performance. There was a general trend for uncalibrated
model performance to increase as the stream flow data were reduced by averaging from daily to
annual time steps. For example, uncalibrated daily SWAT model performance ratings for stream
flow were ‘unsatisfactory’ for every MAP method tested due to low NSE and R2 values (Table 7).
As the streamflow data were reduced by averaging from a daily to monthly time step, NSE and R2

values increased leading to model performance that ranged from ‘unsatisfactory’ to ‘satisfactory’.
SWAT model simulations of annual stream flow ranged from ‘unsatisfactory’ to ‘good’.

Overall model performance ratings were more limited by NSE and R2 values at daily timesteps
and by PBIAS at annual timesteps. For example, the results showed that the NSE and R2 values
improved by an average of 0.60 and 0.47, respectively, as the stream flow data were reduced by
averaging from daily to annual time steps, while the PBIAS ratings were nearly equal for daily,
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monthly, and annual time steps. These results indicated that one threshold for PBIAS is appropriate
for all timesteps (e.g., daily, monthly, and annual) in agreement with the model performance criteria
recently published by Moriasi et al. [46], and point to the potential benefit of considering different NSE
and R2 thresholds for each timestep.

Notably, some MAP methods resulted in ‘unsatisfactory’ model performance across all time scales
reflected in the PBIAS values ±15% even when the NSE and R2 values were adequate. There may be
a need to reconsider changing the PBIAS threshold to ±25% as proposed by Moriasi et al. [47] to better
capture adequate model performance at monthly and annual timesteps. These results also highlighted
a problem with the threshold dependent overall model performance rating criteria when selecting the
best MAP method. The problem was resolved by ranking the model performance output to highlight
the best MAP method tested.

When the uncalibrated SWAT model performance values were ranked, the results showed that
the remotely sensed PRISM data set performed best overall (i.e., all time steps tested considered)
(Table 7). The PRISM method resulted in the greatest NSE and R2 results at monthly and annual
timesteps, indicating that the PRISM method was best-suited for long-term estimates of stream flow in
the study catchment (Table 7). However, the results showed that the daily estimates of stream flow
were ‘unsatisfactory’ for the uncalibrated models. These results are in general agreement with results
provided by Srinivasan et al. [54] who used similar GIS-based methods to aggregate 4 km PRISM data
for SWAT model precipitation input, and ran the model ungauged (i.e., uncalibrated) to show that the
uncalibrated SWAT model can produce satisfactory estimates of hydrology at an annual time step in
the Upper Missouri River Basin with PBIAS values within ±10%, and NSE values ranging from 0.51
to 0.95. Unlike the results from Srinivasan et al. [54], the model performance was also ‘satisfactory’ for
the monthly stream flow in the current work, but only near the watershed outlet because the model
did not simulate hydrology well in the agricultural dominated headwaters.

Table 7. Mean areal precipitation (MAP) input effects on the uncalibrated SWAT model performance
results and ratings at daily, monthly, and annual time steps after the SWAT model calibration in the
Hinkson Creek Watershed, Missouri, USA. SWAT models were forced with 19 different precipitation
methods. MAP methods are presented by the overall model performance rank (i.e., high to low rank).

Overall Rank Technique Method PBIAS (%)
Daily Monthly Annual

NSE R2 NSE R2 NSE R2

1 RS PRISM −11.6 0.16 0.26 0.71 0.72 0.92 0.90
2 SF IDW_2 14.9 0.40 0.45 0.67 0.69 0.89 0.88
3 SF IDW_1 15.1 0.41 0.45 0.68 0.70 0.89 0.86
4 SF LPI_1 9.40 0.26 0.41 0.58 0.61 0.91 0.91
5 PG Outlet 16.4 0.41 0.45 0.69 0.71 0.89 0.88
6 SF OK 13.9 0.39 0.45 0.63 0.65 0.87 0.88
7 SF GPI_1 13.9 0.33 0.43 0.63 0.64 0.91 0.90
8 SF UK 13.9 0.33 0.43 0.63 0.64 0.91 0.90
9 SF MQF 8.9 0.27 0.42 0.57 0.60 0.89 0.88
10 SF Spline 11.8 0.36 0.44 0.63 0.64 0.87 0.85
11 AVE Thiessen 15.3 0.36 0.43 0.63 0.65 0.90 0.90
12 RS TRMM 3.90 0.26 0.31 0.53 0.53 0.87 0.79
13 AVE Two-Axis 17.0 0.42 0.44 0.65 0.69 0.85 0.82
14 AVE Average 18.2 0.42 0.45 0.65 0.69 0.85 0.84
15 PG Centroid 17.2 0.36 0.44 0.63 0.65 0.87 0.88
16 SF GPI_2 −11.4 −0.24 0.33 0.14 0.48 0.72 0.87
17 SF LPI_2 −15.1 −0.33 0.33 0.02 0.47 0.64 0.86
18 RS NEXRAD −25.5 0.13 0.25 0.59 0.63 0.82 0.90
19 RS CHIRPS 17.1 0.26 0.27 0.49 0.52 0.84 0.80

Examination of the model performance ratings at the validation sites (Sites #1, #2, #3, and #5)
indicated that the uncalibrated SWAT model performance ratings were unsatisfactory at every time
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step at Sites #1 and #2 due to overestimation of the stream flow in the predominantly agricultural
headwaters (e.g., PBIAS values less than −175%), likely (in part) due to clay pan soils characterized by
increased surface runoff rates that the model simulations over-accounted for [55], considering that
Baffaut et al. [55] reported on the complications of SWAT modeling applications in watersheds with
clay pan soils in the central US. In the current work, the PBIAS values ranged from −51.0 (Two-Axis)
to less than −163.0 (GPI_2, LPI_2) at Site #1 (Figure 2). Conversely, the stream flow was generally
underestimated at Site #5 with PBIAS values greater than 15% for most of the MAP methods tested
except for four MAP methods (i.e., GPI_2, LPI_2, PRISM, and NEXRAD). The stream flow at urban
Site #5 was likely underestimated (at least in part) due to the impacts of increased impervious surfaces
on the stream flow which the model did not simulate well.
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Figure 2. Mean areal precipitation (MAP) input effects on uncalibrated hydrological model performance
criteria and overall performance ratings for SWAT model simulated annual streamflow at five gauging
sites (gray-scale columns) located in the Hinkson Creek Watershed, Missouri, USA. The red lines show
“Satisfactory” model performance thresholds. PBIAS values smaller than −100 are not shown.

3.2.2. Calibrated Model Performance

Model calibration improved the model performance at Site #4 (Table 8). The differences in
fitted calibration parameter values for each MAP method are shown in Figure 3. When calibrated
SWAT model performance was ranked, the IDW_2 method performed best overall (i.e., all time steps
tested were considered) (Table 8). The IDW_2 method has also been shown to work well in other
locations with considerably different climate and physiographic characteristics compared to the study
catchment [4,17,26]. For example, Tuo et al. [26] showed that the IDW method was the most accurate
method tested for SWAT model precipitation input on SWAT simulated stream flow in an alpine
Aldige river basin of north-eastern Italy. Szczesniak and Pinieski (2015) showed that IDW was more
accurate than the centroid method in the Sulejów reservoir catchment in central Poland. Masih et al. [4]
successfully tested the IDW method versus mountainous semiarid catchments in the Karkheh River
basin, Iran. Thus, the results show that IDW_2 is a robust interpolation method that can improve
SWAT model performance in various regions globally.
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Table 8. Mean areal precipitation (MAP) input effects on the calibrated SWAT model performance
results and ratings at daily, monthly, and annual time steps after the SWAT model calibration in the
Hinkson Creek Watershed, Missouri, USA. SWAT models were forced with 19 different precipitation
methods. MAP methods are presented by the overall model performance rank (i.e., high to low rank).

Overall Rank Technique Method PBIAS (%)
Daily Monthly Annual

NSE R2 NSE R2 NSE R2

1 SF IDW_2 0.00 0.41 0.48 0.74 0.74 0.95 0.89
2 SF IDW_1 0.16 0.40 0.47 0.77 0.77 0.94 0.88
3 SF UK 0.00 0.18 0.41 0.67 0.68 0.95 0.91
4 SF GPI_1 0.02 0.34 0.49 0.65 0.70 0.94 0.90
5 RS PRISM 0.00 0.36 0.38 0.68 0.69 0.93 0.87
6 PG Centroid 0.16 0.36 0.47 0.69 0.70 0.94 0.90
7 PG Outlet 0.18 0.31 0.44 0.75 0.75 0.95 0.90
8 SF OK 0.02 0.30 0.44 0.71 0.71 0.94 0.89
9 AVE Average 0.77 0.41 0.48 0.77 0.77 0.92 0.84
10 SF Spline 0.01 0.35 0.46 0.68 0.69 0.91 0.87
11 SF LPI_1 0.01 0.29 0.45 0.57 0.65 0.93 0.91
12 AVE Thiessen 0.42 0.36 0.46 0.68 0.69 0.95 0.91
13 AVE Two-Axis 0.91 0.37 0.47 0.76 0.76 0.91 0.83
14 SF MQF 0.01 0.27 0.42 0.57 0.62 0.89 0.89
15 RS NEXRAD −18.2 0.38 0.40 0.71 0.75 0.88 0.90
16 RS TRMM −0.01 0.24 0.32 0.58 0.58 0.89 0.81
17 RS CHIRPS 0.03 0.26 0.29 0.59 0.60 0.91 0.83
18 SF GPI_2 −10.4 0.12 0.35 0.18 0.43 0.65 0.84
19 SF LPI_2 −10.5 −0.02 0.38 0.23 0.47 0.58 0.86
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Figure 3. SWAT-cup derived best-fit calibration parameters (black dots) and parameter ranges (black
whiskers) for each SWAT calibration parameter (n = 6) presented as a function of 19 different mean
areal precipitation methods. Whisker’s plots show user-specified physically meaningful bounds for
each calibration parameter, and boxes show the post-calibration parameter ranges for the Hinkson
Creek Watershed, Missouri, USA.
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The results from the current work and other studies showed mixed results from remotely sensed
data. Tuo et al. [26] tested the influence of satellite-based data sets (TRMM and CHIRPS) on SWAT
simulated stream flow. The CHIRPS data resulted in ‘satisfactory’ simulations of the stream flow [26].
However, the TRMM data set was associated with ‘unsatisfactory’ model performance by Tuo et al. [26].
In the current work, TRMM and CHIRPS data were ranked at 16th and 17th, respectively, indicating
poor overall model performance relative to the other MAP methods tested. However, it is important to
note that model calibration improved the model performance adequately at an annual timestep using
the TRMM and CHIRPS input data in the current work.

Examination of the model performance ratings at the validation sites (Sites #1, #2, #3, and #5)
indicated that the PBIAS values decreased to less than −68% in the agricultural headwaters due
to notable differences in soils, vegetation, land use, and underlying geology that the SWAT model
did not simulate well (Figure 4). The study catchment was divided by two Level II Ecoregions [35].
The agricultural headwaters were within the Great Plains ecoregion while the urbanizing lower
elevations were in the Ozark Highlands ecoregion. Thus, the split-site validation results indicated
that calibrating the model at only the watershed outlet is not advised in watersheds with substantial
changes in watershed physiographic characteristics. These results have implications for water resource
management practices based on the SWAT model output in large basins (e.g., Upper Mississippi River
Basin) that often contain multiple ecoregions coupled with differences in watershed characteristics.
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criteria and overall performance ratings for SWAT model simulated annual streamflow at five gauging
sites (gray-scale columns) located in the Hinkson Creek Watershed, Missouri, USA. The red lines show
“Satisfactory” model performance thresholds. PBIAS values smaller than −100 were not shown.

The MAP input data affected the SWAT model simulated water balance variables (Table 9,
Figure 5). For example, ET and stream flow accounted for the majority of the water balance. However,
the greatest differences in the water balance components were in the amount of total stream flow that
was the base flow as shown in Figure 5. For example, the SWAT model simulated BFI’s ranged from
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11% to 48% while the observed BFI was 25% for the study catchment [36]. BFI was overestimated when
the MAP methods overestimated the annual total precipitation (GPI_2, LPI_2, PRISM, and NEXRAD).
In the current work, to attenuate the overestimations of precipitation generated using the GPI_2, LPI_2,
PRISM, and NEXRAD MAP methods, SWAT-cup autocalibration routines resulted in the greatest
reductions of curve numbers (CN2-5) coupled with the greatest increases in overland roughness
(OV_N+0.25) and available water capacity of the soil (SOL_AWC+0.05) (Figure 3). The combined
effects of minimizing the curve numbers, maximizing manning’s n for overland flow, and maximizing
the available soil water capacity resulted in physically unrealistic BFI’s for the study catchment. These
results point to the need to consider the compounding effects of multiple calibration parameters
on the model output when setting physically relevant bounds for the calibration parameters using
autocalibration software like SWAT-cup. Additionally, the results highlight the importance of the
precipitation input inaccuracy for hydrologic model output.

Table 9. Mean areal precipitation (MAP) input effects on water balance variables after SWAT model
calibration in the Hinkson Creek Watershed, Missouri, USA. SWAT models were forced with 19 different
precipitation methods. All results are shown in depth of water (mm). The percent of total water input
is shown parenthetically. Precip. is precipitation, ET is evapotranspiration, and Ground water is deep
aquifer recharge.

Technique MAP
Method Precip. ET Surface Runoff

(mm) (%) Baseflow Soil Water Ground
Water

Proximate
gauge

Centroid 1039 537 (52) 412 (40) 51 (5) 37 (4) 3 (0)
Outlet 1036 536 (52) 402 (39) 56 (5) 42 (4) 4 (0)

Direct-weighted
average

Average 1019 604 (59) 316 (31) 51 (5) 48 (4) 3 (0)
Thiessen 1037 532 (51) 402 (39) 59 (6) 45 (4) 4 (0)
Two-Axis 1020 540 (53) 386 (38) 56 (5) 38 (3) 4 (0)

Surface-fitting

GPI_1 1036 552 (53) 382 (37) 62 (6) 40 (3) 4 (0)
GPI_2 1091 597 (55) 272 (25) 190 (17) 31 (2) 9 (1)
LPI_1 1047 562 (54) 388 (37) 59 (6) 38 (3) 3 (0)
LPI_2 1097 598 (55) 274 (25) 179 (16) 46 (3) 8 (1)

IDW_1 1034 536 (52) 393 (38) 64 (6) 41 (4) 4 (0)
IDW_2 1036 536 (52) 404 (39) 57 (6) 40 (3) 3 (0)
MQF 1043 546 (52) 322 (31) 129 (12) 46 (4) 7 (1)
Spline 1048 542 (52) 388 (37) 73 (7) 46 (4) 4 (0)

OK 1037 530 (51) 395 (38) 66 (6) 46 (4) 4 (0)
UK 1037 537 (52) 399 (38) 58 (6) 43 (4) 3 (0)

Remotely
sensed

PRISM 1174 645 (55) 320 (27) 151 (13) 58 (4) 8 (1)
TRMM 1137 637 (56) 380 (33) 73 (6) 46 (4) 4 (0)

CHIRPS 1111 574 (52) 440 (40) 54 (5) 44 (4) 4 (0)
NEXRAD 1192 618 (52) 275 (23) 249 (21) 49 (3) 11 (1)

The NEXRAD data set led to an overestimated BFI by up to 23%, which was surprising considering
that the level III NEXRAD data have been shown to produce more accurate hydrologic model
performance compared to satellite-derived precipitation products, and a better choice for MAP
inputs for hydrologic model performance than point gauges [56–58]. For example, Tobin and Bennett
(2009) [58] used level III NEXRAD data for input into the SWAT model and the results showed that
the three day average stream flow was associated with NSE values ranging from 0.60 to 0.88, while
the TRMM 3B42 data set yielded more variable results with NSE values ranging from 0.38 to 0.94.
However, in the current work, the NEXRAD precipitation data set was associated with the greatest
overestimation in annual total precipitation (MAE = 152 mm) which indicated potential radar accuracy
issues. Radar accuracy issues have been attributed to the proximity of the nearest radars which
were located approximately 200 km away from the study catchment. For example, Simpson et al.
(2016) [59] showed that the precipitation radar accuracy degrades at distances greater than 120 km due
to increased beam light and volume coverage. These results may indicate a need to increase the radar
gauge density in the US to reduce radar accuracy issues.
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Ultimately, in agreement with the previous studies [4,17,26,27], the centroid method is not the most
accurate MAP method (Table 8). The centroid method is useful in its simplicity. However, in regions
with more than one gauge, precipitation data can be interpolated to estimate MAP using direct
weighted averaging methods, or surface-fitting methods. Also, if satellite-based methods become more
accurate as is anticipated, then point gauge interpolation methods may eventually become obsolete.
Considering ArcSWAT is already compatible with ArcGIS, and all of the surface-fitting methods used
in the current work were generated using geostatistical tools in ArcGIS, a conversion is possible.
However, a balance must be achieved between spatial complexity and ease of use [5]. In the interim,
3rd party python scripts can be written by end-users that need to iterate point measured precipitation
data across attribute table fields to generate daily time series’ of MAP in ArcGIS to improve the SWAT
model output for the stream flow.

4. Conclusions

While there are many MAP methods to choose from, selecting the most accurate method for
a given modeling application is essential for realistic hydrologic simulations. Internationally used
alternative proximate gauge and direct-weighted average MAP estimation techniques may not be
the most accurate MAP techniques for semi-distributed watershed-scale continuous time hydrologic
models like the Soil and Water Assessment Tool (SWAT). The inverse distance weighted, linear
local polynomial interpolation, and the multiquadric function surface-fitting methods were the most
accurate methods for the SWAT model estimates of stream flow in this study. Conversely, the 2nd order
polynomial MAP methods were the least effective, with unsatisfactory SWAT model performance at
daily, monthly, and annual intervals.

Remotely sensed precipitation input data for hydrologic models are useful because the majority
of the Earth’s land surface is not monitored with networks of precipitation gauges. The PRISM data
set was associated with ‘satisfactory’ uncalibrated SWAT model performance for the monthly stream
flow. Additionally, all satellite-based datasets tested resulted in a rating of ‘good’ for annual stream
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flow following SWAT model calibration, except for the NEXRAD data that overestimated the total
precipitation. Thus, the results support the use of the PRISM data set for ungauged watersheds
regionally in catchments that may have stream flow gauges, but lack the precipitation monitoring sites
to estimate MAP using surface-fitting methods. Additional model performance testing and validation
will be needed as satellite-based precipitation data sets are updated. Networks of ground-based
precipitation monitoring sites will also continue to be important for ground truthing.

Split-site SWAT model validation results indicated a need for multiple stream flow gauging sites in
watersheds with notable differences in soils, vegetation, land use, and/or underlying geology. Model
calibration at the watershed outlet alone was coupled with model uncertainty that increased with the
distance from the urban site of calibration to the agricultural headwaters (−68% to −160% overestimations
in stream flow) due to differences in watershed characteristics and two Level II Ecoregions. Collectively,
the results highlight a need for networks of distributed meteorological monitoring sites, coupled
with nested hydrologic gauging sites where multiple years of hydroclimate data can be collected to:
(i) accurately quantify MAP using surface-fitting methods, (ii) continue to validate remotely sensed data
sets, and (iii) partition large basins into sub-basins each with different dominate watershed characteristics
for accurate watershed-scale continuous-time hydrologic model simulations.
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