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Abstract: In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing
continuing decline due to long-term pumping for irrigation with limited recharge. Accurate
simulation of irrigation and other associated water balance components are critical for meaningful
evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation
functions within models such as the Soil and Water Assessment Tool (SWAT). However, some studies
have raised concerns as to whether the function is able to adequately simulate representative irrigation
practices. In this study, observations of climate, irrigation, evapotranspiration (ET), leaf area index
(LAI), and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and
Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT
auto-irrigation functions. Results indicated good agreement between simulated and observed daily
ET during both model calibration (2001–2005) and validation (2006–2010) periods for the baseline
scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80). The auto-irrigation scenarios resulted in reasonable
ET simulations under all the thresholds of soil water deficit (SWD) triggers as indicated by NSE
values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due
to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were
less than the static irrigation amount.

Keywords: SWAT; evapotranspiration; irrigation magnitude; irrigation frequency; lysimeters; leaf
area index (LAI); crop yield; soil water deficit threshold; single-HRU method

1. Introduction

Hydrologic models such as the Soil and Water Assessment Tool (SWAT) [1], Agricultural
Policy/Environmental eXtender (APEX) [2], and European Hydrological System Model MIKE SHE [3],
are widely used for assessing the impacts of best management practices at various spatial scales. Proper
calibration and validation of models using observed data are required for meaningful evaluation of
outputs and subsequent use in decision making. In most studies, hydrologic models were calibrated
for streamflow using measured data at the watershed outlet [4]. A limited number of studies have
used measured evapotranspiration (ET) for calibrating hydrologic models [5–7]. According to an
assessment of 257 process-based, watershed modeling papers published between 1992 and 2010,
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Wellen et al. [4] found that in 96% of studies, models were calibrated against measured streamflow, and
in the remaining 4% of studies, models were calibrated using measured surface runoff. They found
that none of the studies evaluated the ability of the model to simulate any other hydrologic parameters.
Researchers have cautioned that model calibrations based on a single measured hydrologic parameter
could lead to incorrect conclusions, as errors in the simulation of one hydrologic parameter can be
compensated by errors in the simulation of another hydrologic parameter with the opposite sign [8,9].
Modelers have therefore emphasized the need for using other observed hydrologic data in addition to
streamflow for calibrating hydrologic models. Among hydrologic parameters, ET is commonly the
most significant portion, particularly in semi-arid regions.

Recently, measured long-term lysimeter ET data from the USDA-ARS Conservation and Production
Research Laboratory (CPRL) at Bushland, Texas were used for the calibration and validation of the SWAT
model for row crops under irrigated and dryland management [5,6]. Detailed weather, plant growth,
water balance, agronomy, and management records from the weighing lysimeter fields were also used.
The availability of such detailed field-scale data for model calibration is essential for improving model
performance. Additionally, long-term observed irrigation data present an opportunity for quantitative
analysis of the performance of the auto-irrigation function in hydrologic models. In this study, the
open-source SWAT model was used, and the source code was obtained from [10].

Auto-irrigation function in SWAT is based upon one of two water stress trigger (WSTRS_ID)
approaches; (1) plant water demand, or (2) soil water content. The plant water demand trigger
applies water whenever a user-defined reduction in plant growth occurs (AUTO_WSTRS) due to water
stress. However, actual field irrigation is commonly scheduled in response to changes in soil water
content in the plant rooting zone. This management approach is most closely represented in SWAT
by the soil water content approach, triggered by a user-defined soil water deficit (SWD) threshold
(AUTO_WSTRS), calculated as the difference between field capacity and soil water content in mm
of water. Lower values of SWD thresholds generally result in more frequent irrigations, as the time
required for soil water content to reach the SWD threshold is relatively short. As for larger values of
SWD thresholds, the time elapsed between irrigations is increased, as more time is associated with
the additional allowed depletion of soil profile water before reaching the SWD threshold. For the
same reasons, the first irrigation of the season will generally occur earlier for smaller SWD values,
as opposed to later with larger SWD values. Once triggered, irrigation is applied at a user-defined
amount (IRR_MX) [11]. If no value is provided, SWAT assigns a default irrigation amount of 25.4 mm
(1 inch). This is not reported in the user manual and theoretical documentation but can be identified
by the source code. The default irrigation amount and user-defined SWD threshold establish a pseudo
field capacity value used to trigger irrigations.

In semi-arid/arid regions, it is not always desirable or even possible to irrigate to field capacity
for producers with limited irrigation system capacities. In most cases, producers use a percentage of
plant available water (PAW) depletion to trigger irrigations. This managed allowable depletion (MAD)
approach allows for more effective use of limited water resources and is dependent upon respective
soil and crop characteristics. The difference between this producer–irrigation paradigm and the
current auto-irrigation function in SWAT may influence the accurate simulation of irrigation and other
water balance parameters. Some studies have qualitatively reported that the auto-irrigation functions
in SWAT were unable to appropriately reproduce the hydrologic cycle in the intensively irrigated
watersheds [12–15]. Using SWAT2005, Dechmi et al. [13] commented that the default auto-irrigation
functions returned excess irrigation water to the irrigation source, rather than accounting for it
in the water balance. Githui et al. [16] also found that monthly patterns of irrigation intervals
simulated using the SWAT auto-irrigation function did not match estimated irrigation data of 2009
and 2010 from an irrigated catchment in southeast Australia. Researchers have also recommended
different growth stage-specific irrigation techniques to create favorable conditions for crop growth [17].
However, the current auto-irrigation functions in SWAT cannot simulate differential irrigation of
crops based on growth stages. To date, no known study has reported the performance of SWAT



Water 2017, 9, 509 3 of 16

auto-irrigation functions for simulations of irrigation, ET, and crop responses using quality, long-term
field observations.

In this study, data collected from a lysimeter located in an irrigated field at the USDA-ARS CPRL at
Bushland, Texas were used for evaluating the SWAT model. Observed data used in this study included
continuous measurement of daily ET, seasonal leaf area index (LAI), annual crop yield, climate data,
field operations, and detailed irrigation management records from 2000 to 2010. The primary goal
of this study was to assess the efficacy of the SWAT auto-irrigation function to simulate irrigation
management strategies typical of the Texas High Plains region, while simultaneously simulating
reasonable values for crop yield, LAI, and ET. Specifically, the objectives of this study were to: (1)
calibrate the SWAT model for ET, LAI, and crop yield using measured values from a weighing lysimeter
field; and (2) compare measured ET, irrigation, LAI, and crop yield to simulated values using SWAT
auto-irrigation functions under different SWD thresholds triggered by the soil water content method,
and quantitatively determine the shortcomings of the auto-irrigation functions.

2. Materials and Methods

2.1. Study Area

The study area is located at the USDA-ARS CPRL near Bushland, Texas (35.2◦ N, 102.1◦ W, ~1170 m
above mean sea level). The regional climate is classified as semi-arid, with a mean precipitation and
temperature (2000–2010) of 488 mm and 14.1 ◦C, respectively. The major soil is well-drained Pullman
silty clay loam (fine, mixed, superactive, thermic Torrertic Paleustoll) [18]. The study area is relatively
flat, with a slope of <0.2%. A 4.7 ha irrigated field with a large-weighing lysimeter located in its center
was selected as the research site. An adjacent research-grade weather station maintained in accordance
with ASCE-EWRI specifications [19] was used for the climate data input. Data collected from the
lysimeter field from 2000 to 2010 were processed and used in this study. Crops grown during the study
period included cotton (Gossypium hirsutum L.), soybean (Glycine max L.), grain and forage sorghum
[Sorghum bicolor (L.) Moench], sunflower (Helianthus annuus L.), and forage corn (Zea mays L.). A linear
move sprinkler irrigation system was used to apply water to the crops. The specific crop management
practices are listed in Table 1.

Table 1. Crops grown on the irrigated lysimeter field from 2000 to 2010.

Year Irrigated Crop Planting Date Fertilizer Application (kg ha−1) * Harvest Date

2000 Cotton 16 May 504.4 6 December
2001 Cotton 16 May 326.2 3 December
2002 Cotton 21 May 571.6 13 November
2003 Soybean 19 May Not applied 15 October
2004 Soybean 12 May Not applied 19 October
2005 Grain sorghum 22 June 612.0 7 November
2006 Forage corn 3 July 68.4 14 December
2007 Forage sorghum 30 May 510.0 15 October
2008 Cotton 21 May 408.0 15 December
2009 Sunflower 4 June 510.0 19 October
2010 Cotton 26 May Not applied 28 October

Note: * Ammonium nitrate fertilizer.

2.2. Climate Data Collection and Analysis

Climate data output values (15-min interval) obtained from the research grass reference weather
station adjacent to the irrigated lysimeter field were integrated into daily values. These values were
used to compute daily weather values for use in the model simulations. Quality assurance and
quality control (QA/QC) procedures were used to ensure that measured wind speed, air temperature,
precipitation, relative humidity, and solar radiation values were within acceptable tolerances.
In addition, all climate data were compared to data collected from a collocated, solar-powered weather
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station of the Texas High Plains ET Network [20]. Correlations between the two datasets were used to
fill any missing climatic data of the research weather station.

2.3. Lysimeter, LAI, and Crop Yield Data Collection and Analysis

The lysimeter contains an undisturbed soil monolith collected on site, weighing ~45 Mg including
the container mass. The lysimeter surface dimensions are approximately 3 m × 3 m (9 m2) with a
depth of 2.3 m [21]. Voltage outputs from load cells (SM-50, Interface, Inc., Scottsdale, Ariz.) with 22 kg
full-range capacity were measured and recorded by data loggers (CR-7X, Campbell Scientific, Logan,
Utah) at 0.5 Hz (2 s) frequency. The lysimeter’s accuracy has ranged from 0.05 mm [22,23] to 0.01 mm.
Experienced support technicians and scientists were responsible for routine lysimeter maintenance
and ensuring representativeness of the surrounding field. Load cell voltage outputs were converted to
mass using calibration equations, and 5 min means were used to develop a base dataset for subsequent
processing [22]. Lysimeter mass (kg) was converted to a mass-equivalent relative lysimeter storage
value (mm of water) by dividing it by the relevant surface area of the lysimeter (~9 m2) and the
density of water (taken as 1000 kg m−3). Lysimeter design and management are further described by
Marek et al. [5]. Daily ET is calculated using the following soil water balance equation.

ET = P + I + R + F + ∆SW

where P is precipitation (mm), I is irrigation (mm), R is the sum of runon and runoff (taken as zero
due to furrow diking to minimize runoff in this study), F is flux into or out of the volume (mm,
taken as negative when exiting the control volume), and ∆SW is the change in soil water content
(mm). The lysimeter is equipped with a vacuum drainage system, which collects profile drainage into
partitioned tanks suspended from the bottom of the lysimeter soil tank such that drainage does not
change the lysimeter mass. As such, F was assigned a value of zero. Other mass-changing events
were flagged and accounted for according to data processing and data QA/QC procedures provided
by Marek et al. [24]. Missing or non-suitable periods of lysimeter ET data resulting from lysimeter
maintenance, calibrations, agronomic activities, and power outages were not used. Crop LAI was
measured periodically during the growing season throughout the 10-year period. At the end of the
growing season, crop yield was also collected.

2.4. SWAT Single HRU Setup and Calibration

The SWAT model is a physically-based, continuous, semi-distributed, watershed-scale model
with spatially distributed parameters [1]. Primary model inputs include terrain, land use, soil, weather,
and management practices [25]. The SWAT auto-irrigation function using the soil water content
method triggered an irrigation when the total soil water in the profile fell below field capacity by
more than the user defined SWD threshold. In this study, ArcSWAT 2012 (version 2012.10_0.7) was
used. Although SWAT is commonly used for watershed-scale studies, many projects have focused
on field-scale modeling. Recently, a single hydrologic response unit (HRU) method was described in
detail by Moloney et al. [26] and Cibin et al. [27]. The SWAT model divides a watershed into a number
of HRUs and aggregates them into subbasins. An HRU is a basic computational unit in the SWAT
model that contains unique land use, soil type, and slope characteristics. An HRU in the SWAT model,
therefore, serves as a good representation of field conditions. The SWAT model can be set up using a
single HRU, and hence asserts the model useful for field-scale assessment. This emerging single-HRU
method is a flexible, time-saving method for field-scale simulations.

The irrigated lysimeter field was set up as one HRU using the single-HRU method. A single
HRU management file was created to reflect actual agronomic practices performed on their respective
dates of operation, including tillage, planting, fertilization, irrigation, and harvesting. Irrigations on
the lysimeter field throughout the study period were scheduled to satisfy full irrigation requirements
relative to soil water in the root zone (to a depth of 1.5 m), as determined by soil water neutron probe
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measurements. The soil water deficit thresholds used to schedule the actual irrigation ranged from
approximately 10 mm to 100 mm for various crops at different growth stages. Under the baseline
scenario, the actual irrigation practices were input into the single-HRU management file. The soil
parameters and values used in this study are shown in Table 2. A SWAT model initially calibrated
for ET only using the irrigated lysimeter field by Marek et al. [5] was used and further calibrated for
LAI and crop yield. The calibrated hydrologic parameters are listed in Table 3. The SWAT model
simulation was structured as an 11-year (2000–2010) simulation. The first year was used for the model
warm-up period, and the remaining years were divided into calibration (2001–2005) and validation
(2006–2010) periods.

The measured field data (e.g., climate, management practices, and maximum LAI for 2000–2010)
were manually inputted into the SWAT model. In addition, important hydrologic parameters and
initial state variables were taken from published literature [5]. The crop LAI development-related
parameters were manually adjusted to obtain the best fit between simulated LAI and the observed
data (Table 4). Finally, crop yield parameters were manually adjusted. This approach involved the
year-by-year adjustment of crop growth parameters in the SWAT plant database and provided the
most accurate simulation of crop LAI, yield, and ET for subsequent evaluation of the auto-irrigation
functions in SWAT.

Table 2. Soil information from the Soil Survey Geographic Database (SSURGO) used in model setup.

Soil Information Layer 1 Layer 2 Layer 3 Layer 4

Depth (mm) 0–180 180–860 860–1800 1800–2300
Bulk density (g cm−3) 1.43 1.38 1.38 1.45
Available water capacity (mm H2O per mm soil) 0.20 0.18 0.19 0.14
Saturated hydraulic conductivity (mm hr−1) 9.72 2.16 2.16 9.72
Clay content (% soil mass) 33.9 42.1 39.4 39.1
Silt content (% soil mass) 53.8 48.0 47.6 47.1
Sand content (% soil mass) 12.3 9.9 13.0 13.8

Table 3. Calibrated values of the selected Soil and Water Assessment Tool (SWAT) hydrologic parameters.

Parameter Description Range Calibrated Value

ESCO Plant uptake compensation factor 0.0–1.0 1.000
EPCO Soil evaporation compensation factor 0.0–1.0 0.900
FFCB Initial soil water storage 0.0–1.0 0.750

EVPOT Pothole evaporation coefficient 0.0–1.0 0.5
POT_VOLX Maximum volume of water stored in the pothole (mm) over the entire HRU 0–∞ 50 mm

EVLAI Leaf area index at which no evaporation occurs from the water surface 0.0–10.0 4.0

Table 4. Default and calibrated values of crop parameters in Soil and Water Assessment Tool (SWAT).

No. Parameter Description Default
Value

Calibrated
Value Source

2001 cotton

1 BLAI Max leaf area index (m2/m2) 4 2 Measured *

2 FRGRW2 Fraction of the plant growing season corresponding to the 2nd point on
the optimal leaf area development curve 0.5 0.6 Estimated #

3 DLAI Fraction of the plant growing season when leaf area begins to decline 0.95 0.7 Estimated

2002 cotton

1 BLAI Max leaf area index (m2/m2) 4 5 Measured

2 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.2 Estimated

3 FRGRW2 Fraction of the plant growing season corresponding to the 2nd point on
the optimal leaf area development curve 0.5 0.6 Estimated

4 DLAI Fraction of the plant growing season when leaf area begins to decline 0.95 0.7 Estimated
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Table 4. Cont.

No. Parameter Description Default
Value

Calibrated
Value Source

2003 soybean

1 BLAI Max leaf area index (m2/m2) 3 4.5 Measured

2 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.3 Estimated

3 FRGRW2 Fraction of the plant growing season corresponding to the 2nd point on
the optimal leaf area development curve 0.5 0.8 Estimated

4 DLAI Fraction of the plant growing season when leaf area begins to decline 0.6 0.92 Estimated

2004 soybean

1 BLAI Max leaf area index (m2/m2) 3 5.5 Measured

2 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.3 Estimated

3 FRGRW2 Fraction of the plant growing season corresponding to the 2nd point on
the optimal leaf area development curve 0.5 0.65 Estimated

4 DLAI Fraction of the plant growing season when leaf area begins to decline 0.6 0.85 Estimated

2005 grain sorghum

1 BLAI Max leaf area index (m2/m2) 3 2.8 Measured

2 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.2 Estimated

2006 forage corn

1 BLAI Max leaf area index (m2/m2) 4 5 Measured

2007 forage sorghum

1 BLAI Max leaf area index (m2/m2) 4 5.5 Measured

2 BIO_E Biomass/energy ratio [(kg ha−1)/(MJ m−2)] 33.5 45 Sinnathamby et al. [28]

3 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.25 Estimated

4 FRGRW2 Fraction of the plant growing season corresponding to the 2nd point on
the optimal leaf area development curve 0.5 0.6 Estimated

5 DLAI Fraction of the plant growing season when leaf area begins to decline 0.64 0.84 Estimated

2008 cotton

1 BLAI Max leaf area index (m2/m2) 4 3.8 Measured

2 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.3 Estimated

3 DLAI Fraction of the plant growing season when leaf area begins to decline 0.95 0.58 Estimated

2009 sunflower

1 BLAI Max leaf area index (m2/m2) 3 7 Measured

2 FRGRW1 Fraction of the plant growing season corresponding to the 1st point on
the optimal leaf area development curve 0.15 0.2 Estimated

3 FRGRW2 Fraction of the plant growing season corresponding to the 2nd point on
the optimal leaf area development curve 0.5 0.7 Estimated

4 DLAI Fraction of the plant growing season when leaf area begins to decline 0.62 0.85 Estimated

2010 cotton

1 BLAI Max leaf area index (m2/m2) 4 5.8 Measured

2 DLAI Fraction of the plant growing season when leaf area begins to decline 0.95 0.8 Estimated

Notes: * Field measured maximum leaf area index; # Estimated value based on the pattern of several measured leaf
area index values.

2.5. Auto-irrigation Scenario Design and Assessment

Eight auto-irrigation scenarios were developed using different soil water deficit thresholds by soil
layer. SWD triggers of 10, 20 and 36 mm were used for the first soil layer. SWD triggers of 40, 50, 100
and 158 mm were used for the second, and 337 mm was used for the third soil layer. In this study, the
frequencies and amounts of actual irrigations were known. Such detailed information is generally not
known for use in modeling studies, which is also the primary reason that the auto-irrigation function is
used in many SWAT studies. However, parameterization of the auto-irrigation scenarios in this study
assumed no knowledge of the frequencies and amounts of actual irrigation. In this way, the effects
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of auto-irrigation functions using various SWD threshold triggers on model performance could be
quantitatively determined. The results could have implications for previous studies using the SWAT
auto-irrigation functions. The SWAT model performance for predicting daily ET and crop yield was
evaluated using two statistical measures: percent bias (PBIAS) and Nash-Sutcliffe efficiency (NSE) [29]
under the baseline and different auto-irrigation scenarios. The PBIAS statistic is a measure of the
tendency of the average to be larger or smaller than the observed values, with an optimal value of zero.
Positive and negative values indicate overestimation and underestimation, respectively, expressed as a
percentage. The NSE statistic represents the relative magnitude of residual variance compared to the
variance of measured data. NSE values range from −∞ to 1.0, with 1.0 being the optimal value.

3. Results and Discussion

3.1. Evaluation of the SWAT Single-HRU Method for LAI and ET Simulations

The observed maximum LAI values were inputted into the crop database for each crop in
each year. Seasonally-measured LAI values were compared to daily-simulated LAI for each year.
The graphical comparison indicated that overall, SWAT-simulated LAI matched observed data well
(Figure 1). However, SWAT clearly underestimated LAI for forage corn in 2006 (Figure 1f). A large
variation in measured LAI for forage corn was also observed in 2006. In that year, the forage corn
was damaged by an undetermined plant virus or herbicide, and replanted to a short-season variety
in early July. The simulated LAI values of cotton showed an extended tail during the senescence
period (Figure 1a,b,h,j), which may result from the lack of application of harvest aids (defoliant) in the
SWAT model. Producers commonly apply harvest aids about three weeks prior to expected cotton
harvest to facilitate boll opening and maturity, particularly in wetter than normal years. Crop LAI is
directly proportional to the transpiration component of ET. A reasonable partition of evaporation and
transpiration will benefit the simulations of plant growth and water balance [30].
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Following the calibration of LAI, the model performance for ET simulation was evaluated. The
NSE and PBIAS values obtained during the model calibration (2001–2005) and validation (2006–2010)
periods for the simulation of daily ET from the irrigated lysimeter field were 0.85 and 0.80, and 7.2%
and 2.4%, respectively (Table 5). The model performance statistics were deemed “very good” during
both calibration and validation periods, according to criteria outlined by Moriasi et al. [31]. Also,
NSE model performance was improved as compared to Marek et al. [5] during both the calibration
(0.85 vs. 0.67) and validation (0.80 vs. 0.78) periods, due to the further calibration of LAI. The SWAT
single-HRU method was, therefore, found to be effective in simulating both LAI and ET. However,
simulated ET was slightly higher than the observed ET for cotton in all years during their senescence
periods (Figures 2 and 3). This overestimation of ET coincided with the overestimation of LAI during
the senescence period of cotton.

Table 5. Model performance statistics for daily measured and simulated ET during calibration
(2001–2005) and validation (2006–2010) periods.

Manual Input All the Field Observations (Baseline Scenario) Daily ET

Statistics 2001–2005 2006–2010
Measured mean (mm) 2.40 2.42
Simulated mean (mm) 2.58 2.48

Nash-Sutcliffe efficiency (NSE) 0.85 0.80
Percent bias (PBIAS) 7.2% 2.4%
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Figure 3. SWAT simulated daily (a) and seven-day running average (b) ET versus observed ET of the
irrigated lysimeter field during the validation period (2006–2010).

3.2. Comparison of SWAT-Simulated Crop Yields with Field Observations

Some studies have suggested using crop yield as a surrogate for the calibration of ET in SWAT, as
crop yield is proportional to the ET component [12,32]. Therefore, after calibrating the model for LAI
simulation, the SWAT model was further calibrated for crop yield simulation. The NSE and PBIAS
values achieved for the simulation of crop yield during the entire simulation period from 2001 to 2010
were 0.99 and 1.3%, respectively, which represented an excellent agreement between the simulated
and observed crop yield (Figure 4a). The detailed field management input is likely the key reason
for the accurate crop yield prediction. The evaluation of the SWAT single-HRU method for crop
yield simulation enhanced our confidence to use the calibrated model for simulations of ET and crop
responses under different auto-irrigation management scenarios.

A large PBIAS resulted for soybean yield in 2004 (25.7%) and cotton yield in 2008 (54.8%). Through
a SWAT simulation, Chen et al. [33] also found a large inter-annual variation for irrigated cotton yield
simulation in the Southern High Plains of Texas. Another SWAT simulation reported that the simulation
accuracy of irrigated cotton yields was much worse than those under dryland conditions (NSE of
irrigated and dryland cotton: −0.61 vs. 0.4) in the North Fork River Basin of Southwestern Oklahoma
and the Texas Panhandle [34]. Increased precipitation in 2004 and 2008 may have contributed to the
large inter-annual variation of soybean in 2004 and cotton in 2008 in this study. Cotton and soybean
have perennial crop characteristics, and their indeterminate nature may contribute to their difficulty of
simulation. During high rainfall years, cotton and soybean, and particularly cotton, tend to continue
growing past their desired growing season. Regarding all other years, the PBIAS was within ±15%
(Figure 4a).
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3.3. Simulated ET, Crop Response, and Irrigation Scheduling under SWAT Auto-Irrigation Scenarios

The comparisons of simulated ET during calibration (2001–2005) and validation (2006–2010)
periods under different SWD triggers with the measured data indicated that the auto-irrigation functions
in SWAT simulated satisfactory values of ET, as compared to measured lysimeter ET (Figure 5). The
NSE values were >0.65 during the calibration period under the SWD thresholds from 20 mm to 158
mm, which denoted a good agreement between simulated ET and observed data (Figure 5a). The NSE
values of 0.57 and 0.59 resulted from SWD thresholds of 10 mm and 337 mm, respectively. During the
validation period, the NSE values were between 0.70 and 0.75 under the SWD thresholds of 36 mm
to 337 mm (Figure 5b). Under the SWD thresholds of 10 and 20 mm, the NSE values were 0.53 and
0.68, respectively. The largest NSE values resulted from the SWD threshold of 36 mm (trigger irrigation
when the first soil layer lost all plant available water) for both calibration (0.76) and validation (0.73)
periods. Although all other measured field data were used in the auto-irrigation scenarios, a noticeable
decline in model performance, as compared to the baseline scenario, was still observed in this study
(NSE calibration: 0.85 (baseline) vs. 0.76; NSE validation: 0.80 (baseline) vs. 0.73).
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Model performance for yield simulations decreased considerably relative to the baseline scenario
(Figure 4b). For instance, the NSE and PBIAS values were 0.67 and 40% (baseline NSE and PBIAS: 0.99
and 1.3%) under the auto-irrigation scenario of a SWD threshold of 36 mm, which achieved the best
model performance for ET simulation among the auto-irrigation scenarios. Notably, the auto-irrigation
scenario simulated substantially higher yields of cotton (>50%), forage corn (70%), and forage sorghum
(40%), as compared to the observed data (Figure 4b). As for the LAI values, clear differences were
found for cotton in 2002, 2008, and 2010 under the auto-irrigation scenario of a SWD threshold of
36 mm (Figure 6). Cotton is a perennial shrub that is cultivated as an annual cash crop in the U.S. [35].
Vegetative growth continued under well-irrigated conditions. The observed maximum LAI was used
as the input for each crop in this study, which was necessary for the reasonable match of the LAI for
other crops under the auto-irrigation scenarios.
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Interestingly, the SWAT model achieved a good range of model performance in ET simulations
under SWD thresholds ranging from 36 mm to 158 mm. This suggests that a large uncertainty in
the simulation of hydrologic parameters may exist when using the soil water content method of the
auto-irrigation function in the SWAT model. Further analysis of relative amounts of auto-irrigation
associated with each SWD trigger was shown in Figure 7. The irrigation amount was set to 25.4 mm
(1 inch) in each trigger for all simulations. Therefore, the lower SWD trigger values (10 mm and
20 mm) resulted in frequent irrigations (>300 times vs. 198 times of the baseline scenario) that exceeded
field capacity, resulting in the gross overestimation of total irrigation as compared to actual irrigation
(Figure 7 and Table 6). Conversely, larger SWD triggers (>40 mm) resulted in corresponding decreases
in total simulated irrigation frequencies (<197 times), due to the delay of the initial irrigation, as a
greater amount of soil water depletion was allowed before an irrigation event was triggered (Table 6).
In general, the actual total seasonal irrigation was approximated to the 36 and 40 mm SWD trigger
scenarios. However, total irrigation amounts associated with the majority of SWD thresholds were
larger than the actual irrigation amounts for cotton and soybeans (Figure 7). Although the simulated
irrigation under different SWD triggers often bracketed actual seasonal irrigation, these simulated
values were biased. Use of the soil water content option of the auto-irrigation function resulted in
excess irrigation due to the application of irrigation water after crop maturity and in non-growing
season. In essence, water is applied strictly based on the SWD trigger and does not terminate following
the killing operation. This is a critical flaw in the soil water content method of the SWAT auto-irrigation
function. The low NSE values for the 10 mm SWD trigger, during both calibration and validation
periods, were caused by excessive irrigation due to the SWD trigger being less than each irrigation
amount of 25.4 mm. However, the low NSE value for the 337 mm SWD trigger in the calibration
period was likely due to the minimal irrigation applied to the 2004 soybean and 2005 grain sorghum,
with both years receiving relatively high amounts of precipitation. Compared to the baseline scenario,
the 36 mm and 40 mm SWD triggers showed the most reasonable number of irrigation frequencies
(Table 6). However, the differences in irrigation frequency for 2001 and 2010 cotton and 2003 soybean
were visible.

Table 6. Irrigation frequencies (number of times) of actual management and simulated soil water deficit
triggers using the auto-irrigation functions in SWAT.

Year and Crop Actual
Frequency 10 mm * 20 mm 36 mm 40 mm 50 mm 100 mm 158 mm 337 mm

2001 cotton 18 57 34 26 25 24 21 18 10
2002 cotton 23 70 38 25 24 23 19 17 12

2003 soybean 31 69 36 24 24 23 20 18 7
2004 soybean 16 54 27 17 16 14 12 10 1

2005 grain sorghum 14 57 22 12 12 11 8 5 5
2006 forage corn 27 68 37 24 23 20 15 13 7

2007 forage sorghum 18 52 20 14 13 13 10 8 5
2008 cotton 20 68 34 23 22 20 14 11 6

2009 sunflower 17 57 25 16 16 15 13 10 17
2010 cotton 14 66 33 22 22 21 19 18 70

Total frequencies 198 618 306 203 197 184 151 128 10

Note: * Soil water deficit threshold (mm H2O).
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4. Conclusions

The accurate simulation of water balance processes and their subsequent impacts on plant
growth depend on quality environmental and management inputs. Detailed irrigation management
information is crucial for a quantitative evaluation of the change in hydrologic components and crop
response under various auto-irrigation scenarios. Several studies have alluded to potential deficiencies
of the SWAT auto-irrigation functions to simulate realistic irrigation conditions. Results from this
study offered a quantitative analysis of shortcomings of the auto-irrigation functions using long-term
observed data. Although the auto-irrigation functions achieved overall satisfactory agreement for ET
simulation, a noticeable decrease in NSE (>0.06) was observed, as compared to the baseline scenario.
Considerable differences in irrigation amounts and frequencies, as well as crop yields, resulted from a
range of SWD triggers, demonstrating that the auto-irrigation functions did not adequately represent
field practices. Two major reasons for these results are the continuation of auto irrigation after crop
maturity, and excessive irrigation when SWD triggers were less than the static irrigation amount.
It is also worth mentioning that the current irrigation trigger factor of soil water content method is
not reported as a percentage in the plant water demand option, but rather in terms of mm of soil
water deficit, which can easily be overlooked. Findings in this study provide useful information about
the potential deficiencies of the SWAT auto-irrigation function for users, modelers, and developers.
This study also emphasizes the need for the SWAT auto-irrigation functions to better simulate the
water balance and crop growth in an irrigated region. We suggest development of a more sensitive
and intuitive auto-irrigation algorithm representative of actual irrigation management, which would
greatly improve simulations of study area containing significant irrigated acreages. Managed allowed
depletion (MAD), a common conceptual framework for irrigation scheduling, uses a percentage of
plant available water to trigger irrigation, rather than only soil characteristics related to the soil water
deficit trigger threshold, which may be useful for inclusion in SWAT. The development and testing of
MAD-based irrigation algorithms will be the focus of a future study.
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