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Abstract: The objective of the study was to determine the kinetic model that best fit observed nitrate
removal rates at the mesocosm scale in order to determine ideal loading rates for two future wetland
restorations slated to receive pulse flow agricultural drainage water. Four nitrate removal models
were investigated: zero order, first order decay, efficiency loss, and Monod. Wetland mesocosms were
constructed using the primary soil type (in triplicate) at each of the future wetland restoration sites.
Eighteen mesocosm experiments were conducted over two years across seasons. Simulated drainage
water was loaded into wetlands as batches, with target nitrate-N levels typically observed in
agricultural drainage water (between 2.5 and 10 mg L−1). Nitrate-N removal observed during
the experiments provided the basis for calibration and validation of the models. When the predictive
strength of each of the four models was assessed, results indicated that the efficiency loss and first
order decay models provided the strongest agreement between predicted and measured NO3-N
removal rates, and the fit between the two models were comparable. Since the predictive power of
these two models were similar, the less complicated first order decay model appeared to be the best
choice in predicting appropriate loading rates for the future full-scale wetland restorations.
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1. Introduction

Over the next decade the United States is expected to continue and intensify its focus on ecological
systems and their capacity to store water and improve water quality [1,2]. The impacts of increased
pollutant loads from non-point sources continue to threaten important economic and recreational
aquatic ecosystems. These growing pollutant loads have the potential to further impair drinking water,
as well as continue to threaten important aquatic dependent industries and recreational water-based
environments [3].

Many of the environmental pressures in coastal regions have been linked directly to the drainage
systems that were implemented to alter areas with wetland characteristics (e.g., high water tables,
hydric soils, and hydrophytic vegetation) into highly productive farmland [4–6]. Each year an
estimated 13 million tons of nitrogen (N) are purchased to incorporate into cropland soils in the
United States enabling crop production to sustain the continually growing world population [7].
Fertilizer applications have been reported to be the dominant N input in most sensitive watersheds
found in the Southeastern and Mississippi River regions [8]. Furthermore, reactive nitrogen in drainage
water entering sensitive freshwater and marine ecosystems has been found to harmfully alter these
systems (e.g., acidification, toxic algae blooms, hypoxia, contamination of drinking water aquifers, loss
of biodiversity) [3,9–12].
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Negative ecological impacts from draining wetland environments could be reversed in part
by restoring wetlands. Mitigation or conservation programs that invest resources into strategically
positioned wetland restoration projects in sensitive watersheds could help lead to a reversal in both
declining wetland ecosystem structure and water quality trends. Recent studies have been conducted
to improve restored wetland designs to offer additional water quality ecosystem services that may
have not been originally a part of the ecosystem. For example, strategically placed wetlands in coastal
landscapes receiving pumped agricultural drainage water have been reported to not only enhance
wetland hydrology, but provide reduction of nutrient, sediment, and fecal bacteria up to 97% from
incoming drainage water [13,14]. However, N removal rates, particularly nitrate-N (NO3-N) which
is significant in agricultural drainage water, can be variable in wetland systems depending on such
factors as wetland to watershed ratio, soil type, wetland ecosystem type, residence time, and loading
rates [15–17]. To promote the increased application of wetlands to improve watershed health, the
development of improved wetland removal process design tools for sensitive watersheds are needed.

A significant body of work has been completed to determine the N removal capacity of
agricultural, municipal wastewater, and stormwater treatment wetlands [18–21]. However, N removal
in constructed and restored surface pulse flow wetlands continues to be based primarily on simple
zero and first-order decay models with few studies completed to investigate alternative N removal
kinetic models [22–24]. Some researchers have identified several potential drawbacks to using zero
and first order decay approaches, particularly regarding utilizing models originally developed for
constant flow municipal applications in intermittent flow agricultural settings [25,26].

Restoration success evaluations are rarely completed because project funds often are
predominately earmarked for construction of on-the-ground projects [27]. Therefore, the utilization
of wetland mesocosms may be a more cost effective alternative to enhance our understanding of N
processes prior to full-scale construction and provide useful predictions of the NO3-N assimilation
and removal capacity of these systems[25,28–30].

In this study, the potential to reduce NO3-N concentrations at two future wetland restoration
sites in eastern North Carolina was evaluated. Resultant freshwater pulses from developed and
drained agricultural land that contain excess nutrients, sediment, and fecal bacteria, have likely
contributed to the lower quality of shellfishing waters in these areas [31]. Restored forested pulse flow
wetlands, which are planned for these sites, are one type of wetland that has been found to provide
water treatment, flood abatement, biodiversity, and carbon storage in coastal regions [32]. A series
of laboratory mesocosm experiments were completed to determine the best kinetic model to predict
NO3-N removal rates in the two distinct wetland systems. This was vitally important to maximize
the hydrologic and nutrient assimilation and removal potential for these future restored wetlands
because the amount of drainage water pumped to the wetland area will assist in restoring a more
natural wetland hydroperiod and equal the reduction of drainage water currently pumped directly
to a nearby sensitive estuary. The study was unique because eighteen NO3-N removal studies were
completed to capture differences of each wetland’s NO3-N removal capacity with respect to N loading
and season. Findings provided from this study were intended to guide wetland designers as to the
best method to predict NO3-N removal capacity in wetland systems that will receive an intermittent
load of water with relatively low concentrations of NO3-N.

The primary objectives of this study were to: (1) Create a dataset of NO3-N removal observations
over varying seasons, N loadings, and antecedent conditions for two pulse flow wetland environments
at the mesocosm scale; (2) Evaluate the fit of four NO3-N removal models (zero order, first order
decay, efficiency loss, and Monod) with observed daily NO3-N removal observations; and (3) Provide
predictions for the maximum drainage water volumes that can be pumped into the future restored
wetlands based on the kinetic model that best fit and was most practical for observed NO3-N
removal datasets.
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2. Materials and Methods

2.1. Experimental Setup

Six large wetland mesocosms (3.5 m long × 0.9 m wide × 0.75 m deep) were constructed
in a greenhouse near North Carolina State University 16 months prior to the initial experiment
(Figure 1). Details of the mesocosm construction and experiments can be found elsewhere [33].
The soil/water interface is where critical biogeochemical transformations occur in wetlands; therefore,
using restoration site soils was a critical component for the success of estimating site specific NO3-N
removal rates for these wetlands. In summary, soils were excavated directly from the future restoration
sites to be used in the study. Three randomized mesocosm replicates were loaded with Scuppernong
soil (a poorly drained, organic soil typically associated with Pocosins), while three more were
loaded with Deloss soil (a poorly drained, mineral soil typically associated with marine terraces).
The Scuppernong and Deloss wetland mesocosms will be referred to as WET-Org and WET-Min,
respectively, for the remainder of this article. Soft-stemmed bulrush (Schoenoplectus tabernaemontani)
was chosen because other researchers have successfully utilized this plant to study wetland nutrient
dynamics at the mesocosm scale [24,34]. Additionally, the above and belowground biomass of
S. tabernaemontani can establish quickly with careful attention to the plant requirements. Three smaller
mesocosms served as controls for the experiment and had only the simulated drainage water.
Each wetland mesocosm was outfitted with a recirculation system to replicate the conditions of
drainage water moving slowly through a wetland. Steady state flow was maintained through each
wetland mesocosm by collecting water along one end of the mesocosm and pumping the water through
a linear PVC apparatus to the other end of the mesocosm. Pumping rates were adjusted such that
average turnover time of water in each mesocosm was approximately once a day. Complete details of
the mesocosm setup can be found elsewhere [34].
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Figure 1. Wetland mesocosm laboratory [34].

2.2. Wetland Mesocosm Experiments

Eighteen batch experiments were conducted between September 2012 and September 2014
(16 months after mesocosm construction and planting) to capture differences with respect to N loading
and season of each wetland’s NO3-N removal capacity. The experiments were conducted as batch
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studies, with each mesocosm loaded with identical hydraulic and nutrient loading rates during each
experiment (Table 1). Initial NO3-N concentrations were varied during the study at ranges commonly
found in agricultural drainage water at each restoration site (2.5–10 mg L−1). The base target load was
0.6 g NO3-N m−2. The load represented an 18 cm water depth and 2.5 mg L−1 NO3-N concentration,
which is the most frequent loading expected at the future wetland restoration sites. Higher target loads
that varied between 0.9 g NO3-N m−2 and 3.6 g NO3-N m−2 and water depths of 18 to 30 cm were
also evaluated during the batch studies. Stage gages were permanently placed in each mesocosm to
observe average water depth within the mesocosm at the beginning of each experiment and used for
calculations discussed below. Each batch experiment lasted 7 to 10 days. More detailed methods for
the initiation of each batch run can be found elsewhere [34].

Table 1. Summary of wetland mesocosm batch experiments [34].

Season
Date Experiment

Period

Average Daily
Water

Temperature

Water Depth
Prior to Loading

Water Depth
after Loading

Target
NO3-N

Target NO3-N
Load

Day/Month/Year Days ◦C cm mg L−1 g N m−2

Fall a 25/9–4/10/12 10 22 4 30 2.5 0.9
Fall a 16/10–26/10/12 10 17 4 18 5 0.9
Fall a 5/11–15/11/12 10 11 18 30 10 2.2
Fall b 24/9–4/10/13 10 21 4 30 10 3.6
Fall b 15/10–25/10/13 10 16 4 18 2.5 0.6
Fall b 2/9–9/9/14 7 27 −5 † 20 2.5 0.9

Winter a 22/1–1/2/13 10 9 4 15 2.5 0.6
Winter a 11/2–21/2/13 10 11 4 18 5 0.9

Spring a 28/5–7/6/13 10 25 4 18 2.5 0.6
Spring b 8/4–18/4/14 10 18 4 18 5 0.9
Spring b 21/4–1/5/14 10 20 4 30 10 3.6
Spring b 27/5–6/6/14 10 25 4 30 2.5 0.9

Summer a 2/7–12/7/13 10 27 4 30 2.5 0.9
Summer a 6/8–16/8/13 10 27 4 30 5 2.0
Summer a 20/8–27/8/13 7 25 4 30 2.5 0.9
Summer b 13/6–20/6/14 7 26 4 18 2.5 0.6
Summer b 22/7–1/8/14 10 26 4 30 10 3.6
Summer b 12/8–19/8/14 7 25 4 18 5 0.9

Notes: † Negative value indicates water level below wetland surface; a Mesocosms batch experiments used for
model calibration; b Mesocosms batch experiments used for model validation.

2.3. Sampling Plan and Analysis

Grab water quality samples were collected from the recirculation system on days 0, 1, 2, 3, 5, and 7
during all batch runs and in 14 of 18 batch runs on day 10. Samples were then analyzed for NO3-N after
being filtered through 0.45 µm filters. All water quality analyses of the grab samples were conducted
in the Soil Science Environmental and Agricultural Testing Service Lab (SSC-EATS) with a Quikchem
8000 (Lachat, Milwaukee, WI, USA) using the cadmium reduction method (EPA Method 353.2).
Evapotranspiration rates were calculated for NO3-N concentration adjustments based on the changes
in the water depth measured on a stage gage in each mesocosm over the course of each experiment.
Additionally, water temperature in each wetland mesocosm was monitored hourly using 8k HOBO
pendant temperature sensors (Onset Computer Corporation, Bourne, MA, USA).

2.4. Apparent NO3-N Removal Calculations

Area-based NO3-N removal rates (JNN, mg m−2 d−1) were determined on a daily basis during
each experiment.

JNN =
(Ci − Ct)

A × t
(1)

where, Ci was the initial NO3-N load applied to each mesocosm (mg) at the beginning of each timestep,
Ct was the NO3-N remaining in the mesocosm water at each timestep (mg), A was the surface area
of the wetland mesocosm (m2), and t was the timestep or mean residence time of water held within
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the wetland mesocosm system. Determination of the removal rates for a particular experiment were
terminated when Ct < 0.05 mg L−1 [35].

2.5. NO3-N Removal Kinetic Models

Four models were considered to predict NO3-N removal: zero order (ZO), first order decay (FO),
efficiency loss (EL), and Monod (M). The zero order, first order, and Monod models were chosen
because they have been used to model NO3-N removal in wetlands in past experiments [25,36].
The efficiency loss model was chosen because to our knowledge it had not been explored prior to
this study in wetlands, but has been observed to model NO3-N removal well in streams [37–39].
Observations from the first nine of the eighteen completed batch run experiments were used to
determine removal rate coefficients, which varied in NO3-N load and season. Coefficients were
calculated using NO3-N concentrations 24 h following NO3-N loading to allow initial concentrations to
stabilize in each mesocosm and final NO3-N concentrations for each model. The kinetic model fits were
then evaluated using the remaining nine experimental datasets from the batch run experiments [40].

2.5.1. Zero Order (ZO) Model

The most simplistic quantitative model, the zero order model (ZO), assumes contaminant
reduction is independent of NO3-N concentration. Zero order NO3-N models have been used to model
NO3-N removal in wetlands assuming a constant consumption rate of NO3-N [41,42]. Therefore,
the JZO, the area based NO3-N removal rate (g m−2 d−1), would be constant. These systems can be
characterized by a linear NO3-N concentration profile, which is often unrealistic in systems with longer
residence times that allow NO3-N to become limited. The model assumes the system is closed, anoxic,
completely or partially mixed, independent of hydraulic loading rates, and insignificantly influenced
by other kinetic reactions occurring within the system [43]. The model can be expressed as [44]:

JZO =
(C1 − CF)× D

tF−1
(2)

where, C1 was the NO3-N concentration in the wetland mesocosm 24 h after simulated drainage was
added to allow the system to be well mixed (mg L−1), tF−1 was the mean residence time or period
the water was held within the wetland mesocosm system after the water was well mixed (24 h) until
Ct < 0.05 mg L−1 (d) [35], CF was the NO3-N concentration at end of the analysis (mg L−1), and D was
initial average water depth (m).

Once the JZO was estimated using observed NO3-N removal datasets from the first 9 of
the 18 mesocosm experiments, Ct was predicted using the following equation for the remaining
9 batch experiments:

Ct = CApplied −
JZO × t

D
(3)

where, CApplied is the NO3-N concentration in simulated drainage water applied to the wetland
mesocosm on Day 0 of the experiments.

2.5.2. First Order Decay (FO) Model

The second model, the first order decay model (FO), assumes NO3-N reduction rates are directly
proportional to NO3-N concentration [45]. Therefore, removal rates (JFO) increase linearly with
NO3-N concentration assuming removal efficiency does to not change in relation to NO3-N load [46].
The model also assumes that the substrate concentration is significantly smaller than the half-saturation
constant (Ks, the concentration supporting an uptake rate of 50% of the maximum rate), the system
is well mixed, has no significant influences from water losses or gains, and is dependent on only
one reactant [14,43,47,48]. The ρFO, the mass transfer coefficient (cm d−1), accounts for the intrinsic
ability for the soil to retain NO3-N by including depth, which is often ignored by using other removal
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rate constants (i.e., k (d−1)) in first order decay model evaluations. The model can be expressed
mathematically as [37]:

ρFO = −
(

D × ln CF
C1

tF−1

)
(4)

After ρFO was determined using the first 9 of the 18 mesocosm experiments, daily Ct values were
predicted using the following first order decay equation for the remaining 9 batch experiments:

Ct = CApplied e−(
ρFO×t

D ) (5)

2.5.3. Efficiency Loss (EL) Model

The third model, the efficiency loss model (EL), is similar to the first order decay model, but it
accounts for the efficiency of the process rate relative to NO3-N concentration decline over time [45].
The surficial removal rates are proportional to the NO3-N concentration ‘to the α’, in which α, the
rate order, is less than 1. Indeed, it has been theoretically shown in systems that have diffusion only
processes and perfectly flat sediment, water column NO3-N removal rates are 1/2 order rates [49]
The efficiency loss model thus essentially implies the apparent removal rate above an actual uneven
sediment, which results in the exchange surface area that is higher than the projected area and must be
adjusted to a rate between 0.5 and 1. Similar to the first order decay rate model, the model assumes
that the substrate concentration is significantly smaller than Ks, the system is well mixed, and has no
significant influences from water losses or gains. However, the model assumes a power relationship
represented by the coefficient α, in which the order is less than 1. The model can be expressed as:

ρEL =

(
(CF)

1−α − C1−α
1

tF−1

)( 1
α−1 )

D (6)

where ρEL was the mass transfer coefficient (cm d−1), α was a unitless constant that varies between 0
and 1. The model was evaluated empirically in R Studio (2015) [50] to solve for α and ρEL for individual
mesocosms using 9 of the 18 batch run datasets.

To test the model, daily Ct values were then predicted for the remaining 9 batch experiments,
using the ρEL and averaged α values not used to determine removal coefficients. Observed NO3-N
concentrations were compared to predicted daily NO3-N concentrations (Ct) from the mesocosm
studies that were calculated using the following equation:

Ct =

(
ρEL

(α−1)

D
t + C1−α

AApplied

) 1
1−α

(7)

2.5.4. Monod (M) Model

The fourth model evaluated was the Monod model (M), also referred to as the Michaelis-Menten
model for theoretical considerations, which often represents biologically mediated reactions that
display first order decay kinetics at low concentrations and zero order kinetics at higher concentrations,
resulting in a hyperbolic relationship between JM and NO3-N concentrations. Zero order kinetics has
been observed when NO3-N concentrations exceeded biological demand of the system, while first
order decay kinetics have been observed when NO3-N concentrations are below the biological demand
of the system [51]. Therefore, the model ultimately interpolates between a zero order and first order
decay models. The model assumes there are no intermediate or product inhibitions and the system is
at steady state [52]. The model can be expressed as:

JM =
Jmax × Ct

Ks + t
(8)
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where JM was the area based NO3-N loss rate (mg m−2 d−1), Jmax was the maximum removal rate
achieved by the system (mg m−2 d−1), and Ks (mg L−1) was the half-saturation constant. Ks and
Jmax were determined graphically using a Lineweaver-Burke plot with observed values from batch
experiments [53]. Daily JM values were then calculated using the remaining 9 of 18 batch experiments
with Equation 5, the empirically determined constants, and daily NO3-N concentrations.

More specifically, Ks was the concentration at which point the NO3-N removal rate was at half of
the maximum NO3-N removal rate (Jmax) for the WET-Min and WET-Org systems. The relationship
between JM and Cf was evaluated using a Lineweaver-Burke plot to empirically determine the
maximum areal removal rate (Jmax) and the half-saturation constants (Ks) for the Monod model
for each treatment (WET-Min and WET-Org) and replicate.

2.6. Temperature Adjustment of Removal Rate Coefficients

The effect of temperature on the estimated removal coefficients of each batch run (J or ρ) was
determined using a modified Arrhenius relationship [54]:

X = X20θ(T−20) (9)

where X was either J, the area based NO3-N loss (mg m−2 d−1) at temperature T (◦C), or ρ, the mass
transfer coefficient (cm d−1) at temperature T (◦C), X20 was either J20, the area based NO3-N loss
(mg m−2 d−1) at 20 ◦C, or ρ20, the mass transfer coefficient (cm d−1) at 20 ◦C, and θ was an empirical
temperature coefficient. A linear form was used to estimate J20 and ρ20 were determined for each
treatment using the first 9 of the 18 batch run datasets.

2.7. Statistical Evaluation

The accuracy and the reliability of the four models for predicting NO3-N removal rates were
compared utilizing three statistical parameters that are described in Table 2 [55,56]: coefficient
of determination (R2), relative root mean square error (RRMSE), and model efficiency (MEF).
The statistical parameters were used to evaluate the correlation, differences, and variations between
the predicted and measured NO3-N removal rates only in the 9 batch experiments that were used to
validate the removal rate models.

Table 2. Statistical parameters evaluated for each kinetic model [18,57].

Acronym Parameter Definition Range Increased Strength as
Approaches: Equation

R2 Coefficient of
determination:

Measures the extent of linear
correlation between

two datasets.
0–1 1

∣∣∣∑n
i=1(Pi−P)

2
(Oi−O)

2
∣∣∣

∑n
i=1(Pi−P)

2
∑n

i=1(Oi−O)
2

RRMSE
Relative root
mean square

error:

Measures the differences
between the predicted and the

measured values.
0–∞ 0

√
1
n ∑n

i=1(Pi−Oi)
2

P

MEF Model
efficiency:

Measures the variations
accounted for by the model. −∞ to 1 1 1 − ∑n

i=1(Pi−Oi)
2

∑n
i=1(Pi−P)

2

Pi = predicted dataset; Oi = observed dataset; P, O = mean values of P, O datasets, n = # of evaluated batch runs.

3. Results

3.1. NO3-N Removal and Areal Removal Rates

Hydraulic loading and water quality observations during the batch studies are presented in
Table 3. Prior to each batch experiment, average daily recirculation rates were adjusted to 0.5 or
1 m3 d−1 depending on depth to allow drainage water to turnover within each mesocosm once a day.
Applied drainage water had NO3-N concentrations within 10–20% of the initial target concentrations.
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Significant NO3-N reduction was observed in both the WET-Min and WET-Org wetland systems
during all batch runs, with NO3-N reductions as high as 99%. The highest removal rates were
observed during the growing season, as expected. NO3-N removal in both wetland systems were
significantly affected during fall and winter months when plants began to die back, average water
temperatures were colder, and dissolved oxygen concentrations were higher, all of which likely
limited plant and microbial uptake and inhibited denitrification [58,59]. These findings support the
importance of developing removal coefficients at a base temperature (J20 or ρ20) that can be adjusted
dependent on average water temperatures to more accurately predict fluctuations in wetland NO3-N
removal rates [60].

Average and daily areal NO3-N removal rates were higher in the WET-Min mesocosms when
compared to the WET-Org wetland mesocosms. Average removal rates in the WET-Min system
ranged from 62 to 603 mg m−2 d−1, while the WET-Org wetland systems had removal rates from
59 to 344 mg m−2 d−1 during the growing season when water temperatures were above 12 ◦C, with
the exception of one fall experiment. Average removal rates dramatically decreased once water
temperatures fell below 12 ◦C. Observed NO3-N removal rates from this study were similar to removal
rates found in other microcosm and mesocosm wetland NO3-N removal studies during the growing
season. Gebremariam and Beutel reported comparable NO3-N removal rates (175–500 mg m−2 d−1)
in an evaluation of surface flow constructed treatment wetland mesocosms spiked with NO3-N at
15 mg L−1 during the summer [61]. Stringfellow et al. investigated three wetland restoration substrates
receiving agricultural drainage water during the growing season utilizing microcosms and reported
mean areal NO3-N removal rates of 142–380 g m−2 d−1, also consistent with the estimated wetland
mesocosm NO3-N removal rates in this study [52]. At a larger scale, a constructed surface flow wetland
macrocosm study supplied with NO3-N concentrations of 8–10 mg L−1 observed NO3-N removal
rates to be as high as 834 mg N m−2 d−1 [62].
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Table 3. Summary of selected water quality parameters during batch experiments and NO3-N removal rate means ± standard deviations (SD).

Season

Mean Water
Temperature

Water
Depth Load

Mean NO3-N
(Initial–Final)

Time Required to
Achieve Reported %

Reduction

Mean NO3-N %
Reduction

JNN ± SD (Min to Max
Between Daily Sampling)

JNN ± SD (Average for Day
0 to Final Sampling Day)

WET-Min WET-Org WET-Min WET-Org WET-Min WET-Org WET-Min WET-Org WET-Min WET-Org
◦C cm g m−2 d−1 —————mg L−1———— ————–d————— —————-%————– ———–mg m−2 d−1———- ———–mg m−2 d−1———-

Fall 2013 18 18 0.6 3.56–0.22 3.56–0.14 7 † 10 94 96 49 to 162 33 to 214 134 ± 4 103 ± 18
Winter 2013 9 15 0.6 2.28–1.02 2.28–1.00 10 10 55 56 4 to 88 4 to 17 14 ± 3 13 ± 1
Spring 2013 25 18 0.6 3.45–0.89 3.45–0.13 3 † 7 † 74 96 37 to 194 17 to 153 116 ± 21 72 ± 3

Summer 2014 26 18 0.6 3.38–0.13 3.38–0.53 3.3 † 3.3 † 96 84 57 to 153 85 to 197 183 ± 38 127 ± 6
Fall 2012 17 18 0.9 4.7–0.91 5.00–0.99 10 10 81 80 36 to 117 15 to 127 69 ± 13 59 ± 16

Winter 2013 11 18 0.9 6.13–2.63 6.13–2.94 10 10 57 52 23 to 99 18 to 212 56 ± 15 42 ± 14
Spring 2014 20 18 0.9 6.02–0.14 6.02–0.23 6.9 † 6.9 † 98 96 46 to 148 12 to 346 127 ± 28 88 ± 16

Summer 2014 26 18 0.9 6.49–0.35 6.49–0.10 3 † 5 † 95 98 170 to 451 107 to
374 322 ± 61 215 ± 34

Fall 2012 22 30 0.9 2.35–0.15 2.35–0.72 9 9 94 69 46 to 109 21 to 86 62 ± 9 63 ± 16

Fall 2014 † 27 20 0.9 3.25–0.33 3.25–0.09 3 † 4.9 † 90 97 80 to 349 125 to
262 275 ± 23 173 ± 1

Spring 2014 26 30 0.9 3.29–0.11 3.29–0.38 5 † 5 † 97 89 103 to 276 123 to
205 216 ± 44 164 ± 5

Summer 2013 27 30 0.9 3.09–0.36 3.09–0.09 5 † 10 88 97 105 to 178 57 to 202 137 ± 18 98 ± 9
Summer 2013 25 30 0.9 3.66–0.27 3.66–0.27 6.8 † 6.8 † 93 93 4 to 274 76 to 242 144 ± 4 144 ± 5

Fall 2012 11 30 2.2 6.44–3.41 6.52–3.17 10 10 47 51 32 to 88 6 to 281 45 ± 2 176 ± 12

Summer 2013 27 30 2.0 3.66–0.27 6.64–1.01 6.9 † 6.9 † 95 85 138 to 452 119 to
373 283 ± 17 212 ± 31

Fall 2013 16 30 3.6 14.32–2.84 14.32–4.47 10.2 10.2 80 69 186 to 388 115 to
298 316 ± 2 260 ± 40

Spring 2014 25 30 3.6 11.88–1.19 11.88–3.19 10.1 10.1 90 73 175 to 453 146 to
400 288 ± 14 234 ± 5

Summer 2014 25 30 3.6 12.97–0.38 12.97–1.01 7 † 9.9 97 92 171 to 868 198 to
452

603 ±
140 344 ± 8

Note: † % reduction was 100% on the following sampling day.
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3.2. Model Calibrations

Observed daily NO3-N concentrations from the first 9 of 18 batch experiments were used to
calibrate models and determine kinetic constants for each model. Potential impacts of water depth
and temperature were also investigated during the calibration stage of the models.

The zero and first order decay kinetic coefficients were calculated using data observed from each
batch run experiment for individual mesocosms (Equations (2) and (4)). The zero order kinetic model
had R2 values that ranged between 0.78 and 0.99 with an average of 0.97 in the WET-Min system, while
the WET-Org systems had R2 values that ranged from 0.81 to 0.99 with an average of 0.97. In contrast,
WET-Min treatments had R2 values that ranged between 0.70 and 0.99 with an average of 0.95 in the
first order decay models, while the WET-Org systems had R2 values that ranged from 0.73 to 0.99 with
an average of 0.94 for individual batch runs. The lower R2 values were observed during the winter
months when average water temperature was below 12 ◦C. All evaluations during the growing season
had R2 values above 0.90 for both the zero and first order decay fits to observed datasets.

The efficiency loss model was evaluated in R Studio to empirically solve for ρEL and α in each
mesocosm during the first 9 batch experiments using daily NO3-N concentration observations at each
sampling point. The two unknown values (α and ρEL) were determined for seven of the nine batch
run datasets and resulted in good fits based on outputs from the R Studio model (p > 0.01 for ρEL and
p > 0.2 for α). The WET-Min treatments had an R2 values that ranged between 0.93 and 0.99 with an
average of 0.98, while the WET-Org systems had R2 values that ranged from 0.95 and 0.99 with an
average of 0.98.

R studio was unable to solve for α values in the efficiency loss model in a two batch runs when
NO3-N removal periods were short or when the NO3-N change over time resembled a zero or first
order decay relationship, which resulted in an α equal to 0 or 1, respectively. Therefore, α values that
represented the individual wetland systems were difficult to determine since empirically determined
α values often varied between 0 and 1 within the same treatment and batch run. Correlations between
the α values and season, NO3-N load, temperature and DO were not observed. However, differences
between the α values and water depth were observed particularly in the WET-Min wetland systems.
Consequently, α values empirically determined in R Studio were separated into treatment and initial
water depths (18 and 30 cm). Average α values were then calculated based on initial water depth for
each treatment and used as the initial input of α for the efficiency loss model to fit observed NO3-N
removal rates in the 9 of 18 batch run experiments used for calibration. The α values were then adjusted
until the best fit was found between observed and predicted values.

The Monod model constants (Ks and Jmax) were estimated graphically using the first 9 of the
18 batches. Jmax and Ks were then averaged across replicates of each treatment. The Monod model had
R2 values that ranged from 0.19 to 0.95 with an average R2 of 0.65 in the WET-Min systems, while R2

values ranged from 0.13 to 0.99 with an average R2 of 0.55 in the WET-Org systems.

3.3. Temperature Adjustment for Removal Rate Coefficients

Removal rate coefficients for 20 ◦C were calculated for each mesocosm and model utilizing the
first 9 of 18 batch run datasets and the Arrhenius relationship. Individual mesocosm values were then
averaged for each treatment (i.e., each batch θ obtained for WET-Min and WET-Org was an average of
the three replicates). Computed values can be found along with published values from past mesocosm
and full-scale wetland studies for comparison in Table 4. To our knowledge, no studies have reported
using the efficiency loss and zero order models at the mesocosm scale, therefore, comparisons were
made with full-scale systems. In general, our results were consistent with observed values from past
published wetland studies.



Water 2017, 9, 517 11 of 20

Table 4. List of areal NO3-N removal rate coefficients and efficiency loss constants (α) for average water temperature of 20 ◦C [19,24,42,61,63].

Wetland System

Initial Target
Concentration

(mg L−1)

NO3-N Removal Rate Coefficients for T20
EL Constant (α)

(Unitless) ReferenceJZO (mg m−2 d−1)
* [θ: R2]

ρFO (cm d−1)
* [θ: R2]

ρEL (cm d−1)
* [θ: R2]

Jmax (g m−2 d−1)
* [θ: R2]

WET-Min 2.5–15 94 ± 11
[1.03 ± 0.10: 0.58 to 0.66]

4.9 ± 0.8
[1.15 ± 0.02: 0.89 to 0.98]

10.2
[1.10: 0.72]

0.50 ± 0.08
[No Correlation]

0.6 (15 cm depth)
0.7 (30 cm depth) This study

WET-Org 2.5–15 92 ± 8
[1.04 ± 0.01: 0.06 to 0.15]

4.1 ± 1.0
[1.09 ± 0.06: 0.82 to 0.93]

8.0
[1.18: 0.67]

0.38 ± 0.1
[No Correlation]

0.7 (15 cm depth)
0.7 (30 cm depth) This study

Constructed Treatment
Mesocosm 19 2.1–2.9 Gebremariam and

Beutel (2008)

Lab Scale Wetland 0.0–12.1 0.25 Saeed et al., 2011

Surface-Flow
Constructed Mesocosm 32–117 5.7–16.5 Burchell et al.,

2007

Fluvial Wetlands 0.1–3.7 3–9.3 Not Reported Wollheim et al.,
2014

Free Surface
Constructed Wetlands 10–26 200–5000 Horne, 1995

Note: * [θ: R2] represents the calculated theta and R2 to determine the NO3-N coefficients at average water temperature T = 20 ◦C.
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3.4. Validation of Kinetic Model Fits

Observed NO3-N removal rates from the remaining 9 batch run datasets (not used for calculating
removal rate coefficients and other kinetic coefficients) were used to compare the daily predicted values
produced by each of the developed kinetic models and evaluate the goodness of fit for each model.
Kinetic coefficients were adjusted for average water temperature in each batch run. A regression of the
predicted vs. observed removal rates for each of the four models are displayed in Figure 2.
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Figure 2. Relationship between observed and predicted wetland mesocosm average NO3-N removal
rates determined using (a) zero order, (b) First Order Decay, (c) Efficiency Loss, and (d) Monod
kinetic models. Rate constants used in calculations were adjusted for daily average water temperature.
Statistical acronyms represent: Coefficient of determination (R2), Relative root mean square error
(RRMSE), and Model efficiency (MEF)). Kinetic acronyms represent: Zero order (ZO), first order decay
(FO), efficiency loss (EL), and Monod (M) models.

4. Discussion

4.1. Prediction Power

The fit of the zero order and Monod models were weak between the predicted and observed
values for all statistical parameters (Figure 2). Both models consistently under predicted the removal
rates for all NO3-N loads. The weak fits between the predicted and observed removal rates were
not surprising. Based on the assumption for the zero order model, removal rates are not affected by
changes in initial NO3-N concentrations, which tend to be observed only when NO3-N concentrations
are high (>200 mg L−1) [36,64]. However, these models were evaluated due to little, if any literature,
has evaluated these models for pulse flow systems. During every season, as NO3-N loads increased the
observed removal rates also increased. Therefore, the assumptions required to use the zero order model
were not met for these systems. Additionally, Ks values, empirically calculated as 5.96 mg L−1 for the
WET-Min system and 5.63 mg L−1 for the WET-Org system, were similar to Co (initial concentrations)
and thus did not meet the definition of the half saturation constant required to make the continued use
of the Monod model justifiable.

Zero and Monod kinetic models are often used in wastewater treatment wetland systems where
high initial NO3-N concentrations allow for the systems to become saturated resulting in a maximum
removal rate (JZO), which in this case would be equivalent to the Jmax of the Monod kinetic model.
However, based on observed removal rates, the wetland mesocosm systems never reached a saturation
point, which resulted in poor estimates for the removal coefficients for both models. Therefore, based
on observations in this study, these predictive models are not recommended for wetlands loaded with
low NO3-N concentrations.

Stronger statistical results were observed for the first order decay and efficiency loss models
with R2 ≥ 0.84 (Figure 2). Each of these models are dependent on initial NO3-N loads and do not
require the determination of saturation coefficients such as Ks. Additionally, the first order model
and the efficiency models had similar fits. The stronger predictive power of the first order decay and
efficiency loss models compared to the zero and Monod models was due to chemical and physical
based assumptions of the mathematical theories in terms of NO3-N reduction. Chemically the zero
order model assumes substrate concentrations at all points within the water column is notably greater
than half-saturation concentrations, while the Monod model required NO3-N saturated conditions
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at least one point during the experiments. NO3-N half-saturation constants can only be determined
once the systems are saturated (meaning the microbial and biomass pools are removing the maximum
amount of NO3-N) [25], which was never observed during these experiments. In contrast, the first order
and efficiency loss models do not require a saturation point. Physically, the water was recirculated
slowly within the mesocosms, as expected in the future restored wetlands, which likely enhanced the
ability of NO3-N to reach denitrifying hot-spots through advection and diffusion in the system [65],
which further limited these systems from becoming saturated.

Both the first order decay and efficiency loss models were further assessed to determine if defined
parameters, particularly retention time, impacted the prediction power of the models. Residence time
of surface water in the full-scale wetland environments must stay within the range of 1 to 10 days to
preserve established and recently planted trees [66,67]. Therefore, both predicted and observed values
were compared (Figure 3). Figure 3 shows the first order decay model has a tendency to over predict
NO3-N concentrations at values < 3 to 4 mg L−1, while the model typically under predicts NO3-N
concentrations at values > 3 to 4 mg L−1 for both the WET-Min and WET-Org wetland mesocosms
systems (Figure 3a). Similarly, the efficiency loss model typically under predicted at higher NO3-N
concentrations (Figure 3b).
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Figure 3. Regression of the (a) first order decay and (b) efficiency loss kinetic models for correlating
predicted and observed NO3-N removal rates for the WET-Org and WET-Min restored wetland
mesocosm systems.
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Additionally, to further examine the prediction power of the first order and efficiency loss
models, the predicted C7 values (NO3-N concentrations after 7 days within the wetland mesocosm)
for the first order decay and efficiency loss models were examined and compared to observed NO3-N
concentrations for the 9 batch run experiments used for validation (Figure 4).
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Figure 4. Predicted C7 values (NO3-N concentrations after 7 days within the wetland mesocosm) for
the first order decay model, efficiency loss model, and observed NO3-N concentrations in the WET-Org
(top) and WET-Min (bottom) restored wetland systems during the 9 batch run experiments used for
model validation. Black line designates an average water temperature of 20 ◦C.

The efficiency loss model under predicted observed day 7 NO3-N concentrations on average by
0.38 mg L−1, with a maximum under prediction of 3.15 mg L−1 and over prediction of 0.79 mg L−1 in
the WET-Org systems. In comparison, also in the WET-Org systems, the first order decay model under
predicted observed day 7 NO3-N concentrations on average 0.03 mg L−1, with a maximum under
prediction of 3.03 mg L−1 and over prediction of 1.28 mg L−1. Similarly, the efficiency loss model in
the WET-Min system under predicted observed NO3-N concentrations on average 0.27 mg L−1, with a
maximum under prediction of 2.81 mg L−1 and over prediction of 0.57 mg L−1. The first order decay
model in the WET-Min systems under predicted NO3-N concentrations on average 0.03 mg L−1, with
a maximum under prediction of 2.72 mg L−1 and over prediction of 1.04 mg L−1. Therefore, based on
the assessment, the first order decay model had a tendency to over predict NO3-N concentrations at
lower NO3-N concentrations (< 3 to 4 mg L−1), while both models typically under predicted NO3-N
concentrations at higher NO3-N concentrations values (> 3 to 4 mg L−1) which was consistent with
model results in Figure 3.

Model fits between predicted and observed NO3-N removal rates in both the first order decay
and efficiency loss models were similar (Figure 2). However, in the efficiency loss model the α constant
must be empirically calculated for several batch runs to be accurately determined for alternative
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systems than the ones evaluated in this study, which is often not practical for wetland designers.
Additionally, the first order decay model is expected to provide slightly more conservative predictions
than the efficiency loss model particularly during the growing season when water retention times
are most critical for wetland tree survival. Therefore, the first order decay model was determined as
the most suitable prediction model for NO3-N removal rates to be used in the design of these future
wetland restoration systems.

4.2. Theoretical Wetland Predictions

To demonstrate the use of the first order decay NO3-N removal model determined at the mesocosm
scale in this study, an initial estimate of the maximum hydrologic loading capacity for two future 210 ha
wetland restorations (with the modeled soil types) were conducted. The sites were expected to receive
agricultural drainage with NO3-N concentrations on average of 2.5 mg L−1. Possible target NO3-N
effluent concentrations considered were 0.1 mg L−1 (96% reduction), 0.5 mg L−1 (80% reduction),
1.0 mg L−1 (60% reduction), and 1.75 mg L−1 (30% reduction). The maximum acceptable hydrologic
loading rates for the wetlands to achieve these target effluent concentrations were determined across
a range of average water temperatures.

Based on the estimated removal rates, the maximum loading rates of agricultural drainage water
that could be applied were determined to meet the range of target outflow concentrations at the outlet
of wetland areas (Ceff) utilizing the following equation [24,68]:

L =
n × ρ20

ln
Ce f f
Cin

θ(T−20) (10)

where L is the maximum loading rate into the wetland (m d−1), Ceff is the effluent NO3-N concentration
(mg L−1), Cin is the influent NO3-N concentration (mg L−1), T is the temperature (◦C), ρ20 is the
NO3-N mass transfer coefficient (0.049 m d−1 and 0.041 m d−1 for the WET-Min and WET-Org systems,
respectively) at 20 ◦C, n is the porosity (approximately 0.95 in surface flow wetlands), and θ (1.15 and
1.09 for the WET-Min and WET-Org systems, respectively). The ρ20 and θ were values determined by
fitting observed data from the mesocosm batch experiments to first order decay model (Table 4).

Maximum hydrologic loading capacities for the two wetland systems for the various NO3-N
removal goals and average water temperatures can be found in Table 5. Based on an aggressive
96% removal goal, the wetland restorations similar to the WET-Min and WET-Org mesocosm
systems were predicted to have the capability to receive 1.5 and 1.2 cm day−1 of drainage water,
respectively, assuming the drainage water has NO3-N concentrations of 2.5 mg L−1 and an average
water temperature of 20 ◦C. Current local rules developed for watersheds such as the Neuse and
Tar-Pamlico in North Carolina require non-point source N pollution to be reduced by only 30%. If this
were the treatment goal, and under the same assumptions described earlier, wetland restorations
similar to the WET-Min and WET-Org mesocosm systems would have the capacity to receive up to
13.1 and 10.8 cm day−1 of drainage water, respectively, to meet the target NO3-N removal threshold.

Table 5. Predicted maximum hydrologic loading capacities for the future restored wetlands assuming
n of 0.95, and Cin of 2.5 mg L−1 using the first order decay kinetic model.

NO3-N % Reduction 96% 80% 60% 30%

Target Ceff (mg L−1) 0.1 0.5 1.0 1.75

Avg. Water
Temperature (◦C)

WET-Min
(cm Day−1)

WET-Org
(cm Day−1)

WET-Min
(cm Day−1)

WET-Org
(cm Day−1)

WET-Min
(cm Day−1)

WET-Org
(cm Day−1)

WET-Min
(cm Day−1)

WET-Org
(cm Day−1)

10 0.4 0.5 0.7 1.0 1.3 1.8 3.2 4.6
15 0.7 0.8 1.4 1.6 2.5 2.7 6.5 7.0
20 1.5 1.2 2.9 2.4 5.1 4.2 13.1 10.8
25 2.9 1.8 5.8 3.7 10.3 6.5 26.4 16.6
30 5.9 2.8 11.7 5.7 20.6 10.0 53.0 25.6
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5. Conclusions

In this study, the potential removal rates of NO3-N for two distinct pulse flow wetland
environments slated to receive agricultural drainage water in future wetland restoration projects
were evaluated at the mesocosm scale. Three kinetic models that are often utilized to predict NO3-N
removal rates within wetland systems and one that has never been evaluated (efficiency loss) were
assessed. Based on the results of this study, the following conclusions were drawn:

1. The first order decay and efficiency loss kinetic models provided stronger statistical agreement
between predicted and measured NO3-N removal rates compared to other models.

2. The first order decay model was determined the most practical model due to its conservative
predictions, simplicity, and reasonable fit compared to the efficiency loss model, NO3-N removal
rates developed at the mesocosm scale have also been reported to be conservative estimates
for full-scale wetlands. Therefore, the first order decay model should provide reasonable
but conservative predictions of NO3-N removal rates, particularly if maximum residence
times are limited, such as to ensure tree survivability during the growing season in restored
forested wetlands.

3. ρ20 values determined for the first order decay model for NO3-N removal in the WET-Min and
WET-Org wetland mesocosms were 4.9 cm d−1 and 4.1 cm d−1. θ values were estimated to be
1.15 and 1.09 for the WET-Min and WET-Org systems, respectively. These values can be used to
develop informed water management plans for the restoration sites. This is important to ensure
the wetlands are not loaded with NO3-N that exceeds their assimilation capacity; a situation
that would lead to higher NO3-N export and possible unintended eutrophication of downstream
water bodies.
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