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Abstract: Estimation of total discharge is necessary to understand the hydrological cycle and to
manage water resources efficiently. However, the task is problematic in an area where ground
observations are limited. The North Korea region is one example. Here, the total discharge was
estimated based on the water balance using multiple satellite products. They are the terrestrial water
storage changes (TWSC) derived from the Gravity Recovery and Climate Experiment (GRACE),
precipitation from the Tropical Rainfall Measuring Mission (TRMM), and evapotranspiration from
the Moderate Resolution Imaging Spectroradiometer (MODIS). The satellite-based discharge was
compared with land surface model products of the Global Land Data Assimilation System (GLDAS),
and a positive relationship between the results was obtained (r = 0.70–0.86; bias = −9.08–16.99
mm/month; RMSE = 36.90–62.56 mm/month; NSE = 0.01–0.62). Among the four land surface
models of GLDAS (CLM, Mosaic, Noah, and VIC), CLM corresponded best with the satellite-based
discharge, satellite-based discharge has a tendency to slightly overestimate compared to model-based
discharge (CLM, Mosaic, Noah, and VIC) in the dry season. Also, the total discharge data based
on the Precipitation-Runoff Modeling System (PRMS) and the in situ discharge for major five river
basins in South Korea show comparable seasonality and high correlation with the satellite-based
discharge. In spite of the relatively low spatial resolution of GRACE, and loss of information incurred
during the process of integrating three different satellite products, the proposed methodology can be
a practical tool to estimate the total discharge with reasonable accuracy, especially in a region with
scarce hydrologic data.
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1. Introduction

Estimating the total discharge is important to understanding the hydrological cycle and to
effectively cope with water-related disasters such as drought and floods [1]. The total discharge
is usually estimated with the aid of hydrological models, which require reliable and continuous
hydrometeorological data, such as temperature, humidity, and wind speed, for calibration and
validation. Therefore, it is difficult to estimate the discharge in ungauged areas, where observation data
are insufficient and sparse. The northern region of the Korean Peninsula is an example: North Korea
has become vulnerable to floods and drought due to poor water management based on unreliable and
inaccurate data [2,3]. The trans-boundary waters, the Imjin River and the North Han River crossing the
border between North and South Korea, cannot be properly managed, due to the lack of hydrological
data and separate water management schemes [4].

The Gravity Recovery and Climate Experiment (GRACE) satellite has provided global terrestrial
water storage (TWS) information since 2002, which can be quantified for water budget analyses [5,6].
In particular, changes in TWS (TWSC) data can be a useful source of information in water resources
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assessment. Lee et al. [7] checked the applicability of the GRACE-based TWSC in the Korean Peninsula.
Lee et al. [8] applied a hydrological simulation approach to estimate the TWSC in the Han River Basin
in South Korea. They compared the results with the GRACE-based TWSC, and suggested the need for
a correction factor in the rainy season. Seo and Lee [9] estimated the groundwater storage changes
in South Korea using GRACE, land surface models (LSMs), and ground observations. Their results
showed good correlation with the observed groundwater data. The task of estimating discharge for
the entire Korean Peninsula has never previously been attempted.

Many studies have been conducted to estimate the total discharge, including surface and
subsurface water, based on water balance using monthly TWSC and other hydrological observations,
such as precipitation and evapotranspiration. Syed et al. [10] estimated the total discharge of the
Amazon and Mississippi river basins based on the water balance method, using the GRACE-based
TWSC, observed precipitation, and simulated evapotranspiration. The results were compared to
streamflow discharge observations, and showed good correlation. The water balance approach
to estimate total discharge was applied to the Yangtze River Basin in China [11], Rufiji Basin in
Tanzania [12], East Africa Rift Valley [13], Lake Eyre Basin in Australia [14], and Yellow River Basin in
China [15].

Also, several studies have conducted basin scale terrestrial water balance analysis based on
combined satellite data [16–18].

In this study, we use the water balance approach to estimate the monthly total discharge for the
Korean Peninsula. All hydrological components are obtained from satellites. Three satellite products are
used: the Tropical Rainfall Measuring Mission (TRMM) satellite precipitation data, Moderate resolution
Imaging Spectroradiometer (MODIS) products for evapotranspiration, and GRACE-based TWSC.

2. Study Area

The Korean Peninsula (124◦ E–131◦ E, 33◦ N–42◦ N) is known for its mountainous terrain, with
high plateaus in the northern and eastern regions, while low hills prevail in the south-western regions
(Figure 1a). The river distribution in the Korean Peninsula is dense (0.2–0.5 km/km2; Figure 1b),
having relatively short reaches and steep channel slopes (Table 1). There are six major river basins
(79,439.10 km2) in North Korea, and five major river basins (68,207.24 km2) in South Korea. The Tuman
and Amnok rivers are transboundary between North Korea and China, while the Han River is
transboundary between North and South Korea.

Table 1. Characteristics of major river basins in the Korean Peninsula.

Country Basin Watershed Area (km2) Channel Reach (km) Slope (%)

North Korea

Amnok River 32,557.70 (64,739.00) 1 803.00 N/A

Tuman River 10,565.00 (32,920.00) 1 547.80 N/A

Daedong River 20,247.00 450.30 N/A

Cheongcheon River 9,952.60 217.00 N/A

Yeseong River 3,916.30 187.40 N/A

Geumya River 2,200.50 145.10 N/A

South Korea

Han River 34,428.10 (26,219.00) 2 482.98 39.05

Nakdong River 23,690.32 511.01 37.03

Guem River 9,914.02 388.00 32.20

Seomjin River 4,914.32 222.00 37.50

Youngsan River 3,469.58 134.95 23.63

Notes: 1 Watershed area including China region. 2 Watershed area excluding North Korea region.

The peninsula belongs to the monsoon climate zone with the precipitation of the summer season
accounting for about 60% of the annual precipitation. In the summer season, flash floods occur
frequently, and because of topographic and climate characteristics, peak flood discharges are enormous.
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The annual mean precipitation is approximately 1300 mm in South Korea, and approximately 900 mm
in North Korea (KMA, http://web.kma.go.kr/eng/index.jsp).
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Figure 1. Location of the study area; (a) Digital Elevation Model (DEM) and Precipitation gauging
stations; (b) Rivers, basins and discharge gauging stations.

The only available hydrological data for North Korea is the precipitation data at 27 stations
(Figure 1a) provided by the World Meteorological Organization (WMO). As can be seen in the figure, the
North Korea’s precipitation stations are sparse compared to the Korea Meteorological Administration
(KMA) weather stations of South Korea (Figure 1a). Furthermore, data from the North Korean stations
is frequently incomplete and less reliable, due to poor maintenance and the deterioration of facilities.
Evapotranspiration data is not available in North Korea. In South Korea, in situ evapotranspiration
from some flux towers is measured, but the data so far is insufficient and unreliable [19]. North Korea’s
discharge data is not available at all. In South Korea, there are 723 discharge gauge stations for
measuring discharge. The daily discharge data was provided by the Ministry of Land, Infrastructure
and Transport of the South Korean government, and Figure 1b shows the discharge gauging stations
at the outlets of five major river basins (Han, Nakdong, Guem, Seomjin, and Youngsan Rivers).

http://web.kma.go.kr/eng/index.jsp
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3. Methodology and Datasets

3.1. Methodology

Equation (1) expresses the total discharge estimates using the water balance equation in continental
scales [15,20].

Qtotal =
[(

Qro + Qgo

)
−
(

Qri + Qgi

)]
= P − ET − ∆S/∆t (1)

where, Qtotal is the total discharge (mm/month), which includes surface and subsurface water [10],
or the net surface and subsurface water outflow [15], Qro is the surface water outflow,Qgo is the
subsurface water outflow, Qri is the surface water inflow, Qgi is the subsurface water inflow, P is the
precipitation (mm/month), ET is the actual evapotranspiration (mm/month), and ∆S/∆t is the TWSC
(mm/month).

Products from GRACE, MODIS, and TRMM were integrated to compute the monthly total
discharge for the period between 2002 and 2014 in the Korean Peninsula (Table 2). For comparison
of the results, we used Global Land Data Assimilation System (GLDAS) products. For discharge
results in South Korea, we used the sum of the total discharge data of five river basins based on the
Precipitation-Runoff Modeling System (PRMS) and discharge gauging station data (Figure 1b). Table 2
shows the characteristics of the data used in this study.

Table 2. The data characteristics used in this study.
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3.2. Satellite Data

3.2.1. GRACE

The GRACE mission is a joint project between the National Aeronautics and Space Administration
(NASA) and the German Aerospace Center (DLR), with the object of observations of Earth’s gravity
changes. GRACE Level-2 RL05 [21] (http://grace.jpl.nasa.gov) provides gravity anomaly data
that can be used to infer the water storage changes on Earth via three institutes, Centre for Space
Research (CSR), Jet Propulsion Laboratory (JPL), and German Research Centre for Geosciences (GFZ).
Each time-variable gravity field is truncated up to 60 degrees and orders in terms of spherical harmonic
coefficients. Gaussian filtering (300 km) and the C20 coefficient from Satellite Laser Ranging (SLR) are
applied to reduce noise [22,23]. The GRACE RL05 gravity anomaly can be recovered based on surface
mass changes in terms of equivalent water thickness, and it may be expressed as the terrestrial water
storage anomaly (TWSA; Equation (2)). The GRACE gridded TWSA products need to be multiplied by
scale factors derived from the Community Land Model (CLM) v4.0 to restore the signal amplitude [24].

http://grace.jpl.nasa.gov
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Then, the TWSC of the ith month is computed using the central difference method (Equation (3)) [25],
and applied to the water balance equation (Equation (1)).

TWSAi = TWSi − TWS (2)

TWSCi =
TWSAi+1 − TWSAi−1

2
(3)

3.2.2. MODIS

The MODIS sensor was launched by NASA for the Earth Observing System with Terra (land)
and Aqua (ocean) satellites. The MOD16 product [26] (http://www.ntsg.umt.edu/project/mod16)
is estimated from MODIS products and the Global Meteorological Assimilation Office (GMAO)
climate data, based on the Penman-Monteith equation [26]. The MOD16 product provides the global
Evapotranspiration (ET), potential ET (PET), latent heat flux (LE), and potential LE (PLE) at 1 km
spatial resolution. The MOD16 ET data were validated at 17 flux tower locations in Asia including the
Korean Peninsula, and in previous studies has shown reasonable accuracy [27,28].

3.2.3. TRMM

TRMM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA),
and was designed to monitor precipitation in tropical regions. The TRMM satellite produces several
precipitation products, such as TRMM Multi-satellite Precipitation Analysis (TMPA). TMPA3B43V7
(http://trmm.gsfc.nasa.gov) monthly precipitation data is estimated by merging the multi-satellite
(SSMI, SSMIS, MHS, AMSU-B, and AMSR E) precipitation data and global rain gauge data
(Global Precipitation Climatology Project; GPCP) produced by National Oceanic and Atmospheric
Administration (NOAA)’s Climate Prediction Center and Global Precipitation Climatology Center
(GPCC) [29]. TMPA3B43V7 monthly precipitation data for the Korean Peninsula has been validated in
previous research [30,31]. Kim et al. [32] assessed precipitation data from satellites for Korea; TMPA,
GSMaP, and CMORPH (CRC MORPHing technique). The TMPA data was closer to the ground-gauged
precipitation than those of GSMaP and CMORPH in space and time.

3.3. Reference Data

3.3.1. GLDAS

The GLDAS ingests surface fluxes and energy through the common land model (CLM), the Mosaic,
the Noah, and the variable infiltration capacity (VIC) models [33]. The GLDAS provides LSMs outputs,
which were calculated by forcing the multi-satellite data and ground-based measurements. LSM’s
version is CLM2.0, Mosaic1, Noah2.7, and VIC4.0.4. Detailed information on the GLDAS forcing data
and model description are available at http://ldas.gsfc.nasa.gov/gldas. In this study, monthly GLDAS
CLM, Mosaic, Noah and VIC LSMs data at the spatial resolution of 1.0◦ were used to match with
GRACE spatial resolution. We obtained monthly evapotranspiration, and surface and subsurface water
discharge data from January 2003 to December 2014. Table 3 shows the GLDAS v1 products description.

Table 3. The Global Land Data Assimilation System (GLDAS) v1 data description used in this study.

Data Product
Number Name Unit Temporal

Resolution

GLDAS v1 (CLM,
Mosaic, Noah, VIC)

065 Total evapotransipration Kg/m2/s Past 3-hr average

234 Subsurface discharge Kg/m2/s Past 3-hr average

235 Surface discharge Kg/m2/s Past 3-hr average

http://www.ntsg.umt.edu/project/mod16
http://trmm.gsfc.nasa.gov
http://ldas.gsfc.nasa.gov/gldas
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3.3.2. PRMS and in situ Discharge in South Korea

The South Korea government’s Water Resources Management Information System (WAMIS;
http://wamis.go.kr/) provides long-term discharge data from 1966 to 2014 over South Korea. The total
discharge data, including surface and subsurface information, was an accomplishment of the national
watershed research project in South Korea, and was calculated using the Precipitation-Runoff Modeling
System (PRMS) developed by the U.S. Geological Survey [34]. The PRMS simulates the total discharge
of the watershed based on the water balances of each hydrologic response unit. The PRMS model
has been used for estimating discharge researches in several regions around South Korea [35,36].
Bae et al. [36] assessed the spatial and temporal variabilities of precipitation observations and
total discharge from PRMS models for 139 basins in South Korea. Yoon and Lee [37] analyzed
the hydrological variability using PRMS-based total discharge data from WAMIS.

Also, we obtained long-term discharge data from WAMIS, and in situ discharge data at 22 outlet
stations (Figure 1b) of watersheds from the Ministry of Land, Infrastructures, and Transport of the
South Korea government.

3.4. Decomposition of Time Series

To characterize the seasonal variability of hydrological components from satellites, models, and
ground observation, hydrological components were decomposed into trends, annual and semi-annual
amplitudes (seasonal term) and residual term using linear harmonic (sines and cosines) regression
models (Equation (4)). Such an approach has been applied in various studies for the analysis of seasonal
and inter-annual variations in hydrological components (e.g., precipitation [38], groundwater [39],
NDVI [40]). Each time series of hydrological components can be best fitted to a sine wave having an
annual and semi-annual cycle.

f (t) = α0 +
2

∑
n=1

An sin(ωnt − ϕn) = α0 +
2

∑
n=1

{
an sin

(
2πnt

T

)
+ bn cos

(
2πnt

T

)}
+ e (4)

where f (t) is a series of each hydrological component at time t, α0 is the trend, n is the number
of harmonics (n = 1 is for the annual variation and n = 2 is for the semi-annual variation),
An =

√
an2 + bn2 is the amplitude, ϕn = tan−1(bn/an) is the phase, ωn = (2πn/T) is frequency, and

e is the residual term.

3.5. Principal Component Analysis (PCA)

To analyze the relationship between the estimated discharge and precipitation, Principal
Component Analysis (PCA) was performed. PCA, also called the Empirical Orthogonal Function (EOF)
method, can be used to identify the spatio-temporal variability in geophysical and meteorological
data [41], and to analyze relationships within a set of variables.

Firstly, the TMPA3B43V7 precipitation or satellite-based discharge anomaly (z) is calculated
by removing the time average from each data at times ti (i = 1, . . . , N months) and grid points xj
(j = 1, . . . , P). Table 4 shows the number of grid points (P) at 1.0◦ and time period (N) for TMPA3B43
precipitation and satellite-based discharge. These anomaly data can be arranged in a N × P matrix Z
(Equation (5)). Each column in Z shows a time series for a given grid point xj, while each row represents
spatial data at time ti. Z can be represented as a linear combination of the principal components (PC;
aj =

[
aj1, aj2, . . . , ajN

]
) and empirical orthogonal function (EOF; (ej =

[
e1j, e2j, . . . , ePj

]
) as Equation (6).

EOF is the major factors of the temporal variations of Z, and PC is the principal components of the
amplitude of each EOF varying with time. More detailed information about the EOF method can be
found in Refs. [42,43].

http://wamis.go.kr/
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Z =


z11 . . z1P

. . . .

. . . .
zN1 . . zNP

 (5)

Z =
P

∑
j=1

aj
Tej (6)

where, aj
T is the transpose matrix of aj.

Table 4. Description of time series data used for Empirical Orthogonal Function (EOF) analysis.

Data Number of Grid Points (P) Time Period (N)

TMPA3B43V7 38 2003–2014 (144 months)
Satellite-based discharge 38 2003–2014 (144 months)

3.6. Satistical Analysis

To evaluate the performance of the estimated discharge, the satellite-based discharge was
compared with the model-based discharge (CLM, Mosaic, Noah, VIC, and PRMS) and with in situ
discharge data of South Korea. Four statistical indicators-bias (Equation (7)), correlation coefficient
(r; Equation (8)), root mean square error (RMSE; Equation (9)), and Nash-Sutcliffe efficiency (NSE;
Equation (10)) were used.

bias =

(
N

∑
i=1

(Xi − Yi)

)
/N (7)

r =

N
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

N
∑

i=1

(
Xi − X

)2 N
∑

i=1

(
Yi − Y

)2
(8)

RMSE =

√√√√ 1
N

N

∑
i=1

(Xi − Yi)
2 (9)

NSE = 1 −

N
∑

i=1
(Yi − Xi)

2

N
∑

i=1

(
Xi − X

)2
(10)

where Xi is the satellite-based discharge, Yi is the model-based discharge output or in situ discharge, i
is the time step, N is the total number of time steps, X is the average of satellite-based discharge, and Y
is the average of model-based discharge output or in situ discharge.

4. Results and Discussions

4.1. Evaluation of Hydrological Components

Figure 2a,b shows the GRACE-based TWSA and TWSC with trends during the study period.
The GRACE-based TWSA of the Korean Peninsula sharply declined by 81.4 mm during late 2010
and early 2012, and by 74.6 mm between the summer of 2013 and the winter of 2014 (see the trends
in Figure 2a). As for the monthly GRACE-based TWSC, the response to heavy precipitation in the
summer (June to September) can be found in a distinct pattern (Figure 2b).
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For evapotranspiration, we resampled the MOD16 product to match the GRACE data at 1.0◦

spatial resolution using the area-weighted average method. In this study, GLDAS 1.0◦ products of
version 1 were used and we extracted the monthly evapotranspiration from the CLM, Mosaic, Noah,
and VIC outputs. The MOD16-derived ET was compared with the GLDAS LSMs products. Their
seasonal behavior turned out to be similar to each other; however, there is a discrepancy among the
five products, especially in summer (Figure 3). The CLM has the highest correlation with MOD16
(r = 0.97), followed by Noah (r = 0.94), VIC (r = 0.92), and Mosaic (r = 0.91).
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As we did for the evapotranspiration, we resampled TMPA3B43V7 to match the GRACE data at
1.0◦ spatial resolution using the weighted average method based on relative-gauge weight (Figure 4a,b).
The precipitation from resampled TMPA3B43V7 data was compared with the ground observation
data. The average precipitation was calculated by the Thiessen Polygon method for the 59 South
Korean gauge stations and the 27 stations in North Korea (Figure 4c). Figure 4 shows both the annual
precipitation from TMPA3B43V7, and the averaged ground observation. TMPA3B43V7 and ground
observation precipitation showed good agreement with a correlation coefficient (r = 0.98). The inset of
Figure 5 shows the seasonal cycle of two precipitation results. The seasonal patterns of TMPA3B43V7
and observations are similar to each other. During the summer season (July–September), precipitation
observations from gauges results were slightly higher than those from TMPA3B43V7, whereas in other
seasons, the TMPA 3B43V7 results were higher than the gauge observations.
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Table 5 lists trends, annual amplitudes (1 cycle/year), and semi-annual amplitudes (2 cycles/year)
of the hydrological components explained in previous sections. The table also lists the goodness of fit
that was measured by r2. The trends of GRACE-based TWSA and TWSC are negative for the Korean
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Peninsula during the study period (−9.29 mm and −0.43 mm/month, respectively). The magnitude of
semi-annual amplitudes is about 20% of annual amplitudes. The r2 value of TWSA is 0.34, indicating a
match by 34% between the original TWSA and the decomposed signal. TWSC and the decomposed
signal matched by 29%. Regarding evapotranspiration, the trend is 35.17 mm/month for MOD16, and
the average trend of four LSMs is 55.96 mm/month. Trends, and annual and semi-annual amplitudes
from LSMs are all larger than those of MOD16 (7.95–31.55 mm/month, 13.27–33.39 mm/month, and
0.32–1.66 mm/month, respectively). CLM and MOD16 show the most similar trends and amplitudes
in evapotranspiration. Also, we obtain an r2 value of 0.87–0.97, which explains the good match in
the evapotranspiration results. For precipitation, TMPA3B4V7 and gauges observations show good
agreement in trends (104.78 vs. 105.97 mm/month) and amplitudes (105.62 vs. 114.41 mm/month for
annual, 5.07 vs. 7.89 mm/month for semi-annual). The goodness of fit shows about 60% and 56% in
the TMPA3B43V7 and gauge observations, respectively.

Table 5. Trends, and annual and semi-annual amplitudes of hydrological components from January
2003 to December 2014.

Hydrological Component Trend
(mm/Month)

Annual
Amplitude (A)
(mm/Month)

Semi-Annual
Amplitude (S)
(mm/Month)

Ratio
(S/A)

Goodness
of Fit (r2)

GRACE-based TWSA −9.29 * 24.21 * 5.56 * 0.23 0.34

GRACE-based TWSC −0.43 12.39 2.82 0.23 0.29

Evapotranspiration

MOD16 35.17 30.66 0.11 0.01 0.87

CLM 43.12 43.93 0.43 0.01 0.93

Mosaic 66.72 64.05 1.77 0.03 0.96

Noah 55.12 50.21 0.56 0.01 0.97

VIC 58.89 62.90 1.19 0.02 0.96

Precipitation TMPA3B43V7 105.97 105.62 5.07 0.05 0.60

Gauge 104.78 114.41 7.89 0.07 0.56

Note: * The unit is mm.

4.2. Estimation of Satellite-Based Discharge in the Korean Peninsula

Figure 6 shows a monthly time series of the satellite-based total discharge derived from GRACE,
TMPA3B43V7 and MOD16 data. The monthly variation of discharge resembles the precipitation
pattern. In general, 60–70% of the annual precipitation occurs during June to September, and the
satellite-based discharge begins to increase in June and peaks in July to August.
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Figures 7 and 8 show the EOF distributions and PC scores of precipitation and discharge. The EOFs
reveal regions of coherent variability. The patterns of PC1 and PC2 loadings are similar to the relations
between the satellite-based precipitation and discharge. The first mode (EOF1), which represents
the largest variance, explains 85.2% and 73.8% of the total variance of precipitation and discharge,
respectively. The EOF1 results (Figure 7a,b) of the northern region (red color in Figure 7a,b) which
are mountainous areas, show lower values relative to the other regions. Since South Korea has more
precipitation, flatter plains and higher seasonal variability than North Korea, the EOF1 results of
precipitation and discharge in North Korea show lower values. The second mode (EOF2) accounted
for 6.4% and 10.6% of the total variance of precipitation and discharge, respectively. Both EOF2 results
of precipitation and discharge (Figure 8a,b) show a north-south dipole pattern compared to EOF1.
These EOF2 modes represent the north to south variability of precipitation and discharge in the Korean
Peninsula. A comparison of PC1 and PC2 score time series for precipitation and discharge (Figures 7c
and 8c) indicates significant correlation (r = 0.99 for PC1 and 0.97 for PC2). Similar phenomena
regarding the dominant EOF patterns in precipitation and discharge have been reported in previous
studies for other regions; some examples are Northwest Mexico [44], West Africa [45], China [46–48],
and the Amazon River basin [49].
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4.3. Validation of the Estimated Total Discharge

4.3.1. Total Discharge in the Korean Peninsula

Figure 9 shows the time series of satellite-based and LSMs monthly discharge, along with the
precipitation from TMPA3B43V7 in the Korean Peninsula. The satellite-based discharge shows a
similar pattern to the LSM total (surface + subsurface) discharge responding to the precipitation. The
maximum discharge during the study period turned out to be 406.06, 338.97, 114.48, 246.75, and
233.58 mm/month, according to the satellite, CLM, Mosaic, Noah, and VIC, respectively. They all
occurred in July 2013. The satellite-based approach overestimated discharge by 17.23, 39.08, 29.13, and
32.76 mm/year compared to CLM-, Mosaic-, Noah-, and VIC-based results, respectively. In general,
discrepancies were observed in dry conditions of winter and spring.
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Figure 9. Time series of precipitation; (a) the satellite-based discharge and land surface model
(LSM)-based discharge; (b) common land model (CLM); (c) Mosaic; (d) Noah; (e) variable infiltration
capacity (VIC) over the Korean Peninsula.

Statistically, the satellite-based discharges are in reasonable agreement with the LSM results
(Figure 10); the correlation coefficient (r) was 0.86, 0.82, 0.79, and 0.70 for CLM, Noah, VIC, and Mosaic,
respectively (Table 6). For annual and semi-annual discharge variations (Table 7), the CLM-based
discharge amplitudes and phases showed good agreement with the satellite-based discharge, while
the Mosaic-based discharge showed the worst performance. The magnitudes of the semi-annual
amplitudes are about 6–10% of annual amplitudes. In general, the annual and semi-annual phase
results showed a negative phase shift, whereas the semi-annual phase of Mosaic and VIC showed a
positive phase shift.
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Figure 10. Comparison of the satellite-based discharge and LSM-based discharge; (a) Satellite-CLM;
(b) Satellite-Mosaic; (c) Satellite-Noah; (d) Satellite-VIC.

Table 6. Statistical results of model-based discharge compared to satellite-based discharge in the
Korean Peninsula.

Discharge r (-) Bias (mm/Month) RMSE (mm/Month) NSE (-)

CLM 0.86 16.99 36.90 0.62
Mosaic 0.70 −39.08 62.56 0.01
Noah 0.80 −29.14 48.08 0.42
VIC 0.82 −32.76 50.50 0.36

Table 7. Seasonal amplitudes and phases of satellite- and model-based discharge.

Discharge Annual Amplitude
(mm/Month)

Annual
Phase

Semi-Annual Amplitude
(mm/Month)

Semi-Annual
Phase

Satellite 50.09 −1.58 5.52 −2.58
CLM 57.52 −1.75 5.12 −2.97

Mosaic 24.24 −2.01 4.41 2.84
Noah 43.93 −2.06 4.72 −3.13
VIC 29.61 −1.88 5.53 3.11

4.3.2. Evaluation of Satellite-Based Discharge in South Korea

Figure 11 shows the temporal variation of the sum of total discharge from satellites, model
datasets (CLM and PRMS), and in situ gauging stations of five major river basins (Han, Nakdong,
Guem, Seomjin, and Youngsan river basins) in South Korea during the study period. While
the results display a similar trend, the PRMS discharge tends to be overestimated compared
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with the satellite-, CLM-based, and in situ discharge; discrepancies occur mostly in the peak
discharge during the summer season. It is interpreted to be due to localized torrential downpours
concentrated in a few days. The mean annual discharge amount turned out to be 13,166.56 mm/year
(~1106 × 109 m3/year), 15,058.00 mm (~1264 × 109 m3/year), 6678.79 mm (560 × 109 m3/year)
and 14,145.48 mm (~1188 × 109 m3/year), according to the satellite, PRMS, CLM, and in situ data,
respectively. The satellite-based discharge, PRMS, and in situ results show identical trends and similar
values, compared to the CLM-based discharge.Water 2017, 9, 532 15 of 18 
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GRACE, MODIS, and TRMM satellites products. In order to integrate the spatial resolution of 
different satellite products, TMPA3B43V7 and MOD16 were resampled at 1.0° spatial resolution. 

The total discharge estimates were validated with GLDAS LSMs (CLM, Mosaic, Noah, and VIC) 
results and PRMS long-term discharge and in situ discharge of five river basins in South Korea. The 
satellite-based discharge showed good correlation, with LSMs with r values of 0.70‒0.86. Also, the 
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correlation with the satellite-based discharge compared to the CLM results (NSE values of 0.17). 

Figure 11. Comparison of the satellite-based discharge, model-based discharge (CLM and PRMS), and
in situ discharge sum of the five major river basins in South Korea.

Figure 12 shows the scatter plot of the satellite-based and model-based discharge. The r
of the satellite-based discharge was 0.88 for PRMS, 0.72 for CLM and 0.82 for in situ (Table 8).
The PRMS-based discharge was greater than the satellite-based discharge, while the CLM-based
discharge showed a tendency for underestimation. Also, the NSE of the satellite-based discharge was
0.74, 0.17, and 0.65 for PRMS, CLM, and in situ discharge, respectively. Through the NSE results,
PRMS showed the best performance with the satellite-based discharge. Based on the results, the
estimated satellite-based discharge shows reasonable performance over the Korean peninsula, and on
a regional scale.
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Table 8. Statistical results of in situ discharge and model-based (CLM and Precipitation-Runoff
Modeling System (PRMS)) discharge compared to satellite-based discharge.

Discharge r (-) Bias (mm/Month) RMSE (mm/Month) NSE (-)

In situ 0.82 −81.58 649.18 0.65
PRMS 0.88 −157.62 782.38 0.74
CLM 0.72 515.65 742.08 0.17
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5. Conclusions

The northern part of the peninsula (North Korea) is a practically ungauged area, since no
hydrological information is available there, other than precipitation data at limited stations. In this
study, we estimated the discharge of the Korean Peninsula from January 2003 to December 2014 using
GRACE, MODIS, and TRMM satellites products. In order to integrate the spatial resolution of different
satellite products, TMPA3B43V7 and MOD16 were resampled at 1.0◦ spatial resolution.

The total discharge estimates were validated with GLDAS LSMs (CLM, Mosaic, Noah, and
VIC) results and PRMS long-term discharge and in situ discharge of five river basins in South Korea.
The satellite-based discharge showed good correlation, with LSMs with r values of 0.70-0.86. Also,
the PRMS and in situ discharge (NSE values of 0.74 and 0.65) for South Korea showed similar trends
and correlation with the satellite-based discharge compared to the CLM results (NSE values of 0.17).
However, the satellite-based discharge, overestimated slightly in dry seasons, compared with the
four LSMs in the Korean Peninsula. Also, PRMS discharge results in South Korea overestimated
during rainy seasons compared with the satellite-based and LSM-based discharge. The total discharge
estimated using the three different satellite products might have uncertainties due to the following
reasons: (1) measurement error of each satellite product; (2) low spatial resolution of GRACE (~100 km);
and (3) error made in the process of integrating the three satellite products.

Analysis of principal components yielded insight into the seasonal and inter-annual variability
of the estimated discharge and its relationship with precipitation. The first modes of precipitation
and discharge (EOF1) had relatively low values in mountainous regions. The second modes (EOF2)
showed a dipole north to south pattern in both precipitation and discharge. The EOFs and PCs of
discharge revealed a clear positive correlation with precipitation.

Considering the scarcity of hydrological data and the complexity of the topography of the
Korean Peninsula, the statistical performance of the discharge estimates proves the applicability of the
proposed method-the integration of three different satellite products; GRACE, MODIS, and TRMM.
The estimated discharge will be a valuable asset for building a database for the ungauged area and
will contribute to the efficient management of the trans-boundary river basins in the Korean Peninsula.
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