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Abstract:



Having the ability to forecast groundwater levels is very significant because of their vital role in basic functions related to efficiency and the sustainability of water supplies. The uncertainty which dominates our understanding of the functioning of water supply systems is of great significance and arises as a consequence of the time-unbalanced water consumption rate and the deterioration of the recharge conditions of captured aquifers. The aim of this paper is to present a hybrid model based on fuzzy C-mean clustering and singular spectrum analysis to forecast the weekly values of the groundwater level of a groundwater source. This hybrid model demonstrates how the fuzzy C-mean can be used to transform the sequence of the observed data into a sequence of fuzzy states, serving as a basis for the forecasting of future states by singular spectrum analysis. In this way, the forecasting efficiency is improved, because we predict the interval rather than the crisp value where the level will be. It gives much more flexibility to the engineers when managing and planning sustainable water supplies. A model is tested by using the observed weekly time series of the groundwater source, located near the town of Čačak in south-western Serbia.
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1. Introduction


Maintaining the stability of groundwater exploitation represents a key issue in attaining efficient and sustainable water supplies. It involves stable recharge conditions for the captured aquifer during the exploitation, absence or the slight degradation of the initial seepage characteristics of the aquifer, as well as the selection of an appropriate exploitation regime. An optimal-yield exploitation over a period of many years produces effects related to the spread of general drawdown. It occurs as a consequence of the exploitation regime of all of the intake objects. The fluctuation of the drawdown values is influenced by seasonal wavering in the values of balance elements participating in the recharge of the captured aquifer and the exploitation regime caused by changes of consumption rate.



The deterioration of the recharge conditions of the captured aquifer and its overexploitation lead to an increase in the values of the drawdown and the effective groundwater source radius [1]. For the purpose of the effective management of the exploitation, it is necessary to know the data regarding the drawdown of the groundwater source, independent of the conditions influencing the wavering of drawdown values. In this way, we can define the range of possible total flow of the groundwater source, primarily in dry season periods.



Many models and techniques have been proposed to forecast time series in hydrogeology: the nonlinear optimization technique, the multiple linear regression method, the hybrid soft-computing technique, the hybrid wavelet packet-support vector regression method, artificial neural-network techniques, the adaptive neuro-fuzzy inference system method, and hydrodynamic modeling [2,3,4,5,6,7]. The singular spectrum analysis was used in this paper but is also implemented by various other authors [8,9,10,11,12,13,14,15,16,17].



City water consumption represents a highly dynamic temporal appearance, which causes great difficulties in the water supply management system. Reliable groundwater level forecasting is broadly recognized for its key role in the efficient management of water resources and consumption. In this paper, we proposed a hybrid model that could effectively forecast groundwater levels and improve the efficiency of the process of their management. The hybrid model combined the fuzzy C-mean clustering algorithm (FCM) and singular spectrum analysis (SSA). The FCM is able to effectively classify the monitored data into temporal states of the groundwater level. In this way, the behavior of the observed system can be defined much more flexibly. The SSA is able to effectively forecast the state of the groundwater level and provide opportunities to make different combinations within the obtained components of the data series. The proposed methodology represents an easier way of modelling groundwater levels and offers an opportunity to describe the behavior of a groundwater source without including the physical characteristics of the location. Furthermore, it can be easily updated with new information. There is an opportunity to transform this one single time series model into a multi-dimensional model by adding another observed parameter; in which case, we can use a multivariate singular spectrum analysis.



The development of the model is related to the forecasting of the future states of the groundwater level (the general drawdown) using data obtained during the period of exploitation. The model is composed of two stages: in the first stage, we make fuzzy states of the monitored data, while in the second, we forecast the future states. By using a fuzzy C-mean clustering algorithm, the original time series is divided into an adequate number of fuzzy states. Accordingly, we can create the adequate fuzzy time series. In many cases, the creation of fuzzy relations among fuzzy time series is a very difficult task. In order to avoid this, we represent fuzzy time series by cluster time series, where each cluster is defined by its center, minimum and maximum value. This approach enables us to apply a deterministic forecasting model based on the singular spectrum analysis. This analysis reveals the structure of the time series, i.e., components such as trend, oscillations and noise. Planners can create different scenarios using different combinations of components. This model is very beneficial to city authorities due to its effective water resource management.




2. Forecasting Model


In this paper, we study the forecasting time of the invariant fuzzy time series of groundwater levels. The fuzzy C-mean algorithm is used for the fuzzification of the observed data, while the SSA is applied to make a forecasting model.



By applying linear recurrent formulae, we predict the future values of cluster centers. After that, the sequence of the forecasted cluster centers is transformed into a sequence of the actual centers obtained by fuzzy C-mean clustering. The transformation uses the equation of the fuzzy C-mean clustering algorithm, which calculates the membership degree. Finally, the developed model produces the interval time series, characterized by the minimum and maximum value of the groundwater level for every point in the future.



The developed model was tested by using the real data obtained by monitoring the groundwater source Perminac. It is located in the upstream area of Čačak city. The groundwater source contains 14 wells with a maximum total capacity of 131 l/s and an average of 90 l/s. In recent years, overexploitation caused a significant decrease in the groundwater level in the wider area of the groundwater source. Accordingly, some wells were excluded from the exploitation, and supply restrictions were introduced as a way of stabilizing consumption during the summer months.



2.1. Fuzzy Time Series


Song and Chissom [18] first introduced the definition of fuzzy time series as follows [19]:



“Let [image: there is no content] be the universe of observed data on which fuzzy sets [image: there is no content] are defined and let [image: there is no content] be a collection of [image: there is no content]. Then, [image: there is no content] is called a fuzzy time series on [image: there is no content].”



Song and Chissom [18] defined fuzzy relations among fuzzy time series, which are based on the assumption that the values of fuzzy time series [image: there is no content] are fuzzy sets, and the observation of time t is caused by the observations of the previous times [19].



If for any [image: there is no content], there exist [image: there is no content] and a fuzzy relation [image: there is no content] such that [image: there is no content], where ”[image: there is no content]” is the relation, then [image: there is no content] is said to be caused by [image: there is no content] only. It is expressed as follows:


[image: there is no content]



(1)







Suppose that [image: there is no content] is caused by [image: there is no content] only, or by [image: there is no content] or [image: there is no content] or [image: there is no content]. This relation can be expressed as follows:


[image: there is no content]



(2)







Equation (2) represents the first-order model of [image: there is no content]. If [image: there is no content] is caused by



[image: there is no content] simultaneously, then their relations are represented as:


[image: there is no content]



(3)







Equation (3) represents the k-th order model of [image: there is no content], and [image: there is no content] is a relation matrix describing the fuzzy relationship between [image: there is no content] and [image: there is no content].



To fuzzify the observed data, we apply the fuzzy C-mean algorithm.




2.2. A Brief Description of the Fuzzy C-mean Algorithm


In order to divide the observed data into an adequate number of fuzzy states, we apply the fuzzy C-mean clustering algorithm [20,21,22,23] over the set [image: there is no content]. The reason that we clustered the time series is primarily related to the need to develop models that use the results of monitoring in a form that represents the states of the observed appearance. Decision-making models based on the interval inputs are much more flexible than deterministic models. Management models have a much higher confidence because they incorporate uncertainties expressed by intervals into management systems.



The fuzzy C-mean algorithm is a method based on the minimization of a generalized least-squared errors-function. Given a set [image: there is no content], where N is the number of the observed data and q is the dimension of the sample [image: there is no content]. Every cluster is a fuzzy set defined by the relative closeness of space S. Suppose that there is a groundwater level vector composed of M cluster centers; [image: there is no content]. For the i-th relative closeness and m-th cluster center, there is a membership degree [image: there is no content] indicating with what degree the relative closeness SN belongs to the cluster center vector Cm, which results in a fuzzy partition matrix [image: there is no content].



Let uim be the membership, cm the center of the cluster, N the number of observed data and M the number of clusters. This algorithm aims to determine cluster centers and the fuzzy partition matrix by minimizing the following function:


[image: there is no content]



(4)




subject to


[image: there is no content]



(5)






[image: there is no content]



(6)






[image: there is no content]



(7)




where dim is Euclidean distance between the observation and the center of the cluster, defined as:


[image: there is no content]



(8)







Finally, the objective function is:


[image: there is no content]



(9)







The objective function J represents the intra-cluster variance. If we want to have those elements that are most similar to the cluster center in a given cluster, we can do this by minimizing the variance inside the cluster. The exponent ω is used to adjust the weighting effect of membership values. A large ω will increase the fuzziness of the function J. Pal and Bezdek [24] suggested that ω in the interval [1.5, 2.5] was generally recommended for use in FCM.



In this paper, the value of ω is set to 2 as a midpoint of the suggested interval. The objective function is iteratively minimized. In j-th iteration, the values of [image: there is no content] and [image: there is no content] are updated as follows:


[image: there is no content]



(10)








[image: there is no content]



(11)





The iteration process stops at [image: there is no content], where [image: there is no content] represents the minimum amount of improvement. Sorting the sequence of obtained centers in an ascending order gives us [image: there is no content].



The fuzzification of the data is done according to the results of the final fuzzy partition matrix.




[image: there is no content]



(12)





The number of fuzzy sets corresponds to the number of clusters. Each row of the matrix U represents the fuzzy state of that observation. Accordingly, we obtain the fuzzy state matrix of the observed data:


Ai=|A1=u11(c1)c1+u12(c2)c2+⋯+u1m(cm)cmA2=u21(c1)c1+u22(c2)c2+⋯+u2m(cm)cm⋮⋮⋮⋮⋮⋯⋱⋮ANui1(c1)c1+ui2(c2)c2+⋯+uim(cm)cm|



(13)







The state of the observed data is defined as:


[image: there is no content]



(14)







Finally, the sequence Aim represents a fuzzy time series on [image: there is no content]. In this way, we obtain the transitions from one state to another over the time of observation; [image: there is no content].



The creation of a set of certain transition rules for fuzzy relationships between states can be very difficult. To overcome this situation, we transform the fuzzy time series into an adequate time series of the center of the clusters. This approach enables us to apply a deterministic forecasting model based on the singular spectrum analysis.




2.3. Forecasting Model Based on the Singular Spectrum Analysis


The process of the transformation of the fuzzy time series into a crisp time series is based on the fact that each fuzzy state [image: there is no content] can be represented by a corresponding center of the cluster. Accordingly, the following time series, [image: there is no content], are obtained.



The forecasting algorithm is based on SSA methodology [25,26,27]. In SSA terminology, it is often assumed that the series is noisy with an arbitrary series length N. The SSA technique consists of two main complementary stages: decomposition and reconstruction. The noisy series is decomposed in the first stage, and the noisy reduced series is reconstructed at the second stage. The reconstructed series will be used for forecasting the future values.



Consider the stochastic process [image: there is no content] and suppose that a realization of size N from this process is available: [image: there is no content]. Since we are faced with time-invariant series, and for simplicity, we can rewrite the realization as follows: [image: there is no content].



The first stage of the algorithm, called decomposition, includes the following two steps: embedding and singular value decomposition (SVD).



Embedding is a mapping that transfers a one-dimensional time series of centers [image: there is no content] into a multidimensional matrix [image: there is no content] with vectors [image: there is no content], where [image: there is no content] is the window length and [image: there is no content]. The window length represents a vector of L observations of the original series. If we remember Equation (3), we can see the window length model is similar to the k-th order model of the fuzzy time series, but taking into account original values from t = 1 to t = L. The usual value of L is (N + 1)/2 if N is odd and N/2 or (N/2) + 1 if N is even (for more details see [27]). The result of this step is the trajectory matrix:


[image: there is no content]



(15)







The trajectory matrix Y is the Hankel matrix where all elements along the diagonal i + j = const are equal.



The SVD of matrix Y is based on the spectral decomposition of the lag-covariance matrix [image: there is no content]. Denote [image: there is no content] as the eigenvalues of [image: there is no content], arranged in decreasing order [image: there is no content], and [image: there is no content] the corresponding eigenvectors. The SVD of the trajectory matrix Y can be represented as


[image: there is no content]



(16)




where d is the rank of Y.



The second stage of the algorithm, called reconstruction, includes the following two steps: grouping and diagonal averaging or Hankelization.



The grouping step corresponds to the splitting of the set of matrices [image: there is no content] into several disjointed subsets and the summing of the matrices within each subset. The procedure of choosing the subsets [image: there is no content] is called grouping. As a simple case, where we have only signal and noise components (k = 2), we use two subsets, [image: there is no content] and [image: there is no content], and associate the subset [image: there is no content] with the signal component and the subset [image: there is no content] with noise. Selecting the appropriate number of eigenvalues (r) to be included into the reconstruction is very important. If we take an r smaller than it should really be, some parts of the signal will be lost and the accuracy of the reconstructed series will be lower. On the other hand, if the value of r is too large, then a lot of noise will be included into the reconstructed series. After performing a singular value decomposition of the trajectory matrix, singular values ordered in a decreasing manner are obtained. The plot of the logarithms of the obtained singular values gives very useful information regarding breaks in the eigenvalue spectra. The component where a significant drop in values occurs can be interpreted as the start of the noise floor [28].



Diagonal averaging or Hankelization represents the last step in SSA, where each reconstructed trajectory matrix (see Equation (16)) is transformed into a new one-dimensional time series of length N. This corresponds to the averaging of the matrix elements over the anti-diagonals i + j=k + 1; the selection k = 1 gives [image: there is no content], for k = 2, [image: there is no content], [image: there is no content] and so on. For example, the reconstructed trajectory matrix [image: there is no content] is transformed into a new one-dimensional time series [image: there is no content]. Finally, the original time series CN is decomposed into a sum of r vectors or principal components:


[image: there is no content]



(17)







The reconstructed (extracted) series will be used to forecast new data points.



The third stage of the algorithm concerns the future states of the groundwater level and is based on the linear recurrent formulae. Let [image: there is no content] denote the vector of the first L-1 coordinates of the eigenvectors [image: there is no content] and [image: there is no content] indicate the last coordinate of the eigenvectors [image: there is no content]. Define the verticality coefficient as




[image: there is no content]



(18)





If [image: there is no content], then the h-step ahead SSA forecasting exists. Obviously, the value of r must be carefully selected to satisfy the previous inequality, as well as to separate the signal from the noise components. The main concept behind the definition of the value of r is related to the dependence between the different reconstructed (principal) components [28]. The weighted correlation represents the level of dependence between the two series [image: there is no content] and [image: there is no content]:


ρ1,2w=|C^→1N,C^→2Nw|‖C^→1N‖w‖C^→2N‖w



(19)




where

	
|C^→1N,C^→2Nw|—absolute value of the weighted Frobenius inner product,



	
[image: there is no content]—the weighted norm



	
[image: there is no content]—vector of weights.








If the two reconstructed components have zero w-correlation, it means that these two components are well separated. Large values of w-correlations between the reconstructed components indicate that the components should possibly be gathered into one group and correspond to the same component in SSA decomposition [28]. The obtained correlations can be effectively represented by the [image: there is no content] grey-scaled correlation matrix.



The linear vector of coefficients [image: there is no content] is calculated as follows:


[image: there is no content]



(20)







The h-step ahead SSA forecasting is achieved by the following equation:


[image: there is no content]



(21)




where


[image: there is no content]



(22)







The accuracy of the proposed model is estimated by the mean absolute percentage error (MAPE) and the coefficient of determination (R2):


[image: there is no content]



(23)






[image: there is no content]



(24)




where s(t) is the actual value, [image: there is no content] is the forecasted value of the cluster center and [image: there is no content] is the average of the observed set. R2 is a positive number which demonstrates how well the model fits the data. It can take values between zero and one, where zero indicates that there is a poor correlation between the model output and the actual data. Note, there is a difference between the actual [image: there is no content] and the forecasted value [image: there is no content] of the cluster center. The sequence of the forecasted cluster centers is now transformed into a sequence of the actual centers by Equation (11); [image: there is no content].



According to the concept of the C-mean clustering algorithm, each fuzzy state can be defined as a triplet; [image: there is no content], where [image: there is no content] is equal to the element of the cluster with the minimum value, [image: there is no content] is equal to the element with the maximum value and [image: there is no content] has already been explained. Finally, the developed model produces the interval time series [image: there is no content].





3. Numerical Example


The groundwater source of Perminac was formed in the alluvion of the Zapadna Morava river, in the Zapadna Morava valley in the south-western region of the Republic of Serbia. Alluvial sediments are composed of sand and gravel varying from 4 to 6 m in thickness. The presence of a hydraulic connection to the Zapadna Morava river enables the intensive recharge of the aquifer. The groundwater source was formed along the left bank of the river, upstream from the town of Čačak. The location of the study area is represented by Figure 1.


Figure 1. Location of the groundwater source.



[image: Water 09 00541 g001]






The data used in this paper includes weekly groundwater level time series. We divided the set of data into the training subset, where the model is applied, and the validation subset, where the comparison between the forecasted and actual values is made. About 85% of the data was used to check the confidence of the model, while about 15% was used to check its validity. The main reason for such data division was primarily influenced by a lack of funds for a longer period of exploration; the monitoring lasted only one year. By using this method of data division, we wanted to be sure about the confidence of the model. Usually, 2/3 of data is used for training and 1/3 for validation.



The observed data is represented in Table 1.



Table 1. Historical data of the groundwater level.







	
Week

	
Level

	
Week

	
Level

	
Week

	
Level

	
Week

	
Level






	
1

	
245.384

	
14

	
244.725

	
27

	
245.539

	
40

	
245.335




	
2

	
245.173

	
15

	
244.918

	
28

	
245.389

	
41

	
245.161




	
3

	
246.492

	
16

	
244.810

	
29

	
245.253

	
42

	
245.078




	
4

	
246.806

	
17

	
244.564

	
30

	
245.134

	
43

	
244.980




	
5

	
246.676

	
18

	
244.458

	
31

	
245.021

	
44

	
245.057




	
6

	
245.776

	
19

	
244.547

	
32

	
245.559

	
45

	
245.303




	
7

	
245.571

	
20

	
244.515

	
33

	
245.932

	
46

	
245.584




	
8

	
245.663

	
21

	
244.639

	
34

	
245.977

	
47

	
245.694




	
9

	
245.648

	
22

	
245.386

	
35

	
245.735

	
48

	
245.785




	
10

	
245.304

	
23

	
245.698

	
36

	
245.539

	
49

	
245.794




	
11

	
245.162

	
24

	
245.311

	
37

	
245.489

	
50

	
245.551




	
12

	
245.002

	
25

	
245.244

	
38

	
245.552

	
51

	
245.400




	
13

	
244.747

	
26

	
245.547

	
39

	
245.556

	
52

	
245.159








Note: Bold numbers indicate the validation subset.








We used the exponent ω = 2 and seven clusters to partition the original time series (from week 1 to 45) and the resulting cluster centroids were as follows: C={c1,c2,c3,c4,c5,c6,c7}={244.603;244.994;245.162;245.329;245.552;245.740;246.641}. Next, the historical data was fuzzified with respect to where the maximum membership degree occurred. For example, the fuzzy state for week 7 was A5 because c5 had the greatest membership degree. Table 2 and Figure 2 and Figure 3 give the results of the fuzzification of the data based on the application of the fuzzy C-mean clustering algorithm.


Figure 2. Surface plot of membership functions by a fuzzy C-mean algorithm for the observed data (training subset).



[image: Water 09 00541 g002]





Figure 3. Interval plot by a fuzzy C-mean algorithm for the observed data (training subset).



[image: Water 09 00541 g003]






Table 2. Fuzzification of the observed data (training subset).







	
Week

	
Membership Values

	
Cluster Center

	
Interval

	
Fuzzy State




	
No.

	
c1

	
c2

	
c3

	
c4

	
c5

	
c6

	
c7

	
m

	
[min;max]

	
Am






	
1

	
0.0353

	
0.0708

	
0.1244

	
0.5061

	
0.1638

	
0.0776

	
0.0220

	
245.329

	
[245.253;245.389]

	
A4




	
2

	
0.0150

	
0.0480

	
0.8394

	
0.0543

	
0.0225

	
0.0150

	
0.0058

	
245.162

	
[245.133;245.244]

	
A3




	
3

	
0.0443

	
0.0559

	
0.0630

	
0.0720

	
0.0891

	
0.1113

	
0.5643

	
246.641

	
[246.492;246.806]

	
A7




	
4

	
0.0450

	
0.0548

	
0.0603

	
0.0672

	
0.0791

	
0.0930

	
0.6005

	
246.641

	
[246.492;246.806]

	
A7




	
5

	
0.0146

	
0.0179

	
0.0199

	
0.0224

	
0.0269

	
0.0322

	
0.8661

	
246.641

	
[246.492;246.806]

	
A7




	
6

	
0.0216

	
0.0324

	
0.0413

	
0.0568

	
0.1135

	
0.7052

	
0.0293

	
245.740

	
[245.648;245.976]

	
A6




	
7

	
0.0144

	
0.0242

	
0.0341

	
0.0577

	
0.7744

	
0.0822

	
0.0130

	
245.552

	
[245.488;245.570]

	
A5




	
8

	
0.0309

	
0.0490

	
0.0654

	
0.0981

	
0.2959

	
0.4272

	
0.0335

	
245.740

	
[245.648;245.976]

	
A6




	
9

	
0.0318

	
0.0509

	
0.0685

	
0.1044

	
0.3480

	
0.3628

	
0.0335

	
245.740

	
[245.648;245.976]

	
A6




	
10

	
0.0250

	
0.0567

	
0.1240

	
0.6708

	
0.0703

	
0.0401

	
0.0131

	
245.329

	
[245.253;245.389]

	
A4




	
11

	
0.0010

	
0.0034

	
0.9893

	
0.0034

	
0.0015

	
0.0010

	
0.0004

	
245.162

	
[245.133;245.244]

	
A3




	
12

	
0.0169

	
0.8950

	
0.0420

	
0.0206

	
0.0122

	
0.0091

	
0.0041

	
244.994

	
[244.810;245.078]

	
A2




	
13

	
0.3888

	
0.2257

	
0.1345

	
0.0959

	
0.0693

	
0.0563

	
0.0295

	
244.603

	
[244.458;244.747]

	
A1




	
14

	
0.4420

	
0.1997

	
0.1231

	
0.0890

	
0.0650

	
0.0530

	
0.0281

	
244.603

	
[244.458;244.747]

	
A1




	
15

	
0.1219

	
0.4989

	
0.1568

	
0.0931

	
0.0604

	
0.0466

	
0.0223

	
244.994

	
[244.810;245.078]

	
A2




	
16

	
0.2692

	
0.3011

	
0.1578

	
0.1070

	
0.0749

	
0.0598

	
0.0304

	
244.994

	
[244.810;245.078]

	
A2




	
17

	
0.7671

	
0.0707

	
0.0509

	
0.0398

	
0.0308

	
0.0259

	
0.0147

	
244.603

	
[244.458;244.747]

	
A1




	
18

	
0.5110

	
0.1384

	
0.1055

	
0.0852

	
0.0679

	
0.0579

	
0.0340

	
244.603

	
[244.458;244.747]

	
A1




	
19

	
0.7030

	
0.0891

	
0.0648

	
0.0510

	
0.0397

	
0.0334

	
0.0191

	
244.603

	
[244.458;244.747]

	
A1




	
20

	
0.6147

	
0.1130

	
0.0837

	
0.0665

	
0.0522

	
0.0442

	
0.0255

	
244.603

	
[244.458;244.747]

	
A1




	
21

	
0.7641

	
0.0765

	
0.0520

	
0.0394

	
0.0298

	
0.0247

	
0.0136

	
244.603

	
[244.458;244.747]

	
A1




	
22

	
0.0359

	
0.0717

	
0.1254

	
0.4969

	
0.1685

	
0.0793

	
0.0224

	
245.329

	
[245.253;245.389]

	
A4




	
23

	
0.0235

	
0.0365

	
0.0479

	
0.0697

	
0.1763

	
0.6189

	
0.0273

	
245.740

	
[245.648;245.976]

	
A6




	
24

	
0.0200

	
0.0448

	
0.0955

	
0.7378

	
0.0584

	
0.0329

	
0.0106

	
245.329

	
[245.253;245.389]

	
A4




	
25

	
0.0440

	
0.1130

	
0.3447

	
0.3298

	
0.0914

	
0.0569

	
0.0202

	
245.162

	
[245.133;245.244]

	
A3




	
26

	
0.0059

	
0.0101

	
0.0145

	
0.0257

	
0.9100

	
0.0288

	
0.0051

	
245.552

	
[245.488;245.570]

	
A5




	
27

	
0.0118

	
0.0203

	
0.0293

	
0.0527

	
0.8210

	
0.0550

	
0.0100

	
245.552

	
[245.488;245.570]

	
A5




	
28

	
0.0366

	
0.0729

	
0.1268

	
0.4829

	
0.1759

	
0.0820

	
0.0230

	
245.329

	
[245.253;245.389]

	
A4




	
29

	
0.0432

	
0.1087

	
0.3098

	
0.3665

	
0.0937

	
0.0577

	
0.0202

	
245.329

	
[245.253;245.389]

	
A4




	
30

	
0.0351

	
0.1337

	
0.6489

	
0.0949

	
0.0444

	
0.0307

	
0.0123

	
245.162

	
[245.133;245.244]

	
A3




	
31

	
0.0441

	
0.6939

	
0.1305

	
0.0597

	
0.0347

	
0.0256

	
0.0114

	
244.994

	
[244.810;245.078]

	
A2




	
32

	
0.0056

	
0.0095

	
0.0136

	
0.0235

	
0.9131

	
0.0297

	
0.0050

	
245.552

	
[245.488;245.570]

	
A5




	
33

	
0.0537

	
0.0760

	
0.0926

	
0.1183

	
0.1879

	
0.3709

	
0.1006

	
245.740

	
[245.648;245.976]

	
A6




	
34

	
0.0577

	
0.0808

	
0.0974

	
0.1226

	
0.1871

	
0.3351

	
0.1194

	
245.740

	
[245.648;245.976]

	
A6




	
35

	
0.0044

	
0.0068

	
0.0088

	
0.0124

	
0.0276

	
0.9345

	
0.0055

	
245.740

	
[245.648;245.976]

	
A6




	
36

	
0.0121

	
0.0208

	
0.0301

	
0.0541

	
0.8164

	
0.0563

	
0.0103

	
245.552

	
[245.488;245.570]

	
A5




	
37

	
0.0342

	
0.0613

	
0.0928

	
0.1903

	
0.4745

	
0.1206

	
0.0263

	
245.552

	
[245.488;245.570]

	
A5




	
38

	
0.0004

	
0.0007

	
0.0010

	
0.0017

	
0.9939

	
0.0020

	
0.0003

	
245.552

	
[245.488;245.570]

	
A5




	
39

	
0.0032

	
0.0055

	
0.0078

	
0.0135

	
0.9506

	
0.0166

	
0.0028

	
245.552

	
[245.488;245.570]

	
A5




	
40

	
0.0063

	
0.0136

	
0.0268

	
0.9171

	
0.0212

	
0.0114

	
0.0035

	
245.329

	
[245.253;245.389]

	
A4




	
41

	
0.0021

	
0.0071

	
0.9780

	
0.0070

	
0.0030

	
0.0020

	
0.0008

	
245.162

	
[245.133;245.244]

	
A3




	
42

	
0.0616

	
0.3513

	
0.3464

	
0.1162

	
0.0616

	
0.0442

	
0.0187

	
244.994

	
[244.810;245.078]

	
A2




	
43

	
0.0325

	
0.8208

	
0.0670

	
0.0349

	
0.0213

	
0.0161

	
0.0074

	
244.994

	
[244.810;245.078]

	
A2




	
44

	
0.0621

	
0.4504

	
0.2681

	
0.1035

	
0.0569

	
0.0413

	
0.0178

	
244.994

	
[244.810;245.078]

	
A2




	
45

	
0.0251

	
0.0569

	
0.1246

	
0.6696

	
0.0705

	
0.0402

	
0.0131

	
245.329

	
[245.253;245.389]

	
A4










Having obtained the sequence of fuzzy state transitions, we can continue searching for the relation which describes it. For that purpose, we have performed an SSA decomposition of the cluster center time series. The window length L in the SSA decomposition has taken a value of 23, while the value of K was also 23. The initial cluster of the center time series was decomposed into 22 principal components, and they were ordered with respect to the decreasing value of their eigenvalues. Figure 4 depicts the plot of the logarithms of the 22 singular values. Here, a significant drop in the logarithm values occurs around component 9, and we adopted this as the start point of the noise floor.


Figure 4. Logarithms of the 22 eigenvalues.
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Figure 5 represents the eigenvectors related to the first nine eigenvalues.


Figure 5. One-dimensional plots of the first nine eigenvectors.
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A matrix of weighted grey-scaled correlations between the 22 principal components is represented by Figure 6. The first nine principal components were selected for the reconstruction stage (see Figure 7).


Figure 6. The weighted grey-scaled correlation matrix; the white color corresponds to zero values; the black color corresponds to absolute values equal to 1.
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Figure 7. Principal components obtained by singular spectrum analysis (SSA) decomposition (horizontal axis: week; vertical axis: level).
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The reconstruction of the original time series CN = 45 using the first nine principal components (r = 9) is represented by Table 3 and Figure 8.


Figure 8. Interval plot by the SSA algorithm for the observed data (training subset).
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Table 3. Reconstructed original time series.







	
Week

	
s(t)

	
Am

	
cm
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1

	
245.384

	
A4

	
245.329

	
245.212

	
245.162

	
A3




	
2

	
245.173

	
A3

	
245.162

	
245.425

	
245.329

	
A4




	
3

	
246.492

	
A7

	
246.641

	
246.355

	
246.641

	
A7




	
4

	
246.806

	
A7

	
246.641

	
246.848

	
246.641

	
A7




	
5

	
246.676

	
A7

	
246.641

	
246.656

	
246.641

	
A7




	
6

	
245.776

	
A6

	
245.740

	
245.805

	
245.740

	
A6




	
7

	
245.571

	
A5

	
245.552

	
245.478

	
245.552

	
A5




	
8

	
245.663

	
A6

	
245.740

	
245.697

	
245.740

	
A6




	
9

	
245.648

	
A6

	
245.740

	
245.624

	
245.552

	
A5




	
10

	
245.304

	
A4

	
245.329

	
245.291

	
245.329

	
A4




	
11

	
245.162

	
A3

	
245.162

	
245.229

	
245.162

	
A3




	
12

	
245.002

	
A2

	
244.994

	
245.090

	
245.162

	
A3




	
13

	
244.747

	
A1

	
244.603

	
244.631

	
244.603

	
A1




	
14

	
244.725

	
A1

	
244.603

	
244.563

	
244.603

	
A1




	
15

	
244.918

	
A2

	
244.994

	
244.971

	
244.994

	
A2




	
16

	
244.810

	
A2

	
244.994

	
244.987

	
244.994

	
A2




	
17

	
244.564

	
A1

	
244.603

	
244.576

	
244.603

	
A1




	
18

	
244.458

	
A1

	
244.603

	
244.478

	
244.603

	
A1




	
19

	
244.547

	
A1

	
244.603

	
244.621

	
244.603

	
A1




	
20

	
244.515

	
A1

	
244.603

	
244.626

	
244.603

	
A1




	
21

	
244.639

	
A1

	
244.603

	
244.825

	
244.994

	
A2




	
22

	
245.386

	
A4

	
245.329

	
245.339

	
245.329

	
A4




	
23

	
245.698

	
A6

	
245.740

	
245.496

	
245.552

	
A5




	
24

	
245.311

	
A4

	
245.329

	
245.255

	
245.329

	
A4




	
25

	
245.244

	
A3

	
245.162

	
245.246

	
245.329

	
A4




	
26

	
245.547

	
A5

	
245.552

	
245.510

	
245.552

	
A5




	
27

	
245.539

	
A5

	
245.552

	
245.540

	
245.552

	
A5




	
28

	
245.389

	
A4

	
245.329

	
245.367

	
245.329

	
A4




	
29

	
245.253

	
A4

	
245.329

	
245.329

	
245.329

	
A4




	
30

	
245.134

	
A3

	
245.162

	
245.242

	
245.162

	
A3




	
31

	
245.021

	
A2

	
244.994

	
245.059

	
244.994

	
A2




	
32

	
245.559

	
A5

	
245.552

	
245.206

	
245.162

	
A3




	
33

	
245.932

	
A6

	
245.740

	
245.647

	
245.740

	
A6




	
34

	
245.977

	
A6

	
245.740

	
245.843

	
245.740

	
A6




	
35

	
245.735

	
A6

	
245.740

	
245.724

	
245.740

	
A6




	
36

	
245.539

	
A5

	
245.552

	
245.636

	
245.552

	
A5




	
37

	
245.489

	
A5

	
245.552

	
245.592

	
245.552

	
A5




	
38

	
245.552

	
A5

	
245.552

	
245.453

	
245.552

	
A5




	
39

	
245.556

	
A5

	
245.552

	
245.341

	
245.329

	
A4




	
40

	
245.335

	
A4

	
245.329

	
245.301

	
245.329

	
A4




	
41

	
245.161

	
A3

	
245.162

	
245.174

	
245.162

	
A3




	
42

	
245.078

	
A2

	
244.994

	
244.972

	
244.994

	
A2




	
43

	
244.980

	
A2

	
244.994

	
244.938

	
244.994

	
A2




	
44

	
245.057

	
A2

	
244.994

	
245.165

	
245.162

	
A3




	
45

	
245.303

	
A4

	
245.329

	
245.452

	
245.552

	
A5










Bold letters indicate the difference between the original and reconstructed fuzzy state for the training subset of data (weeks 1–45). In ten cases, the model missed the original fuzzy state within a range of ±1 state, while the difference was ±2 states in only one case.



The accuracy of the proposed model is estimated by Equations (23) and (24) and represented by Table 4.



Table 4. Accuracy of the model.







	
Error

	
MAPE (%)

	
R2
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0.000382

	
0.943
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0.000404

	
0.931










The results represented in Table 4 indicate that the model has a very high accuracy and can be used for the forecasting of future states. We used Equation (21) over the period t = 46, 47,…, 52 for the purpose of measuring the validity of the developed model; the results are represented in Table 5.



Table 5. Validation of the original series.







	
Week

	
s(t)

	
Am

	
cm
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46

	
245.584

	
A5

	
245.552

	
245.646

	
245.552

	
A5




	
47

	
245.694

	
A6

	
245.740

	
245.736

	
245.740

	
A6




	
48

	
245.785

	
A6

	
245.740

	
245.697

	
245.740

	
A6




	
49

	
245.794

	
A6

	
245.740

	
245.519

	
245.552

	
A5




	
50

	
245.551

	
A5

	
245.552

	
245.345

	
245.329

	
A4




	
51

	
245.400

	
A4

	
245.329

	
245.280

	
245.329

	
A4




	
52

	
245.159

	
A3

	
245.162

	
245.208

	
245.162

	
A3










Bold letters indicate the difference between the original and forecasted fuzzy state for the validation subset of data (weeks 46–52). Only in two cases did the model miss the original fuzzy state within a range of ±1 state. The accuracy of the model for the period of validation is represented by Table 6.



Table 6. Error of the validation.







	
Error

	
MAPE (%)

	
R2
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0.000490

	
0.522
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0.000384

	
0.649










When applying Equation (21), we forecasted the future values of the groundwater level for t = 53, 54,…, 85 (see Figure 9).


Figure 9. Interval plot by the SSA forecasting algorithm.
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4. Conclusions


Having the ability to forecast the future states of any system plays a key role in the planning process. The main aim of this paper was to develop a forecasting model for future states of the groundwater level (the general drawdown) using data obtained during the period of exploitation.



The model is composed of two stages. In the first stage, we make fuzzy states of the monitored data, while in the second, we forecast future states. Using a fuzzy C-mean clustering algorithm, the original time series is divided into an adequate number of fuzzy states. After that, an adequate number of fuzzy time series are created. In many cases, creating the fuzzy relations among the fuzzy time series is a very difficult task. In order to avoid this, the fuzzy time series is represented by an adequate cluster of time series, where each cluster is defined by its center, minimum and maximum value. This approach enables us to apply a deterministic forecasting model based on a singular spectrum analysis.



The validation of the developed hybrid model has been performed using real data obtained by monitoring the groundwater level. The values of the mean absolute percentage error and the coefficient of determination show the high accuracy of the developed model. There are no limits on the application of the model for representing only numerical examples. We can use it to forecast the future states of any time series in hydrogeology. For example, to forecast precipitation, the yield of a groundwater source, and the inflow or outflow of a defined area using different time spans (day, week, month, year).



The forecasted states of the flow or groundwater level that can be obtained by the application of this model enable us to set up state boundary conditions for water supply planners more efficiently. Further research will be focused on the creation of the multivariable forecasting model.
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