
water

Article

Derivation of Flow Duration Curves to Estimate
Hydropower Generation Potential in
Data-Scarce Regions

Fabian Reichl ID and Jochen Hack * ID

Engineering Hydrology and Water Management, Technische Universität Darmstadt, Franziska-Braun-Str. 7,
64287 Darmstadt, Germany; fabian.reichl@stud.tu-darmstadt.de
* Correspondence: j.hack@ihwb.tu-darmstadt.de; Tel.: +49-6151-16-20862

Received: 6 July 2017; Accepted: 26 July 2017; Published: 31 July 2017

Abstract: Small-scale hydropower is a robust and reliable form of sustainable energy supply in
remote areas. On the one hand, the potential for hydropower generation depends on the specific
climate in a given place, and precipitation above all. On the other hand, such potential also depends
on the catchment’s characteristics, e.g., topography, land use, and soils. In the absence of discharge
measurements, the available river flow for hydropower production can be estimated in the form of
a flow duration curve based on these variables. In this study, the lumped rainfall-runoff method
by Crawford and Thurin (1981) was modified to calculate a flow duration curve with a daily time
step for an ungauged catchment in Nicaragua. Satisfactory results could be obtained by calibrating
the method with the aid of a few discharge measurements. Best results were obtained with a
parameter set for groundwater flow and recharge to groundwater from excess soil moisture of 0.014
and 0.6, respectively. Considering the climate and catchment characteristics of the study site, this
parameterization can be physically reasoned.

Keywords: daily time steps; flow duration curve; lumped rainfall-runoff method; micro-hydropower;
Nicaragua; ungauged catchments

1. Introduction

Small hydropower is a mature technology that is economically feasible and has, if properly
planned, minimal impact on the environment. It has significantly contributed to solving the problem
of rural electrification through improving living standards and production conditions, promoting rural
economic development, alleviating poverty, and reducing emissions. With its most ancient use, the
water wheel, small hydropower can also foster local tourism and provide mechanical power, such
as for crop grinding, for example [1]. Overall, approximately 36 percent of the total global small
hydropower (<10 MW) potential has been developed as of 2016 [2].

The United Nations Sustainable Development Goals include affordable and clean energy, climate
action, life on land, no poverty, industry, innovation, and infrastructure [3]. All of these topics are also
part of rural electrification in developing countries via small hydropower. The use of clean energy
sources and long-living material reduces environmental pollution and leads to reduced poverty by
also empowering local communities with self-sustaining production cycles.

Compared to other sources of energy, hydropower has several advantages. It is a more
concentrated source of energy than wind and solar energy, due to the density and kinetic energy
of water; the available power is predictable; energy is normally available on-demand; no fuel is
needed, and minimum maintenance (machinery and civil works usually have a lifespan of more than
50 years) is required [4]. Hence, the use of small hydropower as a reliable and renewable energy source
remains a promising option for the electrification of remote areas, especially in developing countries
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where national electric grids are too far away to become a feasible connection. According to common
terminology, hydropower covering less than 100 kW is often referred to as “micro-hydropower”
(MHP) [5].

However, in many cases, little data for describing the conditions of a site is available, and as a
result, the planning process can be difficult. A principal means for the feasibility study of a hydropower
plant is sufficient information on river discharge at a potential plant site. Whereas the plant site can be
more or less easily determined through a topographic survey, (historical) discharge measurements over
sufficient time spans are usually lacking, and have to be estimated. The usual basis for the hydropower
plant design, defined by the working range of the turbine to be used, represents a flow duration
curve (FDC) of measured or estimated discharge. The FDC provides a graphical representation of
the frequency distribution of the complete flow regime of a catchment, and allows the estimation
of the percentage of time that a specified stream flow is equaled or exceeded. In order to achieve a
higher accuracy and better representation of characteristic discharge behavior, daily time steps are
required for the construction of FDCs. A higher accuracy can also be used for feasibility studies for
micro hydropower plants. By knowing the number of days during which specific stream flows are
exceeded, a feasible micro hydropower plant design that accounts for both energy production and
energy consumption can be elaborated.

Over the past century, many methods have been developed to derive FDCs for sites where
discharge measurements are inadequate or completely absent [6–8]. Often, an approximation for a
flow duration curve at an ungauged site is obtained either from the ratio of mean annual flows at
ungauged and gauged sites, from the ratio of catchment areas, or from the correlation of flows [9].
Referring to the former method, it can be argued that two rivers having similar mean flows might
nevertheless have completely different low-flow characteristics because of their respective geological
or soil conditions, for example. None of the methods mentioned above explicitly takes into account
characteristics of the upstream catchment, e.g., the topography, lithology, soil characteristics, or rainfall
patterns. However, the consideration of such parameters is expected to provide a higher accuracy of
low-flow estimation.

This study focuses on a hydrological approach to construct reliable flow duration curves to design
micro hydropower plants based on given data and information scarcity in ungauged catchments. The
lumped rainfall-runoff method, which was used for this study, is designed for the calculation of heights
of monthly discharges in mm. The presented approach is to our knowledge the first documented
study that implements a modification of the calculation steps to work on a daily time scale. Facing
the situation of scarce discharge data, this allows for the calibration of the few and reasonable model
parameters with a small set of discharge measurements. The calculation of daily discharges further
provides better information for the feasibility analysis of a micro hydropower plant.

The method by Crawford and Thurin used in this study has been applied in different contexts
and for different purposes elsewhere, mostly in Indonesia. Shrestha et al. [10] have used the method
for water resources assessment in a poorly gauged mountainous catchment of Nepal with satisfactory
results. In a study for ground water conservation, Hargono et al. [11] used the method in order
to calculate the volume of the total flow, base flow, and direct flow in a catchment in Indonesia.
Ginting et al. [12] applied it to calculate the inflow to a reservoir in Indonesia. As a simple lumped
rainfall-runoff model, the method was applied by Hatmoko et al. [13] to calculate the runoff at a weir
in Indonesia based on remote sensing data from satellites. The results were qualified as satisfactory.
These examples show a broad application of the method, with generally satisfying results.

In several other studies, the method by Crawford and Thurin has been compared with other
approaches for ungauged catchments. Limantara [14] used the method by Crawford and Thurin
to calculate the water balance of a small dam for domestic water supply in Indonesia. In his study,
he realized a comparative assessment between applying the method by Crawford and Thurin and
using a method developed by Mock [15]. The method by Crawford and Thurin led to lower results in
discharge, yet because of the lack of discharge measurements, no validation of results could be realized.
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In a study by Rintis et al. [16], the method by Crawford and Thurin [17] was compared to the
method by Mock [15] and the GR2M (Global Rainfall-Runoff Model—a two-parameter monthly water
balance model) method [18]. The correlation of the calculated flow duration curves was very high,
with a correlation coefficient of >0.955. Compared to the method proposed by Mock [15], the method
by Crawford and Thurin requires less input data. However, input data requirements are lowest for the
GR2M method [18]. The simplicity of the approach by Crawford and Thurin, while also achieving
satisfying results, was seen as a comparative advantage in these studies.

2. Materials and Methods

2.1. Study Site

The study area (Lat 13◦08′09′ ′ N, Long 85◦44′11′ ′ W) is located in the mountainous region of the
departments Jinotega and Matagalpa in the central north region of Nicaragua, Central America. The
climate is sub-tropic and semi-humid. Annual precipitations vary between 2000 and 2500 mm, while
mean temperature varies between 22 and 24 ◦C. Altitudes of the study area vary between 755 and
1386 m a.s.l.

Relevant water resources within the study area are the Porvenir and Cañas rivers. The Porvenir
River yields very little water, and is only used for potable water consumption. The Cañas River
provides water for coffee processing for the INA Oriental coffee farm, located in the study area, and is
of further interest for this investigation. The Cañas River has a waterfall with an altitude of 29 m, and
its lower part towards the coffee farm border is relatively close to the coffee farm installations (which
include housing for administrative staff and coffee workers). Its mean annual flow was calculated as
115 L/s, using the later described model.

The closest distance between the river and electric power distribution (17 kV) is 310 m. Assessment
of the collected data made clear that the waterfall would be a fundamental element for taking advantage
of MHP on the site. From the top of the waterfall to the nearest distance between river and electric
power distribution, the brutto (initial, not accounting for energy losses on the conveyance towards
a turbine) head measures 83 m. Figure 1 shows the studied site, with the calculated stream network
based on a digital elevation model, the catchment of the planned MHP intake (where the discharge
measurements for calibration have also been taken, and which is the position of the waterfall), the
GPS-measured locations of the stream course downstream of the waterfall, and the position of the
precipitation gauging station.
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The total catchment area of the Cañas River at the waterfall is 2.89 km2. The Cañas River belongs
to the river network of the Tuma River, which is one of the principal rivers of Nicaragua, with a total
catchment area of 2859 km2 draining to the Caribbean Sea.

2.2. Data Assimilation

2.2.1. Precipitation Data

A precipitation gauging station exists close to the coffee farm office, where observations are
collected every morning. A supportive archive exists containing monthly precipitation heights (mm)
from the years 2007–2011, and daily precipitation heights (mm) from 2012 to present. An analysis of
the data showed monthly heights fluctuating between 0 and 637 mm of precipitation, and daily heights
fluctuating between 0 and 175 mm. Annual heights range between 2054 and 2491 mm, and have
an average value of 2337 mm. Rainfall peaks are noticeable during the months of June and October,
revealing the bimodal character of the raining season from May to November, although they vary from
year to year. Figure 2 illustrates average monthly precipitation for the years 2007–2015.
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2.2.2. Discharge Data

River discharge was measured during a field trip at various points along the stream course, and
with different methods. Those include velocity-area measurement, weir discharge measurement, and
barrel discharge measurement. Four points of the river with a suitable cross-section were identified,
and measurements were conducted there. Figure 1 contains the locations of those measurements
(P1–P4). The highest point was located directly upstream of the waterfall. The selection of different
methods served for comparability and validation, as well as testing for reasonable groundwater sources
that would result in a difference of the discharge between different measurement points.

1. Sections 1 and 3: Barrel Method

Similar to the widely known and very simple bucket method, a barrel of 220 L volume was used
to measure the time until it was filled by the discharging water. The corresponding discharge was then
calculated. For deviation of the water at the measurement location, a tube of eight inches width and
3 m length was used. A provisional barrage of stones and grass was set up across the cross-section,
and leakage was reduced by using plastic canvas. The amount of leakage was later estimated.

2. Section 2: Weir Method
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The lowest cross-section was measured with a weir of a triangular-shaped notch, the following
two sections with a barrel, and the highest point with the velocity-area method using floaters. The
discharge passing the triangular weir can be calculated using the formula:

Q = 4.28×Ce × tan
(
θ

2

)
× (h + k)

5
2 , (1)

with

Ce Effective discharge coefficient
θ Angle of the v-shaped notch
Q Discharge
h Water depth at the notch of the weir
k Head correction factor

In the studied case, the simpler form is used, as given in [7]:

Q = 1.4h5/2, (2)

where Q and h are as previously defined.

3. Section 4: Velocity-Area Method

A riverbed section of great use for discharge measurements was discovered just upstream of the
waterfall, with a rocky streambed and an area that was easy to measure. Velocity measurements were
realized over a distance of 1 m, and over three parts of the section (left, middle, right). After measuring
the dimensions of the two cross-sections of entrance and exit, an average value of the area was taken
and multiplied by the time needed to travel the distance of one meter. A correctional factor of 0.8 was
considered for the conditions of the streambed after cleaning it from bigger stones and rubble.

4. Results

At two cross-sections, considerable losses could not be avoided, since water was leaking through
the sandy streambed below the weir or through the sides of the barrages. Accordingly, for the two
lower cross-sections, losses of 20% were estimated. The third cross-section was more suitable for
measurement, and water leakage could be identified to be approximately 2 L/s, which corresponds to
11%. The last and highest located cross-section of the river was suitable for easy measurement and
calculation. Since no barrage was required, it did not present any water losses.

Assessment of the resulting data clearly showed that discharge varied only to a small extent,
and therefore, other considerable water sources seem to be absent. This led to the conclusion that a
representative and well-fitting cross-section for future discharge measurement of the studied river
would be the location above the waterfall.

In 2015, additional measurements have been conducted by two students of TU Darmstadt,
L. Matthies and F. Glöckner, as well as by an instructed team of the plantation workers. All of those
measurements were conducted on the profile on top of the waterfall, since it provided the most reliable
results. Starting on 30 July 2015, the method for measurement and calculation was expanded to include
the averaging of five cross-sections, reduced to velocity measurements at two sides of the stream (left
and right), and later averaged. Also, the correctional factor was changed towards 0.725 as a correction
factor between 0.6 and 0.85 for a streambed condition between pebbly and smooth, respectively [8].
The results of those valuable measurements are shown in Table 1 and Figure 3, which also compare
measured discharges with the measured precipitation in 2015 and show the estimated base flow,
which emerged through the analysis of the precipitation data from 2012 to 2015 and the modelled
discharge results.
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Table 1. Discharge measurements 2015.

Date Discharge (L/s)

30 April 2015 20
25 June 2015 92
30 July 2015 71

12 August 2015 71
31 August 2015 130

1 September 2015 98
8 September 2015 59
9 September 2015 50

16 September 2015 55
24 September 2015 64
30 September 2015 93

5 October 2015 57
22 October 2015 88
29 October 2015 69

18 November 2015 90
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Analysis of the daily precipitation data 2015 shows that the discharge measured on 30 April
2015 is acceptable as a representative value for low flow of the river, since no precipitation
happened for a period of 11 days before that date, which was in fact the longest period without
any measured precipitation during 2015. The discharge measured on 31 August 2015 happened after
the second-strongest precipitation of 2015, which was measured on 30 August 2015 with a height of
59 mm. This was only surpassed by rainfall on 10 July 2015, which produced a height of 65 mm. A first
possible range of discharges could therefore be roughly estimated relying on these data, resulting in a
span between 20 and 150 L/s. An estimation of the upper limit is difficult to make, since moisture and
groundwater storage conditions, as well as retention behavior, are at first unknown. The dominant
responsible runoff-generating mechanism is believed to be an infiltration excess overland flow, since
the studied area is mainly characterized by hillslopes.

2.2.3. Climate Data

Historic climate data for the region of INA Oriental has been obtained through the International
Water Management Institute (IWMI), Sri Lanka, which in its “Water and Climate Atlas” provides data
from worldwide weather stations, dating 1961–1990 [19]. The “Water and Climate Atlas” daily climate
data provide reference evapotranspiration calculated using the Penman-Monteith equation. It is used
by the model as (potential) evapotranspiration under optimal conditions.
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2.3. Methodology

In order to develop a flow duration curve for the studied site, and to estimate the available
discharges, a lumped rainfall-runoff model is used. Accounting for the scarce knowledge about
the hydrologic behavior and characteristics of the catchment, a simulation method as described by
Crawford and Thurin (1981) [17] is used and slightly adapted in order to improve the calibration
of the predicted flow behavior. Input data for the described model are: precipitation, potential
evapotranspiration and the adjustable parameters for soil-moisture storage, the sub-surface runoff
fraction of the total runoff, and a time index for this flow to reach the stream. For the separation of the
base flow, two storages are used: moisture storage and groundwater storage. Excess moisture leaves
the moisture storage as either direct flow or recharge to the groundwater storage. For each time step of
the simulation, a constant fraction of groundwater storage, which joins the total discharge, is defined
as groundwater flow. Figure 4 gives a basic overview of the model structure.

Water 2017, 9, 572  7 of 15 

 

time step of the simulation, a constant fraction of groundwater storage, which joins the total 
discharge, is defined as groundwater flow. Figure 4 gives a basic overview of the model structure. 

 
Figure 4. Model structure of the empirical rainfall runoff model, including water flows and storage 
system (based on Crawford and Thurin [17]). 

Input values for the simulation are daily precipitation heights (mm), which were taken from 
measurements on site, and evapotranspiration estimates via the Penman-Monteith formula, obtained 
from IWMI (2016), as described above [19]. This approach differs from the original approach 
proposed by Crawford and Thurin [17], which only calculated monthly discharge heights. The reason 
for a calculation on daily time steps is the available daily resolution of precipitation measurements, 
and the intent to calibrate parameters of the model with discharge measurements. The function of 
the original model is covered in the following descriptions for parameter values and calculation steps. 
Two correlations (see Figures 5 and 6) are originally only represented by analog graphical data, and 
have been implemented in a worksheet routine for the easier calculation on a higher temporal 
resolution. 

The model uses three parameters, which need to be estimated. These are called NOMINAL, 
PSUB and GWF. NOMINAL is an index of the total soil moisture storage capacity in the studied 
catchment. PSUB represents the fraction of runoff that leaves the catchment as groundwater flow, 
and relates to “recharge to groundwater” in the model structure (Figure 4). GWF is the time index 
for the groundwater flow to reach the stream, as mentioned above, and is therefore the “groundwater 
flow” in the model structure. 

NOMINAL means the amount of storage in soil moisture that leads to half of the positive 
monthly water balance leaving the catchment as excess moisture, which can be direct runoff or 
groundwater flow. The soil moisture storage itself may be greater than or less than NOMINAL. In 
the case of soil moisture storage being less than NOMINAL, most of the positive monthly water 
balance will be retained in the moisture. If it is bigger than NOMINAL, then accordingly, most of the 
positive monthly water balance will result in direct runoff or add up to the groundwater storage. 
NOMINAL is valued in millimeters. PSUB accounts for the permeability of the soil and drives the 
simulation of flows in dry periods. The more permeable a soil is, the more flow will be sustained and 
reach the groundwater, which leads to higher flows in dry periods. Since PSUB and GWF are 
describing fractions, they are dimensionless. 

Figure 4. Model structure of the empirical rainfall runoff model, including water flows and storage
system (based on Crawford and Thurin [17]).

Input values for the simulation are daily precipitation heights (mm), which were taken from
measurements on site, and evapotranspiration estimates via the Penman-Monteith formula, obtained
from IWMI (2016), as described above [19]. This approach differs from the original approach proposed
by Crawford and Thurin [17], which only calculated monthly discharge heights. The reason for a
calculation on daily time steps is the available daily resolution of precipitation measurements, and
the intent to calibrate parameters of the model with discharge measurements. The function of the
original model is covered in the following descriptions for parameter values and calculation steps. Two
correlations (see Figures 5 and 6) are originally only represented by analog graphical data, and have
been implemented in a worksheet routine for the easier calculation on a higher temporal resolution.

The model uses three parameters, which need to be estimated. These are called NOMINAL,
PSUB and GWF. NOMINAL is an index of the total soil moisture storage capacity in the studied
catchment. PSUB represents the fraction of runoff that leaves the catchment as groundwater flow, and
relates to “recharge to groundwater” in the model structure (Figure 4). GWF is the time index for the
groundwater flow to reach the stream, as mentioned above, and is therefore the “groundwater flow”
in the model structure.
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NOMINAL means the amount of storage in soil moisture that leads to half of the positive monthly
water balance leaving the catchment as excess moisture, which can be direct runoff or groundwater
flow. The soil moisture storage itself may be greater than or less than NOMINAL. In the case of
soil moisture storage being less than NOMINAL, most of the positive monthly water balance will
be retained in the moisture. If it is bigger than NOMINAL, then accordingly, most of the positive
monthly water balance will result in direct runoff or add up to the groundwater storage. NOMINAL
is valued in millimeters. PSUB accounts for the permeability of the soil and drives the simulation
of flows in dry periods. The more permeable a soil is, the more flow will be sustained and reach
the groundwater, which leads to higher flows in dry periods. Since PSUB and GWF are describing
fractions, they are dimensionless.
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Estimates, without any prior knowledge of a watershed, can be set as in Crawford and Thurin [17]:

NOMINAL = 100 + C×mean annual precipitation, (3)

where C varies between 0.2 for catchments with rainfall throughout the year and 0.25 for catchments
with seasonal rainfall. In areas with thin vegetation, it could be reduced by 25 percent, which is not the
case for the studied region.

A standard value for PSUB can be set as 0.6. The upper limit is 0.8 for a catchment with high
permeable soils, and the lower limit is 0.2 for catchments with low permeability or thin soils.

For GWF, the standard value is 0.5, where it may increase to 0.9 for catchments with little sustained
flows and decrease to 0.2 for catchments with high sustained flows. All of these values apply for
the original approach as suggested by Crawford and Thurin, which is meant for monthly time steps.
As a logical consequence, for the calculation of daily average discharges, the value for GWF must be
significantly smaller. This is due to its meaning for the calculation process: since GWF describes a
fraction of the total groundwater storage leaving that storage during each time step, the fraction must
be smaller when the time step is shorter.

Total runoff (Qt) to the stream per simulated time step is calculated as follows:

Qt = Qs + Qgw, (4)

Qs = Me −GWR, (5)

Qgw = GFW×GWs,end, (6)

GWs,end = GWs,start + GWR, (7)

GWs,start = GWs,end −Qgw, (8)

GWR = Me × PSUB, (9)

Me = MSer ×W, (10)

W = P− [[AET/PET]× PET], (11)

∆Ms = W−Me, (12)

MSr,i = Ms,i−1,end/NOMINAL, (13)

Ms,end = Ms,start + ∆Ms, (14)

with
Qt Total runoff that leaves the catchment (mm)
Qs Surface runoff that leaves the catchment (mm)
Qgw Groundwater runoff that leaves the catchment (mm)
Me Excess moisture that cannot be stored in the moisture storage (mm)
GWR Groundwater recharge to the groundwater storage (mm)
GWs,start Groundwater storage at the beginning of the time step (mm)
GWs,end Groundwater storage at the end of the time step (mm)
MSer Moisture storage excess ratio (-)
W Water balance (mm)
P Precipitation (mm)
AET Actual evapotranspiration (mm)
PET Potential evapotranspiration (mm)
MSr Moisture storage ratio (-)
Ms Moisture storage (mm)
∆Ms Moisture storage change (mm)
Ms,start Moisture storage at the beginning of the time step (mm)
Ms,end Moisture storage at the end of the time step (mm)
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If the water balance W is >0, then the excess moisture ratio (MSer) is derived from its dependency
on the soil moisture storage ratio (MSr). This dependency is displayed in Figure 5.

If the water balance W is < or equal to 0, then MSer is 0. AET/PET is derived from its dependency
on P/PET and the soil moisture storage ratio, as shown in Figure 6.

Groundwater storage and moisture storage start with initial values for the first time step, before
they are calculated for the following time steps via storage changes. Values for NOMINAL, GWF
and PSUB are set initially, and can be adjusted by trial and error as soon as the correlation between
measured and calculated discharge values is considered. Starting conditions for soil moisture storage
and groundwater storage need to be estimated first. Since storages vary with rainfall seasons and
dry seasons, soil storages can be estimated as 10 per cent of NOMINAL in dry seasons, 125 per cent
of NOMINAL in wet seasons, and equal to NOMINAL in catchments with rainfall throughout the
year. Groundwater storage may be set to 5 percent in dry seasons, 40 percent in wet seasons, and
20 percent in catchments with rainfall throughout the year. Initial values for the soil storage can be
found by either running a calculation for various years or not taking into account the first year, or by
approximating the initial value iteratively for one year. For further details on the determination of the
parameters from this paragraph, see Crawford and Thurin [17].

In order to calibrate the input parameters of the simulation, a calculation based on daily time
steps was needed. This was because the measurements that had been taken at individual days did
not allow the calculation of monthly discharge heights and their comparison with modeled values.
Pearson’s correlation coefficient was used for the measurement of the linear correlation between the
measured and the calculated discharge values. It is a good estimate for the goodness of fit between
the two datasets, and can be used in combination with hydrologic reasoning for the estimation of
best-fitting parameters. During the calculation of the correlation coefficient, 14 of the 15 existing
discharge measurements were taken into account. One measurement (9 September 2015) did not
correlate at all with predicted flows and is highly likely to have been taken at an unfortunate moment
when compared to the time of measuring the precipitation that day, which would lead to a wrong
retention behavior. Precipitation was always measured in the morning hours between 8 am and 11 am.
Where other modeled and measured discharge values—covering a wide discharge spectrum—reacted
positively to calibration of the model parameters, this measured value did not. A possible situation
would be that most of the discharge had already left the watershed when the discharge was measured;
for example, if the discharge had been measured in the early evening. Therefore, explainable as
either a timing or a reading error, this measurement was treated as an outlier and not used in the
correlation analysis.

Using an excel sheet for automatic calculation and easy iteration via trial and error for the input
parameters PSUB and GWF, calculated discharge values were averaged for a representative flow
duration curve of one year.

3. Results

3.1. Lumped Rainfall-Runoff Method

After various iterations over the data from 2012 to 2015, and based on the model setup instructions,
NOMINAL was estimated to be 684 mm, initial groundwater storage (1 January) to be 154 mm, and
initial soil moisture storage to be 904 mm. For the year 2015, a minimal flow of 16 L/s and a peak
discharge of 599 L/s were calculated, which lead to a Pearson’s correlation coefficient between
measured and calculated discharge values of 0.64. PSUB was estimated as 0.6, and GWF as 0.014.
The value for PSUB is representative for an average-to-high soil permeability, whereas the value for
GWF means a higher than average sustained flow. This makes sense for a humid and sub-tropic
environment, and is comparable to the experienced catchment characteristics on site. Since the base
flow index shows the ratio between groundwater flows and total streamflow, it is comparable to the
parameter PSUB. The value of 0.6 for PSUB matches the calculated base flow index for the studied
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region as part of the Global Streamflow Characteristics Dataset (GSCD) [20], which was 0.597, quite
well. The calculated FDC is shown in Figure 7.Water 2017, 9, 572  11 of 15 
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exceeding this value are calculated. The high flows, as calculated here, make sense, taking into account
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measurements taken after times of drought. Here, a very representative discharge measurement
(20 L) had been recorded on 30 April 2015, when it had not been raining for 11 days, and the total
precipitation height of the month was 31 mm, which was also the year’s driest period. Dry periods
during other years of the existing precipitation data show similar values. It is therefore justifiable to
define the low flow of the year 2015 to be around 20 L/s for the studied catchment. This corresponds
to the FDC for 2015 (Figure 7).

In order to make a valuable statement about an average flow duration curve, which in the study
case was the groundwork for the design of a micro-hydropower plant, the values of each year’s FDC
were averaged. The averaged flow regime ranges from a minimum annual flow of 21 L/s, via a mean
annual flow of 115 L/s, to a peak annual flow of 866 L/s (Figure 8).
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Due to high variations in the rainfall pattern, with intense rainfalls occurring in the wet period
and dry periods lasting up to four weeks without rainfall events, high discharge peaks are likely to
occur, while high soil permeability allows considerable groundwater flows that provide sufficient
minimum flow in low flow periods.

The measured precipitation and modelled discharge are displayed in Figure 9.
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3.2. Design Characteristics of the Studied MHP Plant

Although it is not the scientific focus of this paper, the feasibility of a potential MHP plant design
was studied as well, and results might be interesting for readers who are interested in the practical
application of FDCs for MHP planning. Based on the site conditions, the calculated discharges, the
daily energy consumption on site, and the estimated installation and operational costs, a break-even
time for the investment could be calculated for both the case of solely self-consumption of the produced
energy and the case of selling excess energy to the national grid.

With the goal in mind of obtaining a break-even period of the investment that is shorter than
eight years, a feasible plant design could be chosen. With a gross head of 61.86 m, a design flow of
43 L/s, and a residual flow of 20 L/s, a single-jet Pelton turbine and a 20 kW eight-pole asynchronous
generator running at 900 rpm (possible direct coupling) were chosen. The penstock (uPVC material)
length would be 429 m, with a pipe diameter of 5.5 inches. These conditions result in an average net
head of 44.92 m, a plant load factor of 0.76 and an annual energy output of 85.65 MWh at 7656 annual
hours of operation. Estimating the investment costs to be between 2000 US$/kW and 5000 US$/kW,
the break-even time was calculated as, accordingly, 2.15–5.74 years. These numbers would decrease
to 1.77–4.69 years, if the excess energy was sold to the national electricity grid. Generally, the higher
investment costs for hydropower in developmental countries are due to a number of reasons, which
include likely missing subsidy concepts for the supply of excess energy to the national grid. Yet
realistic estimations on the feasibility of a plant design are possible, and in the studied case, led to a
positive statement on the feasibility of a potential investment.

4. Discussion

Although in the case of the presented study only 15 discharge measures were available, a Pearson’s
correlation coefficient of 0.64 was obtained. Where the possibility exists, representative discharge
measurements can be taken (for dry period, average and high flows) and calibration will likely
show satisfactory results. Even without discharge measurements, parameters can be set according to
knowledge of the catchment (mainly soil properties). The model is likely to work in different climatic
regions, but calibration will require a larger set of precipitation measurements. Regardless of its
simple structure, the presented method calculates the total runoff produced in a catchment, including
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surface runoff and base flow, to a satisfying level of precision, while using two different storages (soil
and groundwater).

Sensitivity analyses done by Crawford and Thurin showed that calculated FDCs are most sensitive
to uncertainty in monthly precipitation and potential evapotranspiration amounts. In humid climates,
stream flow is even more sensitive to potential evapotranspiration [17]. This is important to note, since
the potential evapotranspiration input used in this approach was derived from average monthly data
during 1961–1990, which most probably had been interpolated to match the coordinates of the studied
catchment and could differ slightly from real evapotranspiration data. An example for another source
of PET data is the “Global Potential Evapo-Transpiration (Global-PET) geospatial dataset” [21,22].
While the FAO-PM (UN Food and Agriculture Organization—Penman Monteith) PET values ought to
be more precise than the Hargreaves method used in the cited dataset, a comparative approach might
still be interesting for the analysis of goodness of fit for the model of this study.

The method used in this study is especially useful for the prediction of runoff behavior (flow
duration curves) on ungauged sites. This can be the case where a feasibility study for a remote
hydropower site is carried out, as has been the case in this study. Applying the method by Crawford
and Thurin to a simulation of daily discharges requires an adjustment of the parameter GWF to a daily
time step as well. If the GWF is parameterized for a monthly calculation, as proposed by Crawford and
Thurin, two major concerns arise: the problem of very low flows, while at the same time enormous
peak flows seem to occur during a considerable number of days. This leads to the assumption that
retention is not considered well enough, and, in fact, the value of GWF must be corrected. An essential
point of improving the calculation’s resolution is hence to correctly change the fraction of groundwater
flow of total groundwater discharge leaving the catchment. If GWF is set to be very small (values
between 0.01 and 0.03), those may represent a more realistic fraction of the groundwater flow leaving
the catchment on a daily basis, which also implies a more realistic retention. Accordingly, two effects
take charge: low flows reach higher values, and peak flows are dampened a little. This correction led
to satisfactory results in the presented study.

Lower flows until an exceedance of >1.5 months (45 days) seem to be equally represented in
both FDC resolutions. However, high flows and very low flows are captured in much more detail
on a daily basis, and more realistic non-linear runoff behavior can be modeled. Since an FDC should
consider average possible discharges from longer episodes of input rainfall data, the flow volumes
can be calculated for all the years of available rainfall data, which represent the years 2012–2015 for
the case study. Calculation of an FDC for 2015 based on daily data from 2012 to 2015 provided very
similar results as the calculation using data from 2015 alone.

The studies conducted by other authors mentioned in the introduction applied the method by
Crawford and Thurin in its original form using monthly time steps. The presented study here is the
first one documented to apply the method for a daily time step. Therefore, the calibration results
for the method of the other studies are not directly comparable. Hatmoko et al. [13], for instance,
calibrated the method with a base flow fraction parameter PSUB of 0.90, and a groundwater discharge
rate parameter GWF of 0.46. Hargono et al. [11] had best results, with a PSUB of 0.85 and a much
lower GWF of 0.2. The calibrated value for PSUB in this study was 0.6, thus, lower than in the other
studies. This can be explained with a lower permeability of soils in this study area. The GWF was
calibrated with 0.014 in this study. This is a very low value compared to the other studies, but it is
based on a daily time step. Extrapolation to a monthly value results in a GWF of roughly 0.43. This is
very close to the value from the study of Hatmoko et al. [13].

Where more data on discharge, soil properties and land use are available, one might consider the
application of the SCS-CN (U.S. Soil Conservation Service—Curve Number) model variant developed
by Geetha et al. [23] and the assessment of the resulting correlations between measured and simulated
discharges. This model approach considers temporal variations of the curve number, and simulates
the total streamflow with its components such as surface runoff, through-flow and base flow. It is a
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more complex model, which uses a set of 13 parameters, but also gives more insight into different
runoff components. The model parameters need to be optimized by an algorithm.

Research could also focus on the applicability of data, which is available from remote sensing and
would provide broader usability for different kinds of catchment characteristics. Those measurements
enable the estimation of root zone storage capacity [24], landscape heterogeneity, dominant runoff
generating mechanisms [25,26], sub-surface storage fluctuation, and groundwater recession [27].

5. Conclusions

The method by Crawford and Thurin operates with limited field data and produces results of
moderate accuracy. Its calculation techniques are based on sound hydrologic principles and represent
the key processes of continuous monthly streamflow. The method should not be applied for regions
where discharge from snowmelt represents a significant process, as the snow accumulation is not
reflected in the method. The method is also not suitable for catchments with large lakes, reservoirs or
long transport sections, because hydraulic routing is not captured by it. Hence, the method should be
applied to small catchments. For the same reason, when applying the method with a daily time step,
the application should be limited to even smaller catchments.

Compared to other approaches to develop FDCs for ungauged catchments (e.g., FDC selection
from standardized FDCs), the modified method presented here yields better site-specific results,
as it takes climate and catchment characteristics into account, and can be calibrated with measured
discharge. This can result in higher reliability of the planning base for small-scale hydropower
development and improved economic viability.
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